000095298 001__ 95298
000095298 005__ 20201009175924.0
000095298 0247_ $$2doi$$a10.1021/acs.iecr.9b01460
000095298 0248_ $$2sideral$$a112647
000095298 037__ $$aART-2019-112647
000095298 041__ $$aeng
000095298 100__ $$0(orcid)0000-0001-9391-3594$$aManno, Roberta$$uUniversidad de Zaragoza
000095298 245__ $$a110th Anniversary: Nucleation of Ag Nanoparticles in Helical Microfluidic Reactor. Comparison between Microwave and Conventional Heating
000095298 260__ $$c2019
000095298 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095298 5203_ $$aThe synthesis of silver nanoparticles with small average size and narrow size distribution is a requirement for applications in different fields such as antibacterial or catalysis. Previous studies of nanoparticles synthesis confirm the advantages of combining continuous flow and microwave dielectric heating, given the possibilities that arise regarding the control of residence time and localized volumetric heating. In this paper, we present two experimental set-ups to perform the continuous synthesis of silver nanoparticles using microwave heating (MWH) and conventional heating (CH). Experimental and simulated data confirm a different temperature profile along the reactor, with the case of MWH being more favorable. As a result, the nanoparticles synthesized under MWH presented a synthesis yield of 54% and a narrow particle size distribution (19 ± 4.3 nm). Furthermore, MWH led to reduced wall fouling by deposition of product material and allowed fast cooling of the product stream, preventing further growth of the nanoparticles.
000095298 536__ $$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 721290-COSMIC$$9info:eu-repo/grantAgreement/EC/H2020/721290/EU/European Training Network for Continuous Sonication and Microwave Reactors/COSMIC$$9info:eu-repo/grantAgreement/ES/UZ-DGA/T57-17R-P
000095298 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000095298 590__ $$a3.573$$b2019
000095298 591__ $$aENGINEERING, CHEMICAL$$b44 / 143 = 0.308$$c2019$$dQ2$$eT1
000095298 592__ $$a0.899$$b2019
000095298 593__ $$aChemical Engineering (miscellaneous)$$c2019$$dQ1
000095298 593__ $$aIndustrial and Manufacturing Engineering$$c2019$$dQ1
000095298 593__ $$aChemistry (miscellaneous)$$c2019$$dQ1
000095298 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000095298 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, Victor$$uUniversidad de Zaragoza
000095298 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, Reyes$$uUniversidad de Zaragoza
000095298 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, Jesús$$uUniversidad de Zaragoza
000095298 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000095298 773__ $$g58, 28 (2019), 12702-12711$$pInd. eng. chem. res.$$tINDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH$$x0888-5885
000095298 8564_ $$s1812355$$uhttps://zaguan.unizar.es/record/95298/files/texto_completo.pdf$$yPostprint
000095298 8564_ $$s96484$$uhttps://zaguan.unizar.es/record/95298/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000095298 909CO $$ooai:zaguan.unizar.es:95298$$particulos$$pdriver
000095298 951__ $$a2020-10-09-17:47:47
000095298 980__ $$aARTICLE