000095331 001__ 95331
000095331 005__ 20230914083303.0
000095331 0247_ $$2doi$$a10.1016/j.jmat.2020.05.003
000095331 0248_ $$2sideral$$a119080
000095331 037__ $$aART-2020-119080
000095331 041__ $$aeng
000095331 100__ $$aÖzçelik, B.
000095331 245__ $$aHigh speed processing of NiFe2O4 spinel using a laser furnace
000095331 260__ $$c2020
000095331 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095331 5203_ $$aThe Laser Furnace (LF) method has been applied to directionally solidify NiFe2O4 spinel disks from a mixture of Fe and Ni oxides in order to obtain uniform, dense targets for controlled synthesis of spinel nanoparticles via Laser Ablation. Application of a CO2 laser in Line Scan mode onto a sample with the desired stoichiometry, enabled melt processing above 1580 °C at its outer surface layer. This process was carried out inside a continuous roller furnace at a maximum volume temperature of 1000 °C. Such combination helps avoid excessive thermal stress, crack formation and catastrophic failure of these magnetic ceramic monoliths. Higher energy incubation values yield increased molten volumes and a thicker resolidified surface layer with a dense microstructure. Despite the high solidification rates imposed, NiFe2O4 spinel is the main phase obtained according to X-Ray Diffraction (XRD) and magnetization studies. LF processed samples exhibit a reduction of the coercive fields and an increase of the saturation magnetization values, evidence for soft ferromagnetism and characteristic of the magnetic behaviour associated with this spinel. This work demonstrates the convenience of the LF method for preparation of uniform, dense targets for Laser Ablation and other evaporation based techniques used in the fabrication of nanoparticles.
000095331 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T54-17R$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2017-83669-C4-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-79866-R
000095331 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000095331 590__ $$a6.425$$b2020
000095331 591__ $$aCHEMISTRY, PHYSICAL$$b40 / 162 = 0.247$$c2020$$dQ1$$eT1
000095331 591__ $$aPHYSICS, APPLIED$$b32 / 160 = 0.2$$c2020$$dQ1$$eT1
000095331 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b80 / 333 = 0.24$$c2020$$dQ1$$eT1
000095331 592__ $$a1.697$$b2020
000095331 593__ $$aElectronic, Optical and Magnetic Materials$$c2020$$dQ1
000095331 593__ $$aSurfaces, Coatings and Films$$c2020$$dQ1
000095331 593__ $$aMetals and Alloys$$c2020$$dQ1
000095331 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095331 700__ $$aÖzçelik, S.
000095331 700__ $$0(orcid)0000-0003-2212-447X$$aAmaveda, H.$$uUniversidad de Zaragoza
000095331 700__ $$aSantos, H.
000095331 700__ $$aBorrell, C.J.$$uUniversidad de Zaragoza
000095331 700__ $$aSáez-Puche, R.
000095331 700__ $$0(orcid)0000-0002-0500-1745$$ade la Fuente, G.F.$$uUniversidad de Zaragoza
000095331 700__ $$0(orcid)0000-0001-5685-2366$$aAngurel, L.A.$$uUniversidad de Zaragoza
000095331 7102_ $$15001$$2X$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cProy. investigación DFA
000095331 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000095331 773__ $$g6, 4 (2020), 661-670$$tJournal of Materiomics$$x2352-8486
000095331 8564_ $$s3926169$$uhttps://zaguan.unizar.es/record/95331/files/texto_completo.pdf$$yVersión publicada
000095331 8564_ $$s56614$$uhttps://zaguan.unizar.es/record/95331/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095331 909CO $$ooai:zaguan.unizar.es:95331$$particulos$$pdriver
000095331 951__ $$a2023-09-13-10:55:01
000095331 980__ $$aARTICLE