000095363 001__ 95363
000095363 005__ 20210902121831.0
000095363 0247_ $$2doi$$a10.3390/ma13143087
000095363 0248_ $$2sideral$$a119162
000095363 037__ $$aART-2020-119162
000095363 041__ $$aeng
000095363 100__ $$aSmaida, R.
000095363 245__ $$aPotential implantable nanofibrous biomaterials combined with stem cells for subchondral bone regeneration
000095363 260__ $$c2020
000095363 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095363 5203_ $$aThe treatment of osteochondral defects remains a challenge. Four scaffolds were produced using Food and Drug Administration (FDA)-approved polymers to investigate their therapeutic potential for the regeneration of the osteochondral unit. Polycaprolactone (PCL) and poly(vinyl-pyrrolidone) (PVP) scaffolds were made by electrohydrodynamic techniques. Hydroxyapatite (HAp) and/or sodium hyaluronate (HA) can be then loaded to PCL nanofibers and/or PVP particles. The purpose of adding hydroxyapatite and sodium hyaluronate into PCL/PVP scaffolds is to increase the regenerative ability for subchondral bone and joint cartilage, respectively. Humanbone marrow-derived mesenchymal stem cells (hBM-MSCs) were seeded on these biomaterials. The biocompatibility of these biomaterials in vitro and in vivo, as well as their potential to support MSC differentiation under specific chondrogenic or osteogenic conditions, were evaluated. We show here that hBM-MSCs could proliferate and differentiate both in vitro and in vivo on these biomaterials. In addition, the PCL-HAp could effectively increase the mineralization and induce the differentiation of MSCs into osteoblasts in an osteogenic condition. These results indicate that PCL-HAp biomaterials combined with MSCs could be a beneficial candidate for subchondral bone regeneration.
000095363 536__ $$9info:eu-repo/grantAgreement/ES/ISCIII-IIS/MS19-00092
000095363 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095363 590__ $$a3.623$$b2020
000095363 591__ $$aMETALLURGY & METALLURGICAL ENGINEERING$$b17 / 80 = 0.213$$c2020$$dQ1$$eT1
000095363 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b152 / 333 = 0.456$$c2020$$dQ2$$eT2
000095363 591__ $$aPHYSICS, CONDENSED MATTER$$b27 / 69 = 0.391$$c2020$$dQ2$$eT2
000095363 591__ $$aPHYSICS, APPLIED$$b51 / 160 = 0.319$$c2020$$dQ2$$eT1
000095363 591__ $$aCHEMISTRY, PHYSICAL$$b79 / 162 = 0.488$$c2020$$dQ2$$eT2
000095363 592__ $$a0.682$$b2020
000095363 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ2
000095363 593__ $$aCondensed Matter Physics$$c2020$$dQ2
000095363 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095363 700__ $$aPijnenburg, L.
000095363 700__ $$0(orcid)0000-0002-2966-9088$$aIrusta, Silvia$$uUniversidad de Zaragoza
000095363 700__ $$aHimawan, E.
000095363 700__ $$0(orcid)0000-0003-2293-363X$$aMendoza, G.$$uUniversidad de Zaragoza
000095363 700__ $$aHarmouch, E.
000095363 700__ $$aIdoux-Gillet, Y.
000095363 700__ $$aKuchler-Bopp, S.
000095363 700__ $$aBenkirane-Jessel, N.
000095363 700__ $$aHua, G.
000095363 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000095363 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000095363 773__ $$g13, 14 (2020), 3087 [16 pp.]$$pMATERIALS$$tMATERIALS$$x1996-1944
000095363 8564_ $$s9936056$$uhttps://zaguan.unizar.es/record/95363/files/texto_completo.pdf$$yVersión publicada
000095363 8564_ $$s468811$$uhttps://zaguan.unizar.es/record/95363/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095363 909CO $$ooai:zaguan.unizar.es:95363$$particulos$$pdriver
000095363 951__ $$a2021-09-02-10:17:06
000095363 980__ $$aARTICLE