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ON THE CONJUGACY PROBLEM IN CERTAIN METABELIAN

GROUPS

JONATHAN GRYAK, DELARAM KAHROBAEI, AND CONCHITA MARTINEZ-PEREZ

Abstract. We analyze the computational complexity of the conjugacy search
problem in a certain family of metabelian groups. We prove that in general the
time complexity of the conjugacy search problem for these groups is at most
exponential. For a subfamily of groups we prove that the conjugacy search
problem is polynomial. We also show that for some of these groups the con-
jugacy search problem reduces to the discrete logarithm problem. We provide
some experimental evidence which illustrates our results probabilistically.
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1. Introduction

In a finitely presented group G, the conjugacy decision problem asks if it is
decidable, for any g, g1 ∈ G, whether or not they are conjugate. Along with the
word and isomorphism problems, it was one of the original group-theoretic decision
problems introduced by Max Dehn in 1911. There is a variation called the conjugacy
search problem, in which we assume that the two elements g and g1 are conjugate
and are asked to find a conjugating element in G. There are groups for which the
conjugacy decision problem is not solvable, whereas the search variant is always
solvable.

In this paper we consider the conjugacy search problem for a certain family F of
finitely presented metabelian groups. Recall that the conjugacy decision problem
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for finitely generated metabelian groups is solvable ([10, 4.5.6], [12]). A group
G ∈ F is given by a presentation of the form

G = 〈q1, . . . , qn, b1, . . . , bs | [ql, qt] = 1, [bi, bj] = 1,R〉with

R = {qlbiq−1
l = b

ml(1,i)

1 b
ml(2,i)

2 . . . b
ml(s,i)
s }

where 1 ≤ l, t ≤ n, 1 ≤ i, j ≤ s and the ml(j,i) are suitable integers so that the
actions of the ql commute. Observe that q1, . . . , qn generate a free abelian group
which we denote by Q and that b1, . . . , bs and their Q-conjugated elements generate
a torsion-free abelian group B such that G = B ⋊Q, with B a normal subgroup of
G. Throughout the paper, we will consider B as a Q-module with left action and
will denote conjugation as bqli = qlbiq

−1
l .

Under these conditions one can show that there is an embedding B →֒ Qs map-
ping b1, . . . , bs to a free basis of Qs. This means that the group G has finite Prüfer
rank n + s. Recall that a group has finite Prüfer rank if the number of genera-
tors needed to generate any finitely generated subgroup is bounded. Observe that
the action of Q on B can be described using integral matrices: the action of ql is
encoded by the (s × s)-matrix Ml with entries ml(j,i). These matrices commute
pairwise, thus Q maps onto an abelian subgroup of GL(s,Q). Our group G need
not be polycyclic: in fact, it is polycyclic if and only if the matricesMl have integral
inverses [2].

The groups in F enjoy strong finiteness properties, for example they are of
cohomological type FP∞ [4, Proposition 1] (see also the proof of Theorem 8 in the
same paper) and constructible, meaning that can be constructed in finitely many
steps from the trivial group using finite index extensions and ascending HNN-
extensions. In fact, our groups are iterated, strictly ascending HNN-extensions of
the group Zs. Moreover, any constructible torsion-free split metabelian group of
finite Prüfer rank has this form and any metabelian group of finite Prüfer rank can
be embedded in a metabelian constructible group [4].

In Section 3, we analyze the computational complexity of an algorithm to solve
the conjugacy search problem for groupsG ∈ F . Particularly, we prove the following
two theorems:

Theorem 1.1. For any G ∈ F , the time complexity of the conjugacy search problem
for conjugate elements g, g1 ∈ G is at most exponential in the length of g and g1.

Theorem 1.2. Fix s1, s2 ≥ 0 with s = s1 + s2 and assume that for 1 ≤ i ≤ n,

Mi ∈
{

Matrices
(

Is1 A
0 Is2

)

with A ∈ Mat(s1 × s2,Z)
}

.

Let G ∈ F be defined using the matrices Mi. Then the time complexity of the
conjugacy search problem in G is polynomial.

As a corollary, we also deduce some consequences about conjugator lengths
(Corollary 3.9).

There are some particular cases in which one can show that the conjugacy search
problem for our groups reduces to a type of discrete logarithm problem, which is



ON THE CONJUGACY PROBLEM IN CERTAIN METABELIAN GROUPS 3

discussed in Subsection 3.4. In particular, this applies to generalized metabelian
Baumslag-Solitar groups of the form:

G = 〈q1, q2, b|bq1 = bm1 , bq2 = bm2 , [q1, q2] = 1〉 .

Finally in the last section we perform experiments on the generalized metabelian
Baumslag-Solitar groups as above. Such experiments utilize a heuristic algorithm
called length-based conjugacy search, which is adapted from an attack of the same
name originating in group-based cryptography. Our experiments indicate that these
generalized metabelian Baumslag-Solitar groups are resistant to such search algo-
rithms, i.e., probabilistically the conjugator cannot be found given sufficient time.

2. Split Metabelian Groups of Finite Prüfer Rank

Let G be a split extension G = B ⋊ Q with both groups B and Q abelian. We
use multiplicative notation for the whole group G but additive notation for B. So
if c ∈ B, x ∈ Q, the action of the element x maps c to

x · c with additive notation or,

cx = xcx−1 with multiplicative notation.

Assume that we have conjugate elements g, g1 ∈ G and we want to solve the
conjugacy search problem for g, g1, i.e., we want to find h ∈ G such that

gh = g1.

Let g = bx, g1 = b1x1 and h = cy with b, b1, c ∈ B, x, x1, y ∈ Q, then

b1x = g1 = gh = hgh−1 = cybxy−1c−1 = cby(c−1)xx.

Therefore, we conclude that x = x1, and from now on we denote this element solely
by x. The element cby(c−1)x belongs to the abelian group B. We write it additively

c− x · c+ y · b = y · b+ (1 − x) · c.
This means that the conjugacy search problem above is equivalent to the problem
of finding c ∈ B, y ∈ Q such that

(1) b1 = y · b+ (1− x) · c
when b, b1 ∈ B and x ∈ Q are given.

As stated in the introduction, the groups we are considering admit a presentation
of the form

G = 〈q1, . . . , qn, b1, . . . , bs | [ql, qt] = 1, [bi, bj] = 1,R〉with
R = {qlbiq−1

l = b
ml(1,i)

1 b
ml(2,i)

2 . . . b
ml(s,i)
s }.

Recall also that we are denoting by Q the group generated by q1, . . . , qn, and by
B the group generated as a normal subgroup of G by b1, . . . , bs. One of the main
advantages of these groups is that they admit a set of normal forms:

q−α1
1 . . . q−αn

n bβ1

1 . . . bβs
s qγ1

1 . . . qγn
n ,

with α1, . . . , αn ≥ 0 and such that whenever αi 6= 0, the element q−1
i bβ1

1 . . . bβs
s qi

does not belong to the subgroup generated by b1, . . . , bs. There is an efficient
algorithm (collection) to transform any word in the generators to the corresponding
normal form: given an arbitrary word in the generating system, use the relators
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to move all of the instances of qi with negative exponents to the left and all the
instances of qi with positive exponents to the right (see example 2.1).

Example 2.1. Generalized Metabelian Baumslag-Solitar Groups. Let m1, . . . ,mn

be positive integers. We call the group given by the following presentation a gen-

eralized metabelian Baumslag-Solitar group

G = 〈q1, . . . , qn, b | bqi = bmi , 1 ≤ i, j ≤ n, [qi, qj ] = 1〉.
It is a constructible metabelian group of finite Prüfer rank and G ∼= B ⋊ Q with
Q = 〈q1, . . . , qn〉 ∼= Zn and B = Z[m±1

1 , . . . ,m±1
k ] (as additive groups).

Let us examine how collection works for these groups. Consider the group

G = 〈q1, q2, b | bq1 = b2, bq2 = b3, [q1, q2] = 1〉,
with G ∼= Z

[

1
2 ,

1
3

]

⋊ Z2, and an uncollected word in G:

w = q−1
1 q2b

−1q1q
−1
2 .

As the ql’s commute we have

w = q−1
1 q2b

−1q−1
2 q1.

We then apply the negated form of the relation bq2 = b3 to yield the reduced word
in normal form:

w = q−1
1 q2q

−1
2 b−3q1 = q−1

1 b−3q1.

Example 2.2. Let L : Q be a Galois extension of degree n and fix an integral
basis {u1, . . . , us} of L over Q. Then {u1, . . . , us} freely generates the maximal
order OL as a Z-module. Now, we choose integral elements, q1, . . . , qn, generating
a free abelian multiplicative subgroup of L− {0}. Each ql acts on L by left multi-
plication and using the basis {u1, . . . , us}, we may represent this action by means
of an integral matrix Ml. Let B be the smallest sub Z-module of L closed under
multiplication with the elements ql and q−1

l and such that OL ⊆ B, i.e.,

B = OL[q
±1
1 , . . . , q±1

n ].

We may then define G = B⋊Q, where the action of Q on B is given by multiplica-
tion by the ql’s. The generalized Baumslag-Solitar groups of the previous example
are a particular case of this situation when L = Q. If the elements ql lie in O×

L ,
which is the group of units of OL, then the group G is polycyclic.

2.1. Linear Representations.

As noted previously, B embeds in Qs, therefore any element g ∈ G can be
represented by a pair (v, x) where x ∈ Q and v ∈ Qs is a vector. We will omit
brackets and simply write vx. It will be useful in the next section to use this
representation of our elements since this will allow us to use some linear algebra.
Here we consider the problem of swapping between this linear representation and
the usual representation of group elements as words in the generators of G.

Assume first that g is given as a word in the generators. We may assume that g
is in normal form:

q−α1
1 . . . q−αn

n bβ1

1 . . . bβs
s qγ1

1 . . . qγn
n ,

then the following word also yields g:

q−α1
1 . . . q−αn

n bβ1

1 . . . bβs

s qα1
1 . . . qαn

n qγ1−α1

1 . . . qγn−αn

n .
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In the semidirect representation we have g = bx with x = qγ1−α1

1 . . . qγn−αn
n and

additively

b = (q−α1
1 . . . q−αn

n ) · (β1b1 + . . .+ βsbs).

To represent b as a vector v ∈ Qs, recall that the action of each ql is encoded by
the integral matrix Ml, then

v = M−α1
1 · · ·M−αn

n







β1

...
βs






.

The complexity of the above procedure using Gaussian elimination for inverses,
standard matrix multiplication, and efficient exponentiation is:

O((n− 1)[s3 + s3 logmax
l

(αl) + s3 logmax
l

(γl − αl)] + s2 + s3).

Now, consider the converse, in which we have vx with v given as a vector in Qs.
In order to convert v into its normal form, we first show that B is embedded in a
particular subset of Qs. Testing for membership in this subset will then yield an
element b ∈ B in normal form as desired. In the following discussion, we identify
B with its image in Qs and the group generated by b1 . . . , bs with Zs.

For 1 ≤ l ≤ n, let dl be the smallest positive integer such that dlM
−1
l is an

integral matrix, i.e., dl is the lowest common denominator of the matrix entries
ml(s,i). Let d =

∏

l dl. Note that if G is polycyclic, d = 1. Observe that for any
v ∈ B,

dα1+...+αnv ∈ Zs

thus v ∈ Z[ 1
d
]s, in other words, we have

B ⊆ Z[ 1
d
]s ⊂ Qs.

Remark 2.3. This implies that for any v ∈ B, if i is be the smallest positive
integer such that div lies in Zs, then i is bounded by twice the length of v as a
word in normal form.

B can also be constructed from Zs and M =
∏

l Ml. Observe that

Zs ⊆ M−1Zs ⊆ . . . ⊆ M−jZs ⊆ M−j−1Zs ⊆ . . . ⊆ B

and in fact B = ∪∞
j=0M

−jZs. To check this, note that any vector in B has the

form M−β1

1 . . .M−βn
n u for some u ∈ Zs and certain β1, . . . , βn ≥ 0. Let β =

max{β1, . . . , βn}, then

M−β1

1 . . .M−βn

n u = M−βMβ−β1

1 . . .Mβ−βn

n u = M−βw

where w = Mβ−β1

1 . . .Mβ−βn
n v lies in Zs. Consequently, if q = q1 . . . qn, then the

group B ⋊ 〈q〉 is a strictly ascending HNN extension of Zs.

Lemma 2.4. There is some α depending on G only such that for any i,

B ∩ 1

di
Zs ⊆ M−iαZs.

Moreover α ≤ s log d.
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Proof. Consider first the case when i = 1. We have Zs ⊆ 1
d
Zs and

Zs ⊆ M−1Zs ∩ 1

d
Zs ⊆ . . . ⊆ M−jZs ∩ 1

d
Zs ⊆ M−j−1Zs ∩ 1

d
Zs ⊆ . . . ⊆ 1

d
Zs.

As the quotient of 1
d
Zs over Zs is the finite group Zd × . . . × Zd of order ds, this

sequence stabilizes at some degree, say α. Then B ∩ 1
d
Zs = M−αZs ∩ 1

d
Zs and

B ∩ 1

d
Zs ⊆ M−αZs

as desired. Moreover, we claim that it stabilizes precisely at the first α such that

M−αZs ∩ 1

d
Zs = M−α−1Zs ∩ 1

d
Zs.

To demonstrate, let b ∈ M−α−2Zs∩ 1
d
Zs. Then Mb ∈ M−α−1Zs∩ 1

d
Zs = M−αZs∩

1
d
Zs thus b ∈ M−α−1Zs ∩ 1

d
Zs = M−αZs ∩ 1

d
Zs. Repeating the argument implies

that for all β > α,

M−αZs ∩ 1

d
Zs = M−βZs ∩ 1

d
Zs.

As a consequence, α is bounded by the length of the longest chain of proper sub-
groups in Zd × . . .× Zd, i.e., α ≤ log(ds) = s log d.

Now we argue by induction. Let b ∈ B ∩ 1
diZ

s, then db ∈ B ∩ 1
di−1Z

s and by

induction we may assume that db ∈ M−(i−1)αZs, thus M (i−1)αdb = v ∈ Zs. Then

1

d
v ∈ B ∩ 1

d
Zs ⊆ M−αZs.

Therefore

MαM (i−1)αb =
1

d
M iαv ∈ Zs

and b ∈ M−iαZs. �

It is easy to construct examples with α 6= 1:

Example 2.5. Consider the group G ∈ F given by the following presentation:

G = 〈bi, qi | bq11 = b21, b
q2
2 = b42, b

q3
3 = b163 , b

qj
i = bi for i 6= j, [bi, bj ] = 1, [qi, qj ] = 1〉,

with 1 ≤ i, j ≤ 3.

From the presentation above s = 3. The linear representations of the ql’s (and
their product M) are then:

M1 =





2 0 0
0 1 0
0 0 1



M2 =





1 0 0
0 4 0
0 0 1



M3 =





1 0 0
0 1 0
0 0 16



 ;M =





2 0 0
0 4 0
0 0 16



 .

From visual inspection of M it is clear that d = 16. Moreover, it is easy to check
that 1

16Z
s ⊆ B and that in fact

1

16
Zs =

1

16
Zs ∩B ⊆ M−4Zs

and 4 is smallest possible in these conditions thus α = 4.



ON THE CONJUGACY PROBLEM IN CERTAIN METABELIAN GROUPS 7

In determining whether a vector v ∈ Qs lies in B, it is clear from the previous
discussion that a necessary condition is that v belongs to Z[ 1

d
]s, and therefore there

exists an i > 0 such that v ∈ 1
diZ

s. In the particular case when v is integral, then
v ∈ B and the coordinates of v are the exponents of the bj’s in the normal form
expression for v.

If v is strictly rational, we can perform the following procedure to check whether
d ∈ 1

diZ
s for some i and to find the smallest possible such i. First, compute the least

common multiple of the denominators of the entries of v. By reducing if necessary,
we may assume that

v =
1

m
(v1, . . . , vs)

with the vj integers so that no prime divides all of m, v1, . . . , vs simultaneously. We
then claim that div is integral if and only if di = 0 modulo m. For assume that
div is integral (the other direction is obvious). This implies that m divides divj for
j = 1, . . . , s and the assumption on m and the vj ’s implies that m divides di as we
wanted.

This claim implies that we only have to check whether some di = 0 modulo m.
If explicit factorizations of m and d are not available, we need only compute di for
1 ≤ i ≤ m. If there is no such i, then v does not belong to Z[ 1

d
]s. Otherwise observe

that i ≤ m.

Lemma 2.6. Let v ∈ Z[ 1
d
]s and i the smallest possible integer such that div is

integral. Then v ∈ B if and only if

M is⌊log d⌋v ∈ Zs

where M = M1M2 . . .Mn. The complexity of this computation is polynomial, specif-
ically O((n− 1)s3 log is⌊log d⌋). (Alternatively, the same result holds true but with
α instead of s⌊log d⌋).

Proof. Lemma 2.4 implies that v ∈ B if and only if M iαv is integral. Thus if v ∈ B,

M is⌊log d⌋v = M (is⌊log d⌋−iα)M iαv

is integral because is⌊log d⌋ − iα ≥ 0. The converse is obvious.

Regarding the time complexity, we have to compute the (is⌊log d⌋v)-th power
of the matrix M . The complexity estimation is obtained using standard matrix
multiplication and efficient exponentiation. �

Remark 2.7. Note that the exponent is⌊log d⌋ is just an upper bound and often
a much smaller value suffices to obtain an expression of a given v ∈ B as product
of conjugated of the bi’s. Consider for example the group of Example 2.5 and the
vector v ∈ Q3:

v′ =

[

1

32
,
3

64
,
5

16

]

.

Here, i = 2, s = 3, d = 16 and d = thus is⌊log d⌋ = 24 but note that already M5v
is integral.
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2.2. Solving Linear Systems.

To finish this section and for future reference, we are going to consider the
following problem. Assume that we have a square s × s integral matrix N that
commutes with all the matrices Ml and a column rational vector u ∈ Qs, and we
want to determine if the linear system

(2) NX = u

has some solution v ∈ Qs that lies in B. To solve this problem, we will use a
standard technique to solve these kind of systems in Z. The Smith normal form for
N is a diagonal matrix D with diagonal entries k1, . . . , kr, 0, . . . , 0, such that 0 < kj
and each kj divides the next kj+1, with r being the rank of N . Moreover, there are
invertible matrices P and Q in SL(s,Z) such that D = QNP .

We set

a = max{|alj | | alj entry of N}.
Lemma 2.8. Let N be any integral s×smatrix and let D = diag(k1, . . . , kr, 0, . . . , 0)
be its Smith normal form, then

k1 . . . kr ≤
√
sas

Proof. It is well known that the product k1 . . . kr is the greatest common divisor of
the determinants of the nonsingular r × r minors of the matrix N . Let N1 be one
of those minors. Then

kr ≤ k1 . . . kr ≤ |detN1|.
Now, the determinant of the matrix N1 is bounded by the product of the norms
of the columns c1, . . . , cr of the matrix (this bound is due to Hadamard, see for
example [8]) so we have

|detN1| ≤
r
∏

j=1

‖cj‖ ≤
√
r
r
ar.

�

Recall that we are assuming that N commutes with all the matrices Ml. Under
this assumption we claim that we can solve the problem above by using Lemma
2.6. To demonstrate, let P and Q be invertible matrices in SL(s,Z) such that
D = QNP = diag(k1, . . . , kr, 0, . . . , 0) is the Smith normal form of N . Our system
can then be transformed into

(3) DX̃ =
(

0 0
0 D2

)

X̃ = Qu

with X̃ = P−1X . At this point, we see that the system has some solution if and
only if the first s− r entries of Qu vanish. Assume that this is the case and let v2
be the unique solution to the system

(4) D2X̃2 = (Qu)2

where the subscript 2 in X̃ and Qu means that we take the last r coordinates only.
Then

v2 = D−1
2 (Qu)2.

The set of all the rational solutions to (2) is
{

P
(

v1
v2

)

| v1 ∈ Qs−r
}

.
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Equivalently, this set can be written as

v +KerN where v = P
(

0
v2

)

.

Observe that the columns of P give a new basis of Zs that can be used to define
B instead of b1, . . . , bs. In this new basis the action of each ql is encoded by the
matrix P−1MlP . The fact that N commutes with each Ml implies that Ml leaves
KerN (setwise) invariant. By construction, KerN is generated by the first s − r
columns of P and therefore each P−1MlP has the following block upper triangular
form:

P−1MlP =
(

Al Bl

0 Cl

)

.

Moreover, Cl is just the r×r matrix associated with the action of ql in the quotient
Qs/KerN , written in the basis obtained from the last r columns of P .

Proposition 2.9. A solution to the system (3) exists in B if and only if v2 ∈ Z[ 1
d
]r

and

Cir⌊log d⌋v2 ∈ Zr,

with C =
∏

l Cl and i the smallest possible integer such that div2 is integral. (We
can use s instead of r).

Proof. Assume first that Cir⌊log d⌋v2 ∈ Zr, with i as above. We have

P−1M iαP =
(

A S

0 Cir⌊log d⌋

)

for certain (s − r) × r matrix S and certain (s − r) × (s − r) invertible matrix A,
with M =

∏

l Ml as before. Therefore

P−1M ir⌊log d⌋PX̃ =
(

A S

0 Cir⌊log d⌋

)(

v1
v2

)

=
(

Av1 + Sv2

Cir⌊log d⌋v2

)

.

This means that now we only have to find a v1 ∈ Qs−r such that Av1 + Sv2 ∈ Zs.
To do it, observe that it suffices to take v1 = −A−1Sv′2.

Conversely, assume that some P
(

v1
v2

)

lies in B. Then some product of positive

powers of the Ml’s transforms P
(

v1
v2

)

into an integral vector, thus there is a product

of the Cl’s that transforms v2 into an integral vector. We may use now Lemma 2.6
applied to Qr = Qs/KerN with respect to the action of the matrices Cl to conclude
that v2 ∈ Z[ 1

d
]r and

Cir⌊log d⌋v2 ∈ Zr,

with i the smallest possible integer such that div2 is integral. (Note that dC−1
l is

integral so we can use the same d for this quotient as for the original group.)
�

Remark 2.10. Observe that, as N is integral, a necessary condition for (2) to have
some solution in B is that u lie in Z[ 1

s
]. Let i0 be such that di0u is integral. Then

di0det(D2)v2 is also integral. If this lies in Z[ 1
d
]s, it means that for some i1 such that

di1 ≤ det(D2), we have that di0+i1v2 is integral. By Lemma 2.8 det(D2) ≤
√
sas,

thus i1 ≤ √
sas. As a consequence, if i is as in Proposition 2.9, we have

i ≤ i0 +
√
sas.

Now we are ready to show:
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Proposition 2.11. There is an algorithm to decide whether the system (2) has
some solution in B and to compute that solution. The complexity of this algorithm
is polynomial, specifically

O(s6 log sa+ (s− r)5 + (s− r)3 + (n− 1)[s3 log is log d+ 1] + r3).

where i ≤ i0+
√
sas and i0 is such that di0u is integral. (If there is no such i0 then

the system has no solution in B).

Proof. The algorithm has been described above. In summary, we have to transform
the original system using the Smith normal form forN , compute v2 and the matrices
Cl and C = C1 . . . Cn, and then check whether v2 lies in Z[ 1

d
]. If it does, we may

either compute i such that div2 is integral or estimate i as i0+i1 (see Remark 2.10).
Then we compute

Cir⌊log d⌋v2

and check whether it is integral or not. To estimate the complexity of this procedure
observe that for an integral matrix N , the time complexity of computing the Smith
normal form D and invertible integral matrices P and Q such that QNP = D is
polynomial, specifically O(s6 log sa), where a is the maximum absolute value of the
entries of N .

For a proof of this fact see [9] in the non-singular case and [13] for the singular
one. Once we have the Smith normal form, to compute v2 we only have to perform
the product of D−1

2 and (Qu)2: O(r3). Next, we have to compute the matrices
Cl, which requires n− 1 matrix multiplications, thus O((n− 1)s3). We then check
whether Cir⌊log d⌋v2 is integral which takes at most O((n − 1)s3 log is log d) time.
Solving for v2 and v′1 via Gaussians elimination take O(r3) and O((s− r)3), respec-
tively, and calculating v1 is O((s − r)5. The overall time complexity is then the
sum of of the above operations, which is denoted in the proposition. Note that the
lower order terms involving s and r are dominated by the complexity of calculating
the Smith normal form. �

3. On the Complexity of the Conjugacy Problem

3.1. An Algorithm for Split Metabelian Groups of Finite Prüfer Rank.

In this section, we describe and analyze the complexity of an algorithm to solve
the conjugacy search problem in the groups under consideration, i.e., the groups
admitting a presentation as in Section 2. As we have seen above, the problem is
equivalent to the problem of finding c ∈ B, y ∈ Q such that

b1 = y · b+ (1− x) · c
where b1, b ∈ B, x ∈ Q are given. Throughout this section we use additive no-
tation for elements in B. When useful, elements in Q will be identified with the
matrices encoding their action. Elements in B will be represented either as words
in the generators of G or as vectors in Qs, recalling that we may switch from one
representation to the other in polynomial time.

Observe that (1−x) ·B is a Q-invariant subgroup of B. Therefore, Q acts on the
quotient group B̄ = B/((1−x) ·B). We use ¯ to denote the coset in B̄ associated
with a given element. From the equation above we get

b̄1 = y · b̄
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in B̄. We let Mx be the rational matrix associated with the action of x on B (with
respect to the set b1, . . . , bs), N = I −Mx, and use NB to denote (1− x) ·B thus
B̄ = B/NB.

Let T be the torsion subgroup of B̄. Obviously, it is invariant under the Q action,
thus Q factors through B̄ ։ B̄/T and acts on the torsion-free group B̄/T . As B̄/T
is torsion-free and of finite Prüfer rank, it can be embedded in Qs1 for some s1. In
fact, as Q is flat we have

B̄/T →֒ B̄/T ⊗Q = (B/NB)⊗Q = (B ⊗Q)/(NB ⊗Q) = Qs/NQs.

So one can perform this embedding and find the matrices associated with the action
of each of the elements ql in this quotient.

The idea of the algorithm is to decompose the problem of finding the conjugator
h into two problems - one of them is a multiple orbit problem in a vector space and
the other is a type of discrete log problem. For the first we take advantage of the
polynomial time solution in [3] and for the latter we provide an upper bound for
its complexity, which is essentially dependent upon the size of the subgroup T .

Description of the algorithm.

Step 1: With Mx and N as before, form the quotient V = Qs/NQs and the
matrices encoding the action of each ql on V . Consider the projections b̄ + T and
b̄1 + T of b and b1 in B̄/T and see them as elements in V (via the embedding
B̄/T →֒ V ). Then use the algorithm in [3] to solve the multiple orbit problem

y · (b̄ + T ) = b̄1 + T.

This algorithm determines the full lattice of solutions.

Λ = {q ∈ Q | q · b̄− b̄1 ∈ T },
Furthermore, it allows one to compute a basis y1, . . . , ym of Q1 where for some fixed
h ∈ Λ,

Q1 = {h−1q | q ∈ Λ}.
Step 2: Order the elements of Q1 according to word length. For each q ∈ Q1 check
whether q · b − b1 ∈ NB. Each check consists of trying to solve a system of linear
equations. More precisely, we have to check whether the system

u = NX

with u = q · b − b1 has some solution c in B. This can be done using Proposition
2.9.

Of course, a priori this procedure may never halt. But we will show that is not
the case: the number of iterations of Step 2 is bounded by the size of the group
T , which will be shown to be finite. We can now be more explicit. Recall that the
problem is to find a y ∈ Q such that y · b̄ = b̄1, and, as this is the search variant of
the conjugacy, y exists. Moreover, all the solutions lie in the set

Λ = {q ∈ Q | q · b̄− b̄1 ∈ T }.
Choose some fixed h ∈ Λ and observe that Λ = hQ1 where Q1 ≤ Q and

Q1 = CQ(b̄ + T ) = {q ∈ Q | q · b̄− b̄ ∈ T }.
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Thus, for any q ∈ Q1, the element hq · b̄ − b̄1 lies in T and as T is finite there are
only finitely many possibilities for its value. Moreover, we know that eventually it
takes the value 0.

Let also

Q2 = CQ(b̄) = {q ∈ Q | q · b̄ = b̄} = {q ∈ Q | q · b− b ∈ NB}.
We obviously have Q2 ≤ Q1 and for q1, q2 ∈ Q1,

hq1 · b̄− b̄1 = hq2 · b̄ − b̄1

if and only if q1Q2 = q2Q2. As T will be shown to be finite we conclude that the
quotient Q1/Q2 is of finite order bounded by t = |T |. If {y1 . . . , yt} is a set of
representatives of the cosets of Q2 in Q1, then some element y in the finite set

{hy1, . . . , hyt}
is the y ∈ Q that satisfies y · b̄ = b̄1.

In the next lemma we prove that by Q1 being a lattice we can produce a full
set of representatives as before, including our y, by taking elements solely from Q1,
Moreover, the number of steps needed is bounded in terms of |T |.

Lemma 3.1. Let Q2 ≤ Q1 with Q1 free abelian with generators x1, . . . , xm, and
assume that the group Q1/Q2 is finite of order t. Then the set

Ω = {xα1
1 . . . xαm

m |
m
∑

j=1

|αj | < t}

has order bounded by (2t)m and contains a full set of representatives of the cosets
of Q2 in Q1.

Proof. Let v1, . . . , vm be generators of the subgroup Q2, which can be viewed as
points in Zm. Consider the parallelogram

P = {t1v1 + . . .+ tmvm | tj ∈ R, 0 ≤ tj < 1}.
Then Zm ∩P is a set of representatives of the cosets of Q2 in Q1 and we claim that
P ⊆ Ω. Observe that for any point p = (α1, . . . , αm) in Zm ∩ P there is a path in
Zm ∩P from (0, . . . , 0) to p. We may assume that the path is simple and therefore
its length is bounded by t. On the other hand, the length of the path is greater
than or equal to

∑m
j=1 |αj | thus

m
∑

j=1

|αj | ≤ t.

�

The number of iterations of Step 2 is bounded by the value |Q1/Q2|. At this
point, it is clear that smaller groups Q1/Q2 will reduce the running time of the
algorithm. Observe that by construction, the element x belongs to the group Q2.
In the case when Q is cyclic this yields a dramatic improvement of our bound for
|Q1/Q2|: we only have one generator, say q1 of Q, thus, if x = qL1 , |Q1/Q2| ≤
|Q/Q2| = L. Moreover, in this case Step 1 in our algorithm is not needed, so we
only have to perform L iterations of Step 2, and our algorithm coincides with the
one in [5].
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3.2. On the Subgroup T .
. We proceed to showing that T is indeed finite, and to bound its size by the length
of x as a word in the generators q1, . . . , qs.

Recall that the exponent of a torsion group T , denoted exp(T ), is the smallest
non-negative integer k such that kv = 0 for any v ∈ T . (If there is no such integer,
then the exponent is infinite). The following lemma is well known, but we include
it here for completeness:

Lemma 3.2. Let T be a torsion abelian group of finite Prüfer rank s. Assume that
k = exp(T ) < ∞. Then T is finite and

|T | ≤ ks.

Proof. Observe that as T has finite exponent, its p-primary component Tp vanishes
for all primes p except of possibly those primes dividing k. Moreover, T cannot
contain quasicyclic groups Cp∞ . Then, using [10, 5.1.2] (see also item 3 in page 85),
we see that for any prime p dividing k, Tp is a sum of at most s copies of a cyclic
group of order at most the p-part of k. As T = ⊕p|kTp we deduce the result. �

Lemma 3.3. Let N be a square s × s integer matrix and T the torsion subgroup
of the group Zs/NZs. Then

exp(T ) ≤
√
sas

with

a = max{|aij | | aij entry of N}.

Proof. Let D = diag(k1, . . . , kr, 0, . . . , 0) be the Smith normal form of N . Then

exp(T ) = kr ≤ k1, . . . , kr

so it suffices to apply Lemma 2.8.
�

As before, for 1 ≤ l ≤ n, let dl be the smallest positive integer such that dlM
−1
l

is an integral matrix and let d be the product of all the integers d1, . . . , dn.

Theorem 3.4. Let T be the torsion subgroup of the abelian group B̄ = B/(1− x) · B.
Then T is finite and

|T | ≤
√
s
s
dLs2(a+ 1)s

2

where L is the length of the element x as a word in the generators of Q, a is the
maximum absolute value of an entry in Mx, the matrix associated with the action
of x on B.

Proof. Let N = I −Mx. Assume first that Mx is an integral matrix, so the same
happens with N . We want to relate the exponent of T with the exponent of the
torsion subgroup of Zs/NZs. Let k be this last exponent and choose b ∈ B such
that 1 6= b̄ lies in T . Denote by m > 0 the order of b̄. Observe that mb = Nc for
some c ∈ B and that m is the smallest possible under these conditions.

Next, choose q ∈ Q such that q · b and q · c both lie in Zs. To find such a q it
suffices to write b and c multiplicatively using their normal forms and take as q a
product of the ql’s with big enough exponents.

Then we have m(q · b) = q · Nc = N(q · c) ∈ NZs thus q · b + NZs lies in
the torsion subgroup of Zs/NZs. Therefore, k(q · b) ∈ NZs. Now, let m1 be the
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greatest common divisor of m and k and observe that the previous equations imply
m1(q · b) ∈ NZs. This means that for some c1 ∈ Zs we have m1(q · b) = Nc1, thus

m1b = q−1Nc1 = Nq−1c1 = Nc2

with c2 = q−1 · c1 ∈ B. By the minimality of m we must have m ≤ m1. As m1

divides both k and m we can conclude m = m1 | k. This implies that k is also the
exponent of T .

Next, we consider the general case when N could be non-integral. As Mx is the
product of L matrices in the set {M±1

1 , . . . ,M±
n } we see that the matrix dLMx is

integral and therefore so is dLN . Obviously, the group NB/dLNB is torsion thus

exp(T ) ≤ exp(torsion subgroup of B/dLNB).

The matrix dLN also commutes with the Q-action so what we did above implies
that this last exponent equals the exponent of the torsion subgroup of Zs/dLNZs.
From all this together with Lemma 3.3 and using that the biggest absolute value
of an entry of dL is bounded by dLN we get

exp(T ) ≤
√
sdLs(a+ 1)s.

Finally, as the group B̄ has finite Prüfer rank, so does T , therefore by Lemma
3.2 we get the result. �

Remark 3.5. The maximum absolute value of an entry in the matrix Mx is
bounded exponentially on L. Therefore, its logarithm is bounded linearly on L.
To see it, observe first that if M1 and M2 are s × s matrices and h is an upper
bound for the absolute value of the entries of both M1 and M2, then the maximum
absolute value of an entry in the product M1M2 is bounded by sh2. Repeating this
argument one sees that if x has length L as a word in q1, . . . , qn and h is an upper
bound for the absolute value of the entries of each Ml, then the maximum absolute
value a of an entry of Mx is bounded by

sL−1hL

The next result yields a bound on the order of T which is exponential in the
length L of x.

Proposition 3.6. With the previous notation, there is a constant K, depending
on G only such that for T the torsion subgroup of B/NB = (1−Mx)B,

|T | ≤ KL

where L is the length of x.

Proof. By Theorem 3.4 and the observation above

|T | ≤
√
s
s
dLs2(a+ 1)s

2 ≤
√
s
s
dLs2(sL−1hL + 1)s

2 ≤ (
√
sdsh+

√
sd)s

2L

so we only have to take K = (
√
sdsh+

√
sd)s

2

. �
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3.3. Complexity Analysis and Consequences.

. We can now prove Theorem 1.1:

Proof. We consider the complexity of the algorithm 3.1. We assume that g and g1
are given as words in normal form. Observe that Step 1 only requires polynomial
time. As for Step 2, we have to consider an exponential (in L) number of systems
of linear equations of the form

u = NX

with u = q · b− b1. Moreover, we may find (by writing u in its normal form) some
z ∈ Q such that z · u is in the group generated by b1 . . . , bs. If Z is the matrix
representing the action of z, this is equivalent to the vector Zu being integral. As
Z and N commute our system can be transformed into

NZX = Zu.

Obviously, X lies in B if and only if ZX does, thus the problem is equivalent to
deciding whether

dLNX1 = dLZu

has some solution X1 in B.
Using Proposition 2.9 and the complexity computation of Proposition 2.11 we

see that this can be done in a time that is polynomial on log of the maximum
absolute value of an entry in dLN . Observe that our integrality assumption on Zu
implies that the integer denoted i0 in Proposition 2.11 can be taken to be 0. As
the maximum absolute value of an entry in dLN is exponential on L, this time is
polynomial on L. The exponential bound in the result then follows because we are
doing this a number of times which is exponential on L. �

Next, we consider a particular case in which the running time of the algorithm
is reduced to polynomial with respect to the length L of x.

Let s1, s2 ≥ 0 be integers with s = s1 + s2 and denote

Γs1,s2 :=
{

Matrices
(

Is1 A
0 Is2

)}

≤ SL(s,Z).

As these matrices are invertible in SL(s,Z), we can choose d = 1.

Proposition 3.7. With the previous notation, assume that for l = 1, . . . , n,

Ml ∈ Γs1,s2 .

Then there is some constant K depending on G only such that for T , the torsion
subgroup of B/NB = (1 −Mx)B,

|T | ≤ KLs2

where L is the length of x.

Proof. We consider the bound of Theorem 3.4 for d = 1 (see above)

|T | ≤
√
s(a+ 1)s

2

,

where a is the maximum absolute value of an entry in A. Observe that A is a
product of matrices in Γs1,s2 and that

(

Is1 A1

0 Is2

)(

Is1 A2

0 Is2

)

=

(

Is1 A1 +A2

0 Is2

)

.
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Therefore, if we let h be the maximum absolute value of an entry in each of the
matrices A1, . . . , An, then a ≤ Lh and therefore

|T | ≤
√
s(a+ 1)s

2 ≤
√
s(Lh+ 1)s

2 ≤
√
s(2Lh)s2

so it suffices to take K =
√
s(2h)s

2

. �

This result together with the algorithm above (recall that d = 1 in this case)
imply the following:

Theorem 3.8. If
Q ≤ Γs1,s2

then the complexity of the conjugacy problem in G is at most polynomial.

We finish this section with a remark on conjugator lengths. Let g and g1 be
conjugate elements in G. Our algorithm primarily consists of identifying a suitable
subgroup Q1 of Q and showing that, for a function dependent upon the length L of
x, there exists some y ∈ Q1 whose length is bounded by that function and which is
the Q-component of an element h such that gh = g1. Essentially, we are providing
an estimation for the Q-conjugator length function. We make this more precise in
the next result.

Corollary 3.9. There exists a K dependent upon G only such that for any conju-
gate elements g, g1 ∈ G, with g = bx, g1 = b1x for x ∈ Q and b, b1 ∈ B, there is
some h = cy for c ∈ B, y ∈ Q and gh = g1 such that the length of y is bounded by
KL, where L is the length of x. In the particular case when Q ≤ Γs1+s2 , the length

of y is bounded by KLs2 .

3.4. Reduction to the Discrete Logarithm Problem.

For this subsection, we restrict ourselves to the situation of Example 2.2 where
Q is a multiplicative subgroup of a field L such that L : Q is a Galois extension
and B is the additive group of the subring OL[q

±
1 , . . . , q

±
n ] which is sandwiched

between Q and L. In particular, this means that the only element in Q with an
associated matrix having an eigenvalue of 1 is the identity matrix: the eigenvalues
of the matrix representing an element h ∈ L are precisely h itself and its Galois
conjugates and thus cannot be 1 if h 6= 1. Recall also that Example 2.2 includes
Example 2.1.

We will keep the notation of the previous section, with elements bx, b1x ∈ G
such that there is some cy ∈ G with (additively)

b1 = y · b+ (1− x) · c.
We may consider y and 1 − x as elements in the field L. From now on we omit

the · from our notation and use juxtaposition to denote the action. Now, B also has
a ring structure and (1− x)B is an ideal in B. Moreover, in this case the quotient
ring B̄ = B/(1−x)B is finite (because the matrix associated with 1−x is regular.)
In this finite quotient ring we wish to solve the equation

yb̄ = b̄1.

Let y = qt11 . . . qtkk , then solving the discrete log problem in B/(1− x)B consists of
finding t1, . . . , tk so that

qt11 . . . qtkk b̄ = b̄1

in the finite ring B̄.
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This is a special type of discrete log problem as one can observe by recalling
what happens when Q is cyclic: x = qs1 for some s thus we have to solve

qt11 v̄ = w̄

in B̄ = B/(1− qs1)B. To solve it s trials are sufficient (see [5]). In general, as h̄ = 1

in B̄, ql11 . . . qlkk = 1. Assume that we choose x = q1. Then q̄1 = 1 in B̄ thus the
problem is to find t2, . . . , tk such that

qt22 . . . qtkk b̄ = b̄1

in B̄.
Let us restrict ourselves further to the case of generalized Baumslag-Solitar

groups (i.e., the groups of Example 2.1.) We identify the elements ql with the
integers ml encoding their action. Assume that each ml is coprime with 1 − m1.
As before let y = mt1

1 . . .mtk
k and choose x = m1. Then as each ml is coprime with

1−m1

B/(1− x)B = Z[m±
1 , . . . ,m

±
k ]/(1− x)Z[m±

1 , . . . ,m
±
k ] = Z/(1− x)Z = Z1−x.

We then have to find t2, . . . , tk such that

mt2
2 . . .mtk

k b̄ = b̄1

in the ring of integers modulo 1−m1. If k = 2 this is an instance of the ordinary
discrete logarithm problem.

4. Length Based Conjugacy Search

Length based conjugacy search is a heuristic method that attempts to solve the
conjugacy search problem or the generalized conjugacy search problem (multiple
instances of the conjugacy search problem where there is a common conjugating el-
ement in a specified subgroup). The latter problem is well known since it is related
to the security of the Arithmetica protocol. To perform the LBCS, we associate
to our group an effectively computable length function that has the property that
conjugation generically increases the lengths of elements. Following that, we itera-
tively build a conjugating element by successively conjugating by generators of our
group and then assuming that we are building a successful conjugator when there
is a decrease in length.

Most previous work such as [11] and [7] study the LBCS in the context of braid
groups while the authors of [6] perform the LBCS on polycyclic groups. Both groups
have the advantage of having certain length functions that satisfy the properties
of the previous paragraph. It is worth noting that the LBCS can be performed on
an arbitrary finitely presented group as long as it admits a length function that
is generically monotone increasing under conjugacy. The algorithm will work in
the same way: starting with an arbitrary presentation, assign the group a length
function, conjugate by successive elements in the group, and attempt to build a
conjugator by investigating which elements shorten your word.

It is important to note that for length based conjugacy search to work, there
needs to be an effective way to to apply the relations of the group. As such, it is
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best tailored towards groups that have a normal form that is easily computable.
Another difference with using LBCS to solve the general conjugacy problem versus
using it to break Arithmetica, is that the elements we conjugate by would need
to generate the group as we are not searching within a specific subgroup. As
such, we can assume that our set contains the standard generators as are given
by the presentation. For a given instance of the conjugacy problem, another set
of generators may be more effective, but such knowledge of effective generators is
something we cannot assume in general.

In what follows we provide the pseudocode for the LBCS with memory 2 from
[6], the most effective algorithm from their paper, applied to a single instance of
the conjugacy problem. In this variation, one maintains a set S full of conjugates
of our initial element, y. Each element of S is conjugated by each generator and
the results are stored in a set S′. After every element of S has been conjugated
by every generator, the user saves the M elements with minimal length and sets
that equal to S. The algorithm is terminated when the problem has been solved or
after a user specified time-out. It is also worth noting that any other variation of
the LBCS seen in this paper (or elsewhere) can be adapted to a single conjugacy
search problem in much the same way. We assume that our group G has a length
function, | · | such that |g| < |xgx−1| and also that our set S generates G. Note
that S does not need to be a minimal generating set, namely it may have a strict
subset that also generates G. As input we take x, y ∈ G such that |y| > |x| and B
such that 〈B〉 = G. For convenience, we assume that B is closed under inversion
of elements. We also impose a user specified time-out and a natural number M
specifying the number of elements we keep track of.

Algorithm 1 LBCS with Memory 2 (Single Conjugacy Problem)

Initialize S = {(|y|, y, idG)}
while not time-out do

for (|z|, z, a) ∈ S do

Remove (|z|, z, a)
for g ∈ G do

if gzg−1 = x then

Return ga as an element that conjugates x to y
else

Save (|gzg−1|, gzg−1, ga) in a set S′

end if

end for

end for

Copy the M elements with minimal first coordinate into S and delete S′

end while

return FAIL

5. Experimental Results

Tests were run on an Intel Core i7-4770K computer, running Ubuntu 14.04 LTS
and using GAP version 4.7.5 [1] with 6 GB of memory allowance.
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5.1. LBCS in Generalized Metabelian BS Groups.

Using the notation of 2.1, the groups tested were of the form:

G = 〈q1, q2, b|bq1 = bm1 , bq2 = bm2 , [q1, q2] = 1〉 ,
where m1 and m2 are primes. Larger primes were chosen from the list of primes
Primes2 in GAP. The table below indicates the primes chosen for each group,
together with their respective bit lengths:

Group m1 m2 Bit Lengths (m1,m2)
1 2 3 (2, 2)
2 2 4 (2, 3)
3 Primes2[20] Primes2[25] (24, 25)
4 Primes2[362] Primes2[363] (48, 48)
5 Primes2[559] Primes2[560] (96, 96)
6 Primes2[590] Primes2[591] (128, 130)

Table 1. Primes Used for Group Construction
Two different length functions were used as heuristics for LBCS. In the first three

groups, a word’s length was calculated as
∑

i

|ei|,

whereas in the latter three groups the length was
∑

i

| log10(ei)|.

As the primes become larger it becomes difficult or sometimes impossible to create
elements in a range which will work for all groups. Instead, a number l = log10 p was
used as an approximate unit size for each of the larger groups. Random elements
were then selected from ranges in multiples of l.

Group l [10, 15] [20, 23] [40, 43] [l, 2l] [2l, 3l] [3l, 4l]
1 N/A 20% 0% 0% N/A N/A N/A
2 N/A 0% 0% 0% N/A N/A N/A
3 N/A 0% 0% 0% N/A N/A N/A
4 14 N/A N/A N/A 0% 0% 0%
5 29 N/A N/A N/A 0% 0% 0%
6 38 N/A N/A N/A 0% 0% 0%

Table 2. LBCS Results for GMBS Groups
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