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Abstract

In many instances of computational science and engineering the value of a defi-

nite integral of a known function f(x) is required in an interval. Nowadays there

are plenty of methods that provide this quantity with a given accuracy. In one

way or another, all of them assume an interpolating function, usually polyno-

mial, that represents the original function either locally or globally. This paper

presents a new way of calculating
∫ x2

x1
f(x) dx by means of compact integra-

tion, in a similar way to the compact differentiation employed in computational

physics and mathematics. Compact integration is a linear combination of defi-

nite integrals associated to an interval and its adjacent ones, written in terms of

nodal values of f(x). The coefficients that multiply both the integrals and f(x)

at the nodes are obtained by matching terms in a Taylor series expansion. In

this implicit method a system of algebraic equations is solved, where the vector

of unknowns contains the integrals in each interval of a uniform discrete domain.

As a result the definite integral over the whole domain is the sum of all these

integrals. In this paper the mathematical tool is analyzed by deriving the ap-

propriate coefficients for a given accuracy, and is exploited in various numerical

examples and applications. The great accuracy of the method is highlighted.
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1. Introduction

In many branches of science, integral calculus is required in order to calculate

any target value of a parameter of the problem under study. For instance, in fluid

mechanics, to evaluate the drag or lift coefficient of a solid body it is necessary

to perform some integral evaluation on the body surface. After solving the fluid5

equations, the force f of interaction between fluid and solid requires a surface

integral S of the pressure p and the viscous stress tensor T in the direction of

n, i.e.,

f = −
∫
S

pn dS +

∫
S

Tn dS.

In statistics, the likelihood P that a random variable X falls in a specific range

[a, b] will be given by the integral of the probability density function pX ,10

P [a ≤ X ≤ b] =

∫ b

a

pX(x) dx,

or in solid mechanics, the force lines are calculated with the integrals of the

stress field σij as

y(x)− y0 =

∫ x

x0

(
−r(t)±

√
1 + r(t)2

)
dt, r =

σxx − σyy
2σxy

.

The previous examples show the ubiquity of integral evaluation. Few analytical

solutions of these integrals may be found for practical cases, so one has to resort

to numerical integration. The solution accuracy will depend on the nature of

the integrand and on the strategy adopted. Let us take for example a one-

dimensional integral
∫ x2

x1
f(x)dx rearranged as ∆x

∫ 1

0
f(x̃)dx̃ via a mapping to

a unity interval, where x̃ = (x− x1) /∆x and ∆x = x2 − x1. A wide choice of

approximations with different orders of accuracy is available, a relatively short
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list is provided below.∫ 1

0

f(x̃) dx̃ ≈1

6

[
f(0) + 4f

(
1

2

)
+ f(1)

]
Simpson’s rule,

≈ 1

90

[
7f(0) + 32f

(
1

4

)
+ 12f

(
1

2

)
+ 32f

(
3

4

)
+ 7f(1)

]
Boole’s rule,

≈1

2

[
f

(√
3 + 1

2
√

3

)
+ f

(√
3− 1

2
√

3

)]
Gauss 2 points,

≈1

2

[
5

9
f

(√
5 +
√

3

2
√

5

)
+

8

9
f

(
1

2

)
+

5

9
f

(√
5−
√

3

2
√

5

)]
Gauss 3 points,

≈1

2
[f(0) + f(1)] +

1

12
[f ′(0)− f ′(1)] Cubic Hermite,

≈1

2
[f(0) + f(1)] +

1

10
[f ′(0)− f ′(1)] +

1

120
[f ′′(0) + f ′′(1)] Quintic Hermite.

If f(x̃) is analytic with no primitive, any of the above formulae would serve.

Nevertheless, a different situation occurs when f(x̃) is a sample data. Both

quadrature rules, Simpson’s and Boole’s, as well as Gaussian quadrature rules,15

require values of f(x̃) at points inside the interval that are not directly available.

If the global integral is only what is wanted, the first two quadrature rules

can provide the integral value every two points (Simpson’s rule) or every four

points (Boole’s rule) and then summed up for the whole domain. Thus, an

even, or multiple of four, number of intervals is mandatory if no interpolation20

is employed. In the case of Gaussian quadrature an interpolant is needed in

order to obtain function values at Gauss points. On the other hand, if Hermite

splines are used as interpolants of f(x̃) as in the last two expressions, additional

information on derivatives is necessary, that again it is not always available.

Thus, every quadrature has its drawbacks. As an alternative to the approaches25

mentioned, this paper focusses on developing an integration method that only

uses the values of the integrand in specific points (nodes), whatever order of

accuracy is sought.

Section 2 shows the whole mathematical background and the rules that were

obtained for different orders of accuracy with a special treatment at boundary30

points. In section 3 an analysis of the coefficient matrix that results from the

rules derivation is put forward before dealing with the Fourier analysis of er-

3



rors in section 4, where the dispersion and diffusion errors are estimated. The

analogy between the proposed quadrature and multistep methods is described

in section 5. The numerical tests in section 6 are divided into four cases. The35

first three assess the accuracy of compact integration with a sample, an analytic

function, and the integral over an infinite domain. The fourth test came up as

part of a new method of solving convection diffusion equations named ENATE

(Enhanced Numerical Approximation of a Transport Equation) proposed by

one of the authors. Finally some conclusions are drawn in section 7.40

2. Problem setting - Background

• • • •

• •
•

• •

f(xi)

x0 = 0

x1 x2 x3 xi−1xixi+1 xN−1

xN = L

Figure 1: Domain of f(x) splits in N intervals of equal length (h = L/N).

We develop a method to calculate the integral of a real function f(x), smooth

and continuous over the domain [0, L]. The function can be given analytically

or as a data set at evenly distributed nodes. The integral in each interval (gray

area in Figure 1) is put in terms of a linear combination of adjacent integrals45

in the left-hand side (LHS), and f(xi+k), k ∈ Z, in the right-hand side (RHS).

The number of k’s will depend on the order of accuracy sought. The method

is named CIR (Compact Integration Rules), and is analogous to the compact

differentiation [1].

The generic linear combination of definite integrals centered at (xi−1, xi) for50

internal points is given by

B2∑
k=−B1

αk

∫ xi+k

xi+k−1

f(x) dx = h

S2∑
k=−S1

akf(xi+k) + TEi, (1)
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where B1,2 ∈ N0 and S1,2 ∈ N0 are the lower/upper bounds of the stencil for the

definite integrals and the function values, respectively. If we define the vector

of integrals at every interval as

f =
1

h

(∫ x1

x0

f(x) dx,

∫ x2

x1

f(x) dx, · · · ,
∫ xN

xN−1

f(x) dx

)T
,

and the integrand at nodes,55

f = (f0, f1, · · · , fN )
T
,

the CIR method ends up by solving the linear system

Mf ' Qf , (2)

where M is an N -by-N band-matrix that stores the parameters αk and Q is an

N -by-(N + 1) band-matrix of ak’s. Note that if B1 = B2 = 0, M is a diagonal

matrix and the quadrature is explicit. The development of CIR will be described

in detail for some special cases of equation (1). In particular, symmetry in the60

LHS will be assumed with α0 = 1. The detailed analysis will be restricted to

a matrix of five diagonals in the LHS, B1 = B2 = 2, and six diagonals in the

RHS, S1 = 3 and S2 = 2, that is

β

∫ xi−2

xi−3

f(x) dx+ α

∫ xi−1

xi−2

f(x) dx+

∫ xi

xi−1

f(x) dx+ α

∫ xi+1

xi

f(x) dx+ β

∫ xi+2

xi+1

f(x) dx

= h [af(xi−3) + bf(xi−2) + cf(xi−1) + df(xi) + ef(xi+1) + gf(xi+2)] + TEi.

(3)

The last term is the error made in the linear combination, it is not the error

in the evaluation of the integral
∫ xi

xi−1
f(x) dx. Throughout the paper we will65

characterize each scheme by its local truncation error, TEi, defined as the lead-

ing order of the error in the linear combination. The integrals of every interval

have the same order of truncation error as the linear combination. As shown

later, the global truncation error of the integral over the whole domain is one

order of accuracy less. In the wavenumber analysis and the results section as70
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we are mainly interested in the errors in the integral of the whole domain, the

rules will be named according to the global truncation error.

The system of equations has a coefficient matrix that could be tri- or penta-

diagonal depending on whether β is zero or not. On the other hand {a, b, c, d, e, g}
are linked with {α, β} when matching the Taylor series coefficients until the de-75

sired order of accuracy. The truncation error is related to the first term of the

Taylor series that cannot be made zero by the chosen coefficients.

The notation used in the paper for the integral and the integrand is∫ xi+k

x0

f(x) dx = Fi+k, f(xi+k) = fi+k, k ∈ Z.

In a uniform mesh the Taylor expansion centered at xi of the above variables is

given by

fi+k = fi + khf
(1)
i +

k2h2

2!
f
(2)
i + · · ·+ knhn

n!
f
(n)
i + · · · , (4a)

Fi+k = Fi + khfi +
k2h2

2!
f
(1)
i +

k3h3

3!
f
(2)
i + · · ·+ kn+1hn+1

(n+ 1)!
f
(n)
i + · · · , (4b)

where f
(p)
i is a p-order (≥ 1) derivative and n a generic term. Equation (4b) is

related to a definite integral within [xi, xi+k] if k > 0 or [xi+k, xi] if k < 0. In

equation (3), the integration limits go from xi+k−1 to xi+k. So, in that case,80

the integrals of the vector f are computed as f i+k = (Fi+k−Fi+k−1)/h in order

to cancel out Fi.

2.1. Local third-order family

Let us begin with a simple low order rule where we match the fi and the

f
(1)
i terms as shown below.85

β

(
hfi +

(
22 − 32

)
h2

2!
f
(1)
i

)
+ α

(
hfi +

(
1− 22

)
h2

2!
f
(1)
i

)
+

(
hfi −

h2

2!
f
(1)
i

)
+ α

(
hfi +

h2

2!
f
(1)
i

)
+ β

(
hfi +

(
22 − 1

)
h2

2!
f
(1)
i

)
'

h
[
a
(
fi − 3hf

(1)
i

)
+ b

(
fi − 2hf

(1)
i

)
+ c

(
fi − hf (1)i

)
+

dfi + e
(
fi + hf

(1)
i

)
+ g

(
fi + 2hf

(1)
i

)]
.
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Taking the first two terms of each expansion, a set of two equations is obtained

by equating the factors that multiply fi and f
(1)
i to zero:

a+ b+ c+ d+ e+ g =1 + 2α+ 2β,

31a+ 21b+ c− e− 21g =1!
1 + 2

(
21 − 1

)
α+

(
1− 23 + 32

)
β

2!
.

As there are eight coefficients and only two equations to be satisfied there are

six arbitrary values. As an example, one can take a = b = e = g = 0 then

c = d = (1 + 2α+ 2β)/2 where α and β are still arbitrary. The local truncation

error is

TEi = −
(

1− 10α− 46β

2

)
h3

3!
f
(2)
i .

The local order of accuracy is the power of the interval size contained in the

local truncation error. In this rule the local truncation error is proportional to

h3 so the order of accuracy is 3.

There is a number of values of {α, β} that make this term zero, those that

satisfy 10α+ 46β = 1. In those cases the order of accuracy increases two orders

of magnitude,

TEi = −
(

38α− 502β − 11

6

)
h5

5!
f
(4)
i .

The same increase happens for rules of any odd order of the local truncation

error for a certain combination of α and β. Incidentally, if α = β = 0 the integral

is explicit and the Trapezoidal rule over each interval [xi−1, xi] is recovered, i.e.,∫ xi

xi−1

f(x)dx ' h

2
(fi−1 + fi) .

Following this procedure we can obtain the integral in all intervals into which the

whole domain has been split. The integral from 0 to L can be calculated by the

integration additive property. For instance, by taking the trapezoidal rule for

each interval and summing up for the whole domain the composite Trapezoidal

rule is obtained,∫ L

0

f(x)dx =
h

2

(
f0 + 2

N−1∑
i=1

fi + fN

)
− h2L

12
f
(2)
ξ ,
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where ξ is some point within [0, L]. The last term of the expression has been

rearranged as an average of values of the second derivative, f
(2)
i , at each interval

[xi−1, xi),

N∑
i=1

−h
3

12
f
(2)
i = −h

2hN

12

N∑
i=1

f
(2)
i

N
= −h

2L

12
f
(2)
ξ .

The order of accuracy for the integral over the whole domain is 2.

2.2. Local fifth-, seventh- and ninth-order family90

Similarly, the set of equations to be satisfied for several orders of accuracy of

the local truncation error is presented in this subsection. The coefficients have

to satisfy up to equation (6) for 5th-order, up to equation (7) for 7th-order, and

up to equation (8) for 9th-order.

a+ b+ c+ d+ e+ g =1 + 2α+ 2β, (5)

31a+ 21b+ c− e− 21g =1!
1 + 2

(
21 − 1

)
α+

(
1− 23 + 32

)
β

2!
,

32a+ 22b+ c+ e+ 22g =2!
1 + 23α+

(
33 − 1

)
β

3!
,

33a+ 23b+ c− e− 23g =3!
1 + 2

(
23 − 1

)
α+

(
1− 25 + 34

)
β

4!
, (6)

34a+ 24b+ c+ e+ 24g =4!
1 + 25α+

(
35 − 1

)
β

5!
,

35a+ 25b+ c− e− 25g =5!
1 + 2

(
25 − 1

)
α+

(
1− 27 + 36

)
β

6!
, (7)

36a+ 26b+ c+ e+ 26g =6!
1 + 27α+

(
37 − 1

)
β

7!
,

37a+ 27b+ c− e− 27g =7!
1 + 2

(
27 − 1

)
α+

(
1− 29 + 38

)
β

8!
. (8)

A family rule which has a fifth-order local TEi can be given by the following

set of coefficients:

a = g = 0, b = e =
10α+ 46β − 1

24
, c = d =

14α− 22β + 13

24
.

It should be mentioned that the same values of α and β that made the third-

order local truncation error vanish, also cause the pair {b, e} to become zero in
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the fifth-order family. As seen before, this particular pair of values of {α, β}
leads the rule to fifth-order accuracy. In the same way, when taking β = 0 and

α = 1/10, a fifth-order rule with a two-point stencil in the RHS is obtained,

1

10

∫ xi−1

xi−2

f(x)dx+

∫ xi

xi−1

f(x)dx+
1

10

∫ xi+1

xi

f(x)dx ' 3h

5
[fi−1 + fi] . (9)

When α = 11/38 the fifth-order local truncation error goes to zero and a seventh-

order accuracy is attained with a four-point stencil in the RHS by

11

38

∫ xi−1

xi−2

f(x)dx+

∫ xi

xi−1

f(x)dx+
11

38

∫ xi+1

xi

f(x)dx

' h

38
[3fi−2 + 27fi−1 + 27fi + 3fi+1] . (10)

Leaving α and β as free parameters, the seventh-order family becomes

a = g = −38α− 502β − 11

1440
, b = e =

238α+ 418β − 31

480
,

c = d =
382α− 158β + 401

720
.

Finally, solving the whole system of equations, a ninth-order family with only

one free parameter β is obtained as follows:95

a = g =
3 (478β − 3)

5420
, b = e =

3 (4426β + 199)

5420
,

c = d =
24 (83β + 42)

1355
, α =

1726β + 191

542
.

Taking β = 0 a ninth-order scheme with a six-point stencil in the RHS can be

obtained,

191

542

∫ xi−1

xi−2

f(x)dx+

∫ xi

xi−1

f(x)dx+
191

542

∫ xi+1

xi

f(x)dx '

h

5420
[−9fi−3 + 597fi−2 + 4032fi−1 + 4032fi + 597fi+1 − 9fi+2] . (11)

For the (n+ 1)th-order families the local truncation error can be written as

TEi =
[
1 + 2n+1α+

(
3n+1 − 1

)
β −

(n+ 1) (3na+ 2nb+ c+ e+ 2ng)
] hn+1

(n+ 1)!
f
(n)
i , (12)

9



and listed in Table 1 for different values of weights and parameters.

Ninth order can be achieved with a RHS stencil of six points. If greater

accuracy is sought one can increase the stencil, the number of neighbour integrals

considered or both, to let more Taylor coefficients match in the left- and right-

hand sides of equation (1). Furthermore, the study of family rules need not be

limited to odd orders. For instance, to derive a local fourth-order family the

system of equations is

a+ b+ c+ d+ e+ g = 1 + 2α+ 2β,

31a+ 21b+ c− e− 21g = 1!
1 + 2

(
21 − 1

)
α+

(
1− 23 + 32

)
β

2!
,

32a+ 22b+ c+ e+ 22g = 2!
1 + 23α+

(
33 − 1

)
β

3!
.

Taking β = 0 and a = e = g = 0, the family rule with free α becomes

b =
10α− 1

12
, c =

2(1− α)

3
, d =

22α+ 5

12
,

with the truncation error being

TEi = (1− 10α)
h4

4!
f
(3)
i .

If α = 1/10 the rule (9) is recovered.

2.3. CIR at Boundaries100

The whole background for internal points has been provided, but it is nec-

essary, in closing the algebraic system, to treat the integrals of f(x) at both

boundaries using the same strategy of matching Taylor series terms. A general

boundary rule centered at (xp−1, xp) close to x0 could be

Bc2∑
k=−Bc1

αk

∫ xp+k

xp+k−1

f(x) dx = h

Sc∑
k=0

akf(xk) + TEp,

where Bc2, Sc ∈ N0 and {Bc1 ∈ N0| 0 ≤ Bc1 ≤ p− 1}. The equivalent rule close105

to xN reads

Bc2∑
k=−Bc1

αk

∫ xp−k

xp−k−1

f(x) dx = h

Sc∑
k=0

akf(xN−k) + TEp,

10



a, g b, e c, d α β TEi

1
2 −h3

12 f
(2)
i

1+2α+2β
2 α β −

(
1−10α−46β

2

)
h3

3! f
(2)
i

10α+46β−1
24

14α−22β+13
24 α β −

(
38α−502β−11

6

)
h5

5! f
(4)
i

3
5

1
10 − h5

100f
(4)
i

− 38α−502β−11
1440

238α+418β−31
480

382α−158β+401
720 α β −

(
191−542α+1726β

12

)
h7

7! f
(6)
i

3
38

27
38

11
38 − 3h7

5320f
(6)
i

3(478β−3)
5420

3(4426β+199)
5420

24(83β+42)
1355

1726β+191
542 β − 216(3762β−137)

1355
h9

9! f
(8)
i

− 9
5420

597
5420

1008
1355

191
542 − 29592

1355
h9

9! f
(8)
i

Table 1: Summary of parameters, weights and local truncation errors for eqn.(3). No entry

value means that the parameter is equal to zero.

where {Bc1 ∈ N0| 0 ≤ Bc1 ≤ N−p}. Note that α’s and a’s are the same for both

rules and might be identical or not to the internal ones. The set {ak} links with

{αk} via similar expansion (4) centered at xp. With similar particularizations

as before, boundary CIRs at x0, p = 1, and xN , p = N , have the form110 ∫ x1

x0

f(x)dx+ α

∫ x2

x1

f(x)dx =

h [af0 + bf1 + cf2 + df3 + ef4 + gf5 + kf6] + TE1,

α

∫ xN−1

xN−2

f(x)dx+

∫ xN

xN−1

f(x)dx =

h [afN + bfN−1 + cfN−2 + dfN−3 + efN−4 + gfN−5 + kfN−6] + TEN ,

where the local truncation error is

TE1,N =
[
1 +

(
2n+1 − 1

)
α− (n+ 1) (b+ 2nc+

3nd+ 4ne+ 5ng + 6nk)
] hn+1

(n+ 1)!
f
(n)
1,N .

For the 9th-order rule and any other with a large stencil in the RHS, an addi-

tional boundary expression should be added at x1 and xN−1 since some points

of the stencil in (11) are outside the domain. For instance, close to the left

11



boundary the integral
∫ x2

x1
f(x)dx would require f(x−1). For this case we have

α−1

∫ x1

x0

f(x)dx+

∫ x2

x1

f(x)dx+ α1

∫ x3

x2

f(x)dx =

h [af0 + bf1 + cf2 + df3 + ef4 + gf5] + TE2,

α1

∫ xN−2

xN−3

f(x)dx+

∫ xN−1

xN−2

f(x)dx+ α−1

∫ xN

xN−1

f(x)dx =

h [afN + bfN−1 + cfN−2 + dfN−3 + efN−4 + gfN−5] + TEN−1,

with the truncation error being

TE2,N−1 =
[
1 +

(
29 − 1

)
α−1 + α1 −

9
(
28a+ b+ d+ 28e+ 38g

) ]h9
9!
f
(8)
2,N−1.

All parameters and weights are provided in Table 2 and 3 for boundary115

points. As a remark, a 5th-order boundary rule yields Simpson’s rule for the

integral between x0 and x2. Some of the rules are also provided in Table 2 with

a free α but adding this new degree of freedom enlarges the stencil of the RHS

by one node. Notice that the ninth-order rule for nodes adjacent to boundary

has broken the symmetry to get a shorter stencil in the RHS.

Local order α a b c d e g k

3
α 1−α

2
1+3α

2

1
2

1
2

5
α 9−α

24
13α+19

24
13α−5

24
1−α
24

1 1
3

4
3

1
3

7
α 475−27α

1440
637α+1427

1440
7(73α−57)

720
241−129α

720
77α−173

1440
27−11α
1440

27
11

281
990

1028
495

196
165 − 52

495
1
90

9 − 1375
56097

71036879
212046660

5684564
5890185 − 13273643

23560740
19246592
53011665 − 3823643

23560740
253964
5890185 − 1085521

212046660

Table 2: Parameter and weights for boundary rule at x0 and xN . No entry value means that

the parameter is equal to zero.

120
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α−1 α1 a b c d e g

5
32

4357
6112

2337
61120

33687
61120

3897
3820

258
955 − 693

61120
9

12224

Table 3: Parameter and weights for 9th-order boundary rule at x1 and xN−1.

2.4. Global truncation error

The global truncation error can be estimated as the sum of all the elements

of the vector that results from M−1TE, that is,

TE = 1TM−1TE,

being 1 = (1, 1, · · · , 1)T . The vector of local truncation errors at each point of

the mesh {xi} is written as

TE = hn+1diag(λλλ)f (n),

where λλλ = (λ1, λ2, · · · , λN )T is the vector of constants, that are equal for inner

points, and f (n) = (f
(n)
1 , f

(n)
2 , · · · , f (n)N )T is the vector of nth-derivative values.

So

TE = hn+1λ?λ?λ? · f (n) with λ?λ?λ? = 1TM−1diag(λλλ).

It can be rearranged as a weighted average of values for the nth derivative at

xi,

TE = hnhN
λ?λ?λ? · 1
N

λ?λ?λ? · f (n)
λ?λ?λ? · 1 = hnLλ? f

(n)
ξ ,

the truncation error for the integral of the whole domain is O (hn) whereas for

the integrals of the intervals is O
(
hn+1

)
.

3. Matrix analysis

The metric of M is essential to the stability of the numerical solution f̂ of125

the system (2) via a direct or iterative method. The norm of its inverse can give

an estimation of the error in terms of the remainder, r = b−Mf̂ ,

||̂f − f || ≤ ||M−1|| ||r||,
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where b = Qf and || · || any norm. Also, in this section a study on the condition

number of the matrix M is conducted. The condition number, κ(M) ≥ 1, is

related to the response of the system to small perturbations and hence, to the130

accumulation of round-off errors. With small perturbations the system to solve

is (M + δM)(f + δf) ' b + δb. The change in the solution reads

||δf ||
||f ||

≤ κ(M)

1− κ(M) ||δM||||M||

( ||δb||
||b|| +

||δM||
||M||

)
,

being κ(M) = ||M|| ||M−1|| the condition number. Let us consider a tridiagonal

matrix in the form of

M =



1 αB

α−1,nB 1 α1,nB

αI 1 αI
. . .

. . .
. . .

αI 1 αI

α1,nB 1 α−1,nB

αB 1


.

Subscripts I, nB and B stand for internal, near to the boundary and boundary,135

respectively. The second and the (N − 1)th row are applied if the points in

the RHS exceed the domain limits. In other case, α−1,nB = α1,nB = αI . The

maximum of the off-diagonal summation by rows is denoted by

Σr = max
{
|αB |, |α−1,nB |+ |α1,nB |, 2|αI |

}
,

and by columns,

Σc = max
{
|α−1,nB |, |αI |+ |αB |, |αI |+ |α1,nB |, 2|αI |

}
,

and the maximum of the two,140
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Σ = max
{

Σr,Σc

}
.

If M is strictly diagonal dominant (SDD) by rows, the Ahlberg-Nilson bound

[2] yields

||M−1||∞ ≤
1

1− Σr
.

This result could provide an evaluation of κ∞(M). However, the condition

number is more restrictive if it is calculated with the spectral norm. Using

Theorem 2 in Qi [3], an upper bound for the 2-norm condition number is145

κ2(M) ≤ 1 + Σ

1− Σ
,

if M is SDD by rows and columns.

In table 4 values of ||M−1||∞ and κ2(M) are shown for some matrices em-

ployed in CIR and calculated in Matlab. In the last column the estimated upper

bounds are also written for those matrices that have one estimate, that is, they

are SDD by columns, rows or both. The third matrix in the local fifth-order150

rule of CIR, the fifth matrix is that of local seventh-order CIR and the last one

is that associated to the local ninth-order CIR. The second and fourth matrices

are related to rules with α free at boundaries.

The determinant of the first matrix approaches zero as the size tends to

infinity. For N = 5, det(M) = 0.1875 and for N = 1000, det(M) = 9.34 ·10−299.155

This matrix was used just to check the ability of Matlab to calculate very large

condition numbers. The rest of matrices are well-conditioned or weakly ill-

conditioned, such as the fifth matrix, where κ2(M) is slightly high but shows

an upper bound. The sixth matrix does not have a bound estimate for κ2(M)

because is not SDD by columns.160

Based on this analysis it can be concluded that all matrices employed in CIR

are well-conditioned. The residual of the matrix equation can provide a good

estimation of the solution error as the norm of M−1 is of order 1.
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αI α−1,nB α1,nB αB
N

Bound estimates
5 20 100 1000

1
2

1
2

1
2

1
2

9.0000 110.0000 2.5500 · 103 2.5050 · 105

13.9282 178.0643 4.1336 · 103 4.0610 · 105

1
10

1
10

1
10

1
10

1.2470 1.25 1.25 1.25 1.25

1.4190 1.4930 1.4997 1.5000 1.5

1
10

1
10

1
10 1

2.3636 2.3624 2.3624 2.3624

3.1565 3.0873 3.0873 3.0873

1
10

11
38

11
38

1
10

1.7291 1.7145 1.7145 1.7145 2.375

1.9978 1.7939 1.7939 1.7939 3.75

11
38

11
38

11
38

27
11

32.7975 22.8832 22.8832 22.8832

71.9585 43.4467 43.4467 43.4467

191
542

5
32

4357
6112 − 1375

56097

3.5805 3.4187 3.4001 3.3999 7.64

6.4116 5.8772 5.8392 5.8388

Table 4: Infinity norm (top number) and 2-norm condition number (bottom number) for

different N -by-N matrices with the upper bounds.

4. Wavenumber analysis

When one works with numerical approximations of differential or integral165

equations some differences with the exact values are expected due to truncation

and round-off errors. If the discrete equations are rewritten by substituting

the point values using Taylor series expansion, the original differential/integral

equation is obtained with additional terms. These terms cause a numerical

dispersion and dissipation in the solution [4, 5, 6, 7]. The use of Fourier analysis170

for assessing the numerical dispersion and dissipation of schemes, also named as

the modified wavenumber approach, is widespread [8, 9, 10, 11]. The numerical

behaviour of CIR will be explored next by carrying out a modified wavenumber

study.

First, the integrand may be decomposed into a Fourier series as

f(x) =
∑
k

f̂k exp
(
iω
x

h

)
,

16



where f̂k are the Fourier coefficients, ω (= 2πk/N) the wavenumber and i ≡175

√
−1. Now, the Fourier series for the exact integral is given by

F (x) =
∑
k

F̂k exp
(
iω
x

h

)
with F̂k = −h i

ω
f̂k.

However, the Fourier coefficients of the integrals using the rules above,

F̂k

∣∣∣
CIR

= − h i

ωm(ω)
f̂k,

might not be the same as F̂k. ωm is the numerical wavenumber. An exact

integration would give ωm = ω, thus the difference between both is an indication

of the quality of the method. Therefore, replacing180

f(x+ ph) =
∑
k

f̂k exp (p iω) exp
(
iω
x

h

)
, p ∈ {−3,−2,−1, 1, 2},

in the RHS of equation (3), and

F (x+ ph)|CIR =
∑
k

− h i
ωm

f̂k exp (p iω) exp
(
iω
x

h

)
, p ∈ {−3,−2,−1, 1, 2},

in the LHS, using Euler’s formula and some algebra, the real <(ωm) and imag-

inary =(ωm) parts read

<(ωm) =
r1s1 + r2s2
s21 + s22

, =(ωm) =
r2s1 − r1s2
s21 + s22

, (13)

where

r1 = (1 + β) sin (ω) + α sin (2ω) + β sin (3ω) ,

r2 = (α− 1) + (1− 2α+ β) cos (ω) + (α− 2β) cos (2ω) + β cos (3ω) ,

s1 = d+ (e+ c) cos (ω) + (g + b) cos (2ω) + a cos (3ω) ,

s2 = (e− c) sin (ω) + (g − b) sin (2ω)− a sin (3ω) .
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As quoted in Lele [1], the real part of the numerical wavenumber is associated185

with the dispersive error and the imaginary part with dissipative errors. For

boundary rules at x0 and xN , the Fourier steps are the same and the coefficients

of equation (13) are

r1 = (1− α) sin (ω) + α sin (2ω) ,

r2 = 1− (1− α) cos (ω)− α cos (2ω) ,

s1 = a+ b cos (ω) + c cos (2ω) + d cos (3ω) + e cos (4ω) + g cos (5ω) + k cos (6ω) ,

s2 = b sin (ω) + c sin (2ω) + d sin (3ω) + e sin (4ω) + g sin (5ω) + k sin (6ω) .

The boundary rule at x1 and xN−1 has k = 0 in s1 and s2, and r1 and r2

become190

r1 = (α1 − 1) sin (ω) + (1− α2) sin (2ω) + α2 sin (3ω) ,

r2 = α1 − (1− α1) cos (ω) + (α2 − 1) cos (2ω)− α2 cos (3ω) .

In all figures the rules are named according to their global truncation error.

In Figure 2, there are several rules for which the modified wavenumber for

inner points skyrockets before dropping very quickly to be zero at π (drop not

shown). It is also seen that (e)-(g)-(h) are relatively good approximations within

a reasonable range of ω. As the order of these tridiagonal rule rises, it is moving195

closer to the exact ω for low-middle wavenumber values.

To quantify whether a numerical scheme is well-resolvable, the modified

wavenumber must approximate the exact wavenumber within an appropriate

error tolerance,

|<(ωm)− ω|
ω

≤ ε. (14)

The interval [0, ωr] where the above condition is met is the acceptable range of200

approximation and, therefore, the fraction η(ε) = ωr/π is the resolving efficiency

of a scheme that shows how poorly or well the waves are being resolved. Given
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the schemes in figure 2, the efficiency is determined for different tolerance values

{0.1, 0.01, 0.001} and tabulated in Table 5.

Scheme ε = 0.1 ε = 0.01 ε = 0.001 Global order

(b) 0.329 0.109 0.034
2nd

(c) 0.25 0.078 0.024

(e) 0.557 0.327 0.186 4th

(g) 0.706 0.516 0.365 6th

(h) 0.762 0.602 0.465 8th

Table 5: Resolving efficiency for different inner schemes plotted in figure 2.

Overall, these results indicate that the scheme (h) stays close to the exact205

integration (a) in almost half of the wavenumber spectrum for extremely small

tolerances. In the cases of scheme (e) and (g), waves are being resolved properly

for small and moderate tolerances. On the other hand, the scheme (d) never

meets condition (14) nor scheme (f), so their efficiencies are zero for the values of

ε in Table 5. Both schemes are pentadiagonal and achieved a poor resolution.210

However, this does not suggest that some other pentadiagonal family would

score as bad. Within a family with the same LHS stencil the efficiency depends

on the particular scheme.

Additionally, in Figure 3 the numerical imaginary wavenumber is zero in

all rules except (d) and (f). The numerator of the imaginary part of equation215

(13) is given in Table 6. It may be seen that in a global second-order family

with β = 0 or β = −(1 + 2α)/2, = (ωm) goes to zero. For the case of a global

fourth-order family, = (ωm) vanishes when β = 0 or α = −2/3 and β = 1/6;

and only for β = 0 in a global sixth-, eighth-order family. Pentadiagonal sixth-

and eighth-orders are not shown since they behave like (f) or worse.220

On the other hand, in Figures 4 and 5 for boundaries, almost all rules tend

to be close to the exact integration for the low-middle ω region. However,

huge differences turn up in the boundary of the global eighth-order rule (e)

and (f). Including the additional information of the integral near the boundary
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Family global order = (ωm)-num.

2th β sin2 (ω) [1 + 2 (α+ β)]

4th β sin2 (ω)
[
10α+46β−1

6 cos (ω) + 2α−34β+7
6

]
6th −β sin2 (ω)

[
38α−502β−11

188 cos2 (ω)− 376α+376β−52
188 cos (ω)− 22α−518β+221

188

]
8th 6β sin2 (ω)

[
478β−3
1355 cos2 (ω) + 1974β+101

1355 cos (ω) + 287−562β
1355

]
Table 6: Numerator of the numerical wavenumber (imaginary).

and/or shortening the stencil by breaking the symmetry in the LHS, changes225

considerably the accuracy of the rule.

In turn, the resolvable efficiency for boundaries has been computed in ta-

ble 7. The efficiencies of almost all schemes at boundaries are very close to

those at internal points of the same order, independently of the error tolerance.

Nonetheless the scheme (g) has low efficiencies in contrast to its inner scheme of230

the same order (h). Similarly, the scheme (f) breaks the trend for high tolerance

values within the 6th-order family rules.

Scheme ε = 0.1 ε = 0.01 ε = 0.001 Global order

(b) 0.329 0.109 0.034 2nd

(c) 0.593 0.355 0.204
4th

(d) 0.581 0.273 0.148

(e) 0.715 0.483 0.325
6th

(f) 0.508 0.396 0.349

(g) 0.513 0.371 0.243
8th

(h) 0.777 0.603 0.460

Table 7: Resolving efficiency for different boundary schemes plotted in figure 4.

5. CIR as linear multistep method

In this section an analogy between CIR and linear multistep methods for

ODE is established. It will be theoretically shown that if CIR is cast as a linear235
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Figure 2: Numerical wavenumber vs wavenumber for inner points: (a) Exact Integration;

(b) Trapezoidal rule, (c) Tridiagonal second order (α = 1/2); (d) Pentadiagonal second or-

der (α = β = 1/2); (e) Tridiagonal fourth order (α = 1/10); (f) Pentadiagonal fourth or-

der (α = β = 1/10); (g) Tridiagonal sixth order (α = 11/38); (h) Tridiagonal eighth order

(α = 191/542).
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Figure 3: Numerical wavenumber (Imaginary) vs wavenumber for inner points: same notation

as Figure 2.
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Figure 4: Numerical wavenumber vs wavenumber of boundaries: (a) Exact Integration, (b)

Second order (α = 0), (c) Fourth order (α = 1 or Simpson’s rule), (d) Fourth order (α = 1/10),

(e) Sixth order (α = 27/11), (f) Sixth order (α = 11/38), (g) Eighth order at x0|xN , (h) Eighth

order at x1|xN−1.
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Figure 5: Numerical wavenumber (Imaginary) vs wavenumber of boundaries: same notation

as Figure 4.
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multistep method it is not stable but when used as originally proposed, that is,

a system of equations, it can provide very accurate solutions without stability

problems in the iterative matrix solver, at least for the numerical tests proposed.

CIR can compute the 1D integral

F (x) =

∫ x

x0

f(t) dt,

being t the integration variable. In a general case, the integrand f may depend240

on F , thus dealing with an integral equation

F (x) =

∫ x

x0

f(t, F (t)) dt.

As will be shown CIR can also be interpreted as a linear multistep method

applied to the first-order ODE

F ′(x) = f(x, F (x)), F (x0) = 0.

In a linear multistep method F ′ is approximated as a linear combination of

the discrete integrals {Fi} at equally spaced mesh points {xi} and the RHS is245

computed by a linear combination of f values at the same points.
m∑
s=0

λsFi+s = h

m∑
s=0

µsfi+s.

Coefficients λs and µs are determined by Taylor expansion matching, numerical

integration, or interpolation. If the integrals in equation (3) are separated as∫ xi+k

xi+k−1

f(x) dx = Fi+k − Fi+k−1, k ∈ {0,±1,±2},

and the F -terms are grouped with a previous shift of indices, e.g. Fi−3 → Fi

and so on, then the recurrence relation reads250

βFi+5 + (α− β)Fi+4 + (1− α)Fi+3 − (1− α)Fi+2 −

(α− β)Fi+1 − βFi = h
[
gfi+5 + efi+4 + dfi+3 +

cfi+2 + bfi+1 + afi

]
. (15)

Then, the λs and µs coefficients are

{λs|s = 0, . . . , 5} = {−β,−(α− β),−(1− α), 1− α, α− β, β},

{µs|s = 0, . . . , 5} = {a, b, c, d, e, g}.
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Equation (15) is a 5-step method which will be implicit in a general nonlinear

case where f depends on F , as long as g 6= 0. In the limit case of β = 0, the

method is 3-step, i.e.,

αFi+3 + (1− α)Fi+2 − (1− α)Fi+1 − αFi = h
[
efi+3 + dfi+2 + cfi+1 + bfi

]
, (16)

where

{λs|s = 0, . . . , 3} = {−α,−(1− α), 1− α, α},

{µs|s = 0, . . . , 3} = {b, c, d, e}.

To keep the same number of points in the left- and right-hand side, a = g = 0

has been taken. Additionally, if e 6= 0 then (16) is an implicit method. The255

coefficients {α, β} and parameters {a, b, c, d, e, g} are those in Table 1. As any

CIR scheme can be cast as a linear multistep method one may wonder at this

point if there is any reason to implement CIR as a multistep method instead of

a tri/penta-diagonal system. Of course, this will depend on the characteristics

of multistep CIR, so in the following subsections the consistency and stability260

of a multistep CIR of three or five steps will be checked.

5.1. Consistency

A linear multistep method is consistent if the truncation error defined as

TEi =

∑m
s=0

(
λsFi+s − hµsF ′i+s

)
h
∑m
s=0 µs

,

tends to zero when the space length h tends to zero as well. TEi is di-

vided by h
∑m
s=0 µs in order to normalize the error. In terms of the first,265

ρ(r) =
∑m
s=0 λsr

s, and second, σ(r) =
∑m
s=0 µsr

s, characteristic polynomials

the condition reads

ρ(1) = 0 and ρ′(1) = σ(1) 6= 0. (17)

For the 5-step CIR these two polynomials are

ρ5(r) = βr5 + (α− β) r4 + (1− α)r3 − (1− α)r2 − (α− β)r − β,

σ5(r) = gr5 + er4 + dr3 + cr2 + br + a,
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whereas for the 3-step CIR

ρ3(r) = αr3 + (1− α)r2 − (1− α)r − α,

σ3(r) = er3 + dr2 + cr + b.

The first condition in (17) is met because terms containing α and β cancel out,

whereas the second condition yields the equation (5). Therefore a 3-step CIR is

consistent if α 6= −1/2 and so is 5-step CIR is if α+ β 6= −1/2. As none of the270

CIR schemes put forward in the previous section, e.g. (9), (10) and (11), have

negative values of {α, β}, the condition is satisfied.

5.2. Stability

Aside from consistency, stability plays an important role in the numerical

analysis. The theory of linear multistep method distinguishes two types of275

stabilities: Zero- and A-stability. A method is called zero-stable if the numerical

solution

m∑
s=0

λsFi+s = 0,

remains bounded as i → ∞, or roughly speaking, round-off errors do not grow

up. That is checked by the roots of the first characteristic polynomial which

must lie within a unit circle with at most a simple root on the edge of the disk.280

For instance, the polynomial ρ3(r) can be factorized as

ρ3(r) = (r − 1)
(
αr2 + r + α

)
.

The first root has |r0| = 1. If r1, r2 are the roots of αr2 + r + α, thenr1 + r2 = −1/α,

r1r2 = 1.

The second equation of the system tells that if one solution, e.g., |r1| ≤ 1 then

|r2| ≥ 1 ∀α. Similarly with the 5-step CIR,

ρ5(r) = (r − 1)
(
βr4 + αr3 + r2 + αr + β

)
,
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one root is on the unit disk and the others obey285 

r1 + r2 + r3 + r4 = −α/β,

r1r2 + r2r3 + r3r4 + r4r1 + r1r3 + r2r4 = 1/β,

r1r2r3 + r2r3r4 + r1r2r4 + r1r3r4 = −α/β,

r1r2r3r4 = 1,

where at least one root will be outside the disk. Therefore, the CIR method

as a linear multistep method is not stable, it is mandatory that the integrals

related to CIR be solved by a tri/pentadiagonal matrix system.

5.3. Build an ODE solver with CIR

As seen in previous section, CIR, written as a multistep method does not290

have good stability properties but written as a system of equations is able to nu-

merically approximate ODEs. Let us consider for instance the nonhomogeneous

linear BVP y
′(x) + p(x)y(x) = q(x), x0 ≤ x ≤ xN ,

y(x0) = yBC,

(18)

being yBC a given value at the boundary. The CIR method can be applied to y′

with, e.g., rule (9) in the following manner

1

10

∫ xi−1

xi−2

y′ dx+

∫ xi

xi−1

y′ dx+
1

10

∫ xi+1

xi

y′ dx =
3h

5

(
y′i−1 + y′i

)
,

yi−1 − yi−2
10

+ yi − yi−1 +
yi+1 − yi

10
=

3h

5
(qi−1 + qi)−

3h

5
(pi−1yi−1 + piyi) .

Grouping the terms yi−1 and yi, a four-point stencil for the discrete solution

{yi} at inner points reads295

− 1

10
yi−2 +

(
3h

5
pi−1 −

9

10

)
yi−1 +

(
3h

5
pi +

9

10

)
yi +

1

10
yi+1 =

3h

5
(qi−1 + qi) .
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As for the boundary schemes, the boundary expressions are employed with order

5 and α = 1 in table 2,(
h

3
p0 − 1

)
y0 +

4h

3
p1y1 +

(
h

3
p2 + 1

)
y2 =

h

3
(q0 + 4q1 + q2) ,(

h

3
pN−2 − 1

)
yN−2 +

4h

3
pN−1yN−1 +

(
h

3
pN + 1

)
yN =

h

3
(qN−2 + 4qN−1 + qN ) ,

Thus, the numerical solution is achieved by solving

My = hM2q + yBC, M = M1 + hM2 diag(p),

where the vectors are defined as

y = (y0, y1, . . . , yN )T , yBC = (yBC, 0, . . . , 0)T ,

p = (p0, p1, . . . , pN )T , q = (q0, q1, . . . , qN )T ,
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and the matrices300

M1 =



1 0 0 · · · · · · · · · 0

−1 0 1
. . .

. . .
. . .

...

− 1
10 − 9

10
9
10

1
10

. . .
. . .

...

0 − 1
10 − 9

10
9
10

1
10

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . − 1
10 − 9

10
9
10

1
10

0 · · · · · · 0 −1 0 1



,

M2 =



0 0 0 · · · · · · · · · 0

1
3

4
3

1
3

. . .
. . .

. . .
...

0 3
5

3
5 0

. . .
. . .

...

... 0 3
5

3
5 0

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0 3
5

3
5 0

0 · · · · · · 0 1
3
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.

Should greater accuracy be required, e.g., the rule with α = 27/11 could be

used. The M1, M2 banded matrices would change to
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M1 =



1 0 0 · · · · · · · · · 0

−1 − 16
11

27
11

. . .
. . .

. . .
...

−11 −27 27 11
. . .

. . .
...

0 −11 −27 27 11
. . .

...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . −11 −27 27 11

0 · · · · · · 0 − 27
11

16
11 1



,

M2 =



0 · · · · · · · · · · · · · · · 0

281
990

1028
495

196
165 − 52

495
1
90

. . .
...

3 27 27 3 0 0
...

0 3 27 27 3
. . .

...

...
. . .

. . .
. . .

. . .
. . . 0

... 0 0 3 27 27 3

0 · · · 1
90 − 52

495
196
165

1028
495

281
990



.

Two numerical cases are proposed. The first one is a homogeneous, q(x) = 0,

linear BVP with variable coefficient, p(x) = 2x, and boundary condition y(0) =

1 whose exact solution is the Gaussian function, y(x) = e−x
2

. The other case305

is a stiff problem with p(x) = 1000, q(x) = 3000 − 2000e−x and y(0) = 0. Its

exact solution takes the form

y(x) = 3− 997e−1000 x + 2000e−x

999
,

and describes a process with two characteristic length scales as shown below in

figure 7a.

In both cases the L2-norm of the vector difference between the numerical310
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solution and the exact one was computed. The system of equations for both

cases was calculated in Matlab with one of Lapack solvers for banded matrices.

The numerical solution of CIR was compared with two versions of a Predict-

Evaluate-Correct-Evaluate (PECE) multistep method. This method was also

coded in Matlab.315

• Predictor with an Adams-Bashforth four-, five-step (AB4, AB5)

• Corrector with an Adams-Moulton three-, four-step (AM3, AM4)

Clearly, 4th-order CIR is slightly better than AB4-AM3 and both reach 4th-

order accuracy. In contrast, the AB5-AM4 method is 5th-order, whereas 6th-

order CIR attains the theoretical order of accuracy.320

The initial strong variation of the stiff problem makes the CIR schemes not

so practical in this case if h is constant. Due to the two distinct characteristic

lengths a function h = h(x) is needed, but CIR is derived with h constant. The

solution is to define a break point, xb thereby a constant h1 is used within the

interval [x0, xb] whereas a constant h2 is adopted in the interval [xb, xN ], being325

h1 < h2. The link between the two zones is xb where the equations for the

boundaries are employed.

As in the Gaussian problem, system CIR achieves 4th-, 6th-order accuracy,

see figure 7b. h stands for average interval length. For the variable step-size

PECE method with tolerance 10−4, hmin = 10−5 and hmax = 10−2, the L2-norm330

was 4.41 · 10−5 with h = 1.4 · 10−3. For the same h the 4th-order CIR gives a

L2-norm of 10−8 and the sixth-order, 10−12.

As already commented CIR cast as multistep method is unstable. It was

verified for both ODE problems that this was in fact the case.

6. Numerical Examples335

Some numerical tests have been set up for checking how accurate CIR is

for numerical integration. Eventually, 4th-order rule (9), 6th-order rule (10),
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Figure 6: Linear ODE y′ + 2xy = 0; y(0) = 1. Black Square, 4th-order rules; Black

Triangle, 6th-order rules; Black Diamond, AB4-AM3; Black Circle, AB5-AM4.

8th-order rule (11) and their equal-order boundary rules, have been used. No-

tice that in all cases the matrix is tridiagonal, therefore one may apply direct

methods for solving the algebraic system such as TDMA.340

The range of applications is wide. Although we were mainly interested in

the application of the integration rules for the calculation of the integrals in

the ENATE coefficients [12], several, and very different, applications were dealt

with to show the general applicability of the method.

6.1. Data set345

The compact numerical integration will be first checked with a very simple

mathematical problem: the total distance traveled by a car given its velocity at

different times. The car velocity follows the function

v (t) =
4

15

 3t2 t ∈ [0, 5] s,

100− t2 t ∈ [5, 10] s,

whose exact integration yields D =
∫ 10

0
v (t) dt = 88.8 m. Now let us assume

that this equation is unknown and only a short data set is available provided in350
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6th-order rules.

Figure 7: Linear ODE y′ + 1000y = 3000− 2000e−x; y(0) = 0.
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i ti s v(ti) m/s

0 0 0

1 2.5 5

2 5 20

3 7.5 11.6

4 10 0

Table 8: Data set of velocities and times.

Table 8. The composite Trapezoidal rule and 4th-order compact rule were used

in order to show up the differences. The results are displayed in Table 9.

Rule

2th 4th

D 91.25 m 88.8 m

Table 9: The total distance traveled.

Although the composite Simpson’s rule could have also been used with the

same results as the 4th-order rule,∫ 10

0

v (t) dt ' h

3

[
v(t0) + 4v(t1) + 2v(t2) + 4v(t3) + v(t4)

]
= 88.8 m,

it can only work if the global domain is split up in a even number of intervals.

The compact integrals do not have this limitation.

6.2. The simple pendulum355

In this section, the period of a simple pendulum as that pictured in Figure

8 was chosen as a test for CIR. A simple pendulum consists of a bob of mass m

attached to a massless string of length l under a gravity field g. Friction with

junctions and air was disregarded. The changes of the angular displacement,

θ (t), of the pendulum is described by a non-linear second order ODE,360

θ′′ +
g

l
sin θ = 0,
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lθ0

θ(t)

mg

Figure 8: The simple pendulum.

with θ (t = 0) = θ0 and θ′ (t = 0) = 0 as initial values. Therefore, the period T ,

which is the time that takes the bob mass in recovering the initial position in

one cycle is

T = 4

√
l

2g
K(k) with K(k) =

∫ π/2

0

du√
1− k2 sin2 u

,

where K is the complete elliptic integral of the first kind and k = sin (θ0/2) is

the elliptic modulus or eccentricity. On the other hand K could be expressed365

in terms of an infinite series,

K(k) =
π

2

∞∑
m=0

[
(2m− 1)!!

(2m)!!

]2
k2m,

with the mark !! denoting the double factorial. A twenty-term series of this

expression was considered the exact solution as it was accurate enough for the

amplitudes that were tested. In the first numerical case, Figure 9a, θ0 = 10◦ ≡
π/18 rad was used as representative of a low amplitude pendulum for which370

sin θ ≈ θ and therefore K ≈ π/2. In Figure 9b, θ0 was 60◦ ≡ π/3 rad. The

absolute value of the difference between the calculated period and the exact one

is plotted.

As is shown in the convergence plots, either 4th- or 6th-order rules worked

mostly one order of magnitude better than in theory. The low amplitude case375
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(a) Pendulum with a low amplitude
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Figure 9: Convergence plots for two different θ0: Black Square, 4th-order rule; Black

Triangle, 6th-order rule; Black Diamond, 8th-order rule.
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reached machine accuracy with an interval length h of 2 · 10−2 with the best

scheme whereas in the large amplitude case, h = 5 · 10−3 was required. Surpris-

ingly, the 8th-order rule was found to have an error norm roughly one order of

magnitude higher than 6th-order rule, behaving like the 4th-order rule. It was

thought that the round-off errors were influential in the behaviour of 8th-order380

rule results but against this hypothesis was the fact that the error did not de-

pend on the number of computer operations of the direct solver as the results

obtained by another direct solver were the same.

CIR results with 5 nodes were compared with other integration rules such

as those written at the beginning of the paper, where the number of nodes385

employed by each is indicated. They are shown in table 10. As seen in the

table, CIR calculates the integral with an error similar to other rules although

it must be stressed that CIR does not show all its potential with large interval

sizes. It requires a greater number of intervals to reach the asymptotic order of

accuracy.390

Rule Low amplitude Great amplitude

Simpson 2.5826 · 10−6 3.8833 · 10−3

Boole 1.7217 · 10−7 2.4314 · 10−4

Gauss 2 points 1.8643 · 10−6 2.7958 · 10−3

Gauss 3 points 1.7396 · 10−7 2.4124 · 10−4

Cubic Hermite 7.7480 · 10−6 1.1827 · 10−2

Quintic Hermite 2.6500 · 10−6 3.9568 · 10−3

CIR 4th order 5.8069 · 10−8 8.0734 · 10−5

CIR 6th order 9.2833 · 10−8 1.3308 · 10−4

Table 10: Pendulum test, errors for several quadrature rules.
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6.3. Integral transforms

The first uses of integral transforms went back to the Fourier series in 1822

and Laplace on probability theory in 1812. The key strategy consists of trans-

forming the original problem, that a priori is difficult to solve, into another

whose domain, that does not need to match with the original, makes it eas-395

ier. There are a plenty of integral transforms such as Fourier, Laplace, Abel,

Hilbert, among others (for further information see Davies [13]). On the whole,

an integral transform is written as

IT [f(t)] (m) =

∫ t1

t0

K(m, t)f(t) dt,

where K(m, t) is called the kernel and t0, t1 are the limits of integration. Fo-

cusing the study on the Laplace transform, K(s, t) = e−st, t0 = 0 and t1 →∞.400

It is an improper integral of first kind, so instead of taking the limit as

L [f(t)] (s) = lim
a→∞

∫ a

0

e−stf(t) dt,

that only complicates the numerical problem, it is advisable to change the limits

of the integral in order to discretize it in a finite domain. In that case, the change

of variables t = u/(1− u) with u ∈ [0, 1] can be applied to reach this goal,

L [f(t)] (s) =

∫ 1

0

e−s u/(1−u)

(1− u)
2 f (t(u)) du.

The integrand has two variables: the variable of integration u, and s, that405

remains constant in the integral. So, for each value of s it will be necessary

to work out the previous integral. The Laplace transform of two functions, a

Heaviside step and a damped cosine wave will be calculated. The expressions

are shown below. For both Heaviside steps, t0 = 0 s and t0 = 2 s, 20 values of

s were considered from 0.1 to 2, and for the damped cosine wave 101 values of410

s were calculated, from 0 to 10.
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f(t) = H(t− t0) =

 0 t < t0

1 t ≥ t0
→ L [f(t)] (s) =

e−t0 s

s
,

f(t) = e−t cos(2t) → L [f(t)] (s) =
s+ 1

s2 + 2s+ 5
.

As usual, the L2-norm will be used as accuracy indicator. Some remarkable

outcomes were observed. First, for the damped cosine wave all rules give roughly

the same norms in the region of h > 10−2, figure 10, and they start to spread

out for smaller h. The 6th-order rule reaches machine accuracy very quickly,415

in one decade decreases 10 orders of magnitude. It works much better than it

would be theoretically foreseeable.
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f(t) = e−t cos (2t)

Figure 10: Convergence plot for the Laplace transform of a damped cosine wave: Black

Square, 4th-order rule; Black Triangle, 6th-order rule; Black Diamond, 8th-order rule;

Black circle, Composite Simpson Rule.

Both Laplace transforms, Figures 10 and 11, displayed a similar behaviour.

In the first decade of h almost all rules provided similar norms with slight

oscillations. In the case of the Heaviside step the 4th-order CIR displayed lower420

norm than the others below h ∼ 10−2. This behaviour was somehow unexpected

and the reason is still unknown to us. The Laplace transform of the Heaviside
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step is difficult to integrate for small s due to rhe shape of the integrand. In

Figure 12 several integrands with different s are depicted. As s increases the

integrand turns into a spiky function difficult to integrate for all CIR.425
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(a) Without a time delay gap.
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(b) With a time delay gap.

Figure 11: Convergence plots for the Laplace transform of a Heaviside unit step: same notation

as Figure 10.
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Figure 12: Representation in modulus of Laplace’s integrand for the Heaviside function with

several values of the real part: (a) <(s) = 0.5, (b) <(s) = 0.75, (c) <(s) = 1, (d) <(s) = 3,

and (e) <(s) = 10. The dashed line is the path of the maximum that rises quickly for <(s) < 1

what produces a spiked function tough to integrate.

Again the two CIR were compared with other integration rules in table 11.

In the Heaviside step, similar errors were obtained with CIR and Gauss. The

bad resolution of Hermite is caused by the difficulty of Hermite splines to fit

an integrand with strong variations. In the damped cosine wave, CIR improved

slightly the results followed by Gauss 3 points and Boole.430

6.4. The 2D pure-convection transport equation

Finally, the last application is related to a new way of discretizing a generic

convection-diffusion equation proposed by one of the authors, see Pascau [14]

and Pascau et al [12]. The new scheme is exact in a one-dimensional case with

a three-point stencil as long as the integrals contained in the coefficients can be435

calculated exactly. In a general case these will have to be obtained numerically

and this is in fact the reason why we started looking at ways of evaluating the

integrals with the compact integration rules.

Let us briefly consider ENATE in a 2D pure convection case chosen as a
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Rule
Heaviside step

Damped cosine wave
t0 = 0 s t0 = 2 s

Simpson 1.8353 6.7536 · 10−1 1.3212 · 10−1

Boole 1.0764 7.7421 · 10−2 7.3119 · 10−2

Gauss 2 points 5.3457 · 10−1 6.0942 · 10−1 1.0274 · 10−1

Gauss 3 points 5.4519 · 10−1 2.3136 · 10−1 4.7186 · 10−2

Cubic Hermite 2.5312 1.6068 1.9214 · 10−1

Quintic Hermite 2.4997 1.5646 1.1505 · 10−1

CIR 4th order 9.1453 · 10−1 9.3967 · 10−2 8.9138 · 10−3

CIR 6th order 9.0122 · 10−1 1.0411 · 10−1 8.2745 · 10−3

Table 11: Laplace transform test, L2-norm for several quadrature rules.

test,440

u
∂u

∂x
+ u

∂u

∂y
= S, (x, y) ∈ [0, 1]× [0, 1],

u(x, 0) = a+ sin (x− 0.5) , on y = 0, 0 ≤ x ≤ 1,

u(0, y) = b+ tanh (σ (y − 0.5)) , on x = 0, 0 ≤ y ≤ 1,

where a = 2 + tanh (−σ · 0.5) and b = 2 + sin (−0.5). This is a 2D steady

Burgers’ equation in which the velocity components are the same, so there is

only one PDE to solve. We employ a manufactured source with a parameter

that controls the steepness of the solution in a certain desired region,

S =

(
σ

cosh2 (σ (y − 0.5))
+ cos (x− 0.5)

)
(tanh (σ (y − 0.5)) + 2 + sin (x− 0.5)) .

The exact solution is445

u = tanh (σ (y − 0.5)) + 2 + sin (x− 0.5) ,
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which is very anisotropic, the gradient of u does not change alike in both direc-

tions. The sine function in one direction is very smooth but the sharpness of

the hyperbolic tangent function is controlled by σ, an input parameter. In fact,

the greater the value of σ is, the greater the gradient of u in y-direction around

0.5 becomes, see Figure 13.450

ENATE works with the conservative form of the transport equation, i.e.,

∂ (ρuφ)

∂x
+
∂ (ρuφ)

∂y
= S,

where the conserved variable is the variable under study, φ = u and ρ = 1/2.

The convective term uses the values of u in the previous iteration, ρu = [u/2]
old

.

The product ρuφ is the total flux J . The target PDE is split up into two ODEs

such as in Wong et al. [15], by setting the derivatives in the other directions as455

new source terms,

∂ (ρuφ)

∂x
= S − ∂J

∂y
,

∂ (ρuφ)

∂y
= S − ∂J

∂x
.

The final nodal equation is obtained by using a uniform discretization, integrat-

ing both equations along their coordinates

(ρu)PφP = (ρu)WφW + ISWP −
∫ P

W

∂J

∂y
dx,

(ρu)PφP = (ρu)SφS + ISSP −
∫ P

S

∂J

∂x
dy,

and adding them up

2 (ρu)P φP = (ρu)W φW + (ρu)S φS + ISWP + ISSP−[∫ P

W

∂J

∂y
dx+

∫ P

S

∂J

∂x
dy

]old
, (19)

where ISab stands for Integral of the Source term within [a, b]. A finite volume

formulation was used where W stands for west-, S, south-, and P , central-

node. The main issue are the unknown ∂iJ integrals as the procedure only
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Figure 13: Exact solution of the transport equation using the manufactured source.
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provides the value of u in each iteration and node. To obtain J is immediate460

but in addition, and unlike the numerical examples discussed above, the integral

values in each interval of the mesh are required in this example. CIR can provide

these integrals at once but prior to this the values of the integrands, that is,

J derivatives, are necessary. A central finite difference scheme could have been

chosen, although the accuracy is only second-order that can mask the higher465

accuracy of CIR. A central compact scheme (CCS), as in Lele [1], was picked

since it provides low dispersion/diffusion errors, see Boersma [16]. The strategy

carried out is displayed in Figure 14. The domain is swept in both directions

line-by-line from left to right and from bottom to top. The contribution of the

adjacent line (South from bottom to top and West from left to right) is moved470

to the source term. Let us take, for instance, the sweep from bottom to top

where horizontal lines are calculated. The calculation along y-constant lines is

2 (ρu)P φP = (ρu)W φW + Source terms.

All remaining terms of equation (19) are included in ”Source terms”. The main

difficulty lies in the evaluation of the ∂yJ integral and the ∂xJ integral. As

an example, to evaluate the ∂yJ integral, the procedure can be summarized as475

follows:

1. Calculate J = u2/2

2. Use CCS line-by-line in order to evaluate ∂J/∂y along x=constant lines,

3. Use CIR line-by-line in order to evaluate
∫

(∂J/∂y)dx along y=constant

lines,480

4. The ∂yJ integral in each sub-interval is ready to be used in the algebraic

equation.

The code was run until the difference between two consecutive iterations

was less than 10−4. The transport equation has been further discretized with

another numerical scheme named ”Finite Volume-Complete Flux” (FV-CF),485

[17], since it has a similar flavour to ENATE and moreover, both have already

been compared in a one-dimensional case, [18]. As is remarked by its authors,
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Figure 14: Simplified representation for evaluating the ∂yJ integral in an uniform grid. Similar

procedure for ∂xJ integral. The parameters of CCS, αD, and CIR, αI , do not have to be the

same.

FV-CF scheme becomes a second-order cell-vertex FV method when Péclet goes

to infinity, as in this example.

Next, the L2-norm is plotted in Figure 15 where eight numerical experiments490

were implemented: two levels in the gradient and four CIR/CCS combinations.

Both smooth and sharp gradient simulations using a 4th-order CIR + 4th-order

CCS, 6th-order CIR + 4th-order CCS showed an identical behaviour. In both

cases, ENATE worked as 4th-order scheme, Table 12, being slightly better with

a smooth gradient.495

The 4th-order CIR + 6th-order CCS and 6th-order CIR + 6th-order CCS

follow the same behaviour in sharp gradient, except for the 500 × 500 mesh

whose results differ each other less than one order of magnitude. ENATE worked

as 6th-order. With a smooth gradient and same orders of CIR and CCS the

differences became relevant beyond the 200 × 200 mesh. Rejecting results of500

the non-asymptotic zone, 4th-order ENATE was achieved with a 4th-order CIR

+ 6th-order CCS and 6th-order ENATE was obtained by 6th-order CIR + 6th-

order CCS. On the other hand, 8th-order CIR or CCS did not provide good

results and they are not reported.

It is worth highlighting the good results obtained by ENATE with its ac-505

cessories (CCS and CIR) in a nonlinear equation. In the more stringent case of
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σ = 50 the L2-norm is 3 · 10−10 with a mesh 500 × 500.

ENATE provides much better results than the FV-CF scheme, even for the

case σ = 50 that contains a region where the solution changes very quickly.

ENATE cannot provide a solution for
√

∆x∆y > 2 · 10−2 whereas FV-CF can510

work fine for
√

∆x∆y greater than this value. For large
√

∆x∆y ENATE is

more sensitive to nonlinearities than the FV-CF scheme.

Case σ CIR CCS ENATE Remarks

1.1

5

(Smooth)

4th 4th 4th

1.2 4th 6th 4th better than 1.1

1.3 6th 4th 4th identical to 1.1

1.4 6th 6th 6th

2.1

50

(Sharp)

4th 4th 4th

2.2 4th 6th 6th

2.3 6th 4th 4th identical to 2.1

2.4 6th 6th 6th

Table 12: Orders obtained by several combinations of CCS and CIR.

7. Conclusions

The purpose of the current paper was to carry out an easy-to-use numerical

procedure to determine the definite integral of a function. Once the integration515

domain has been split up uniformly, the method consists of solving an algebraic

system of equations where the components of the vector of unknowns are the

definite integrals over each interval. The independent vector contains a linear

combination of the function values in the discrete points. The matrix is banded

with coefficients which keep relationship with the weights of the linear combi-520

nation by matching derivatives in Taylor’s coefficients. Special attention must

be paid at both boundary and next to boundary points. Were it necessary to

change the order of the approximation, it would be as easy as changing the

values of this parameters and weights. Furthermore, it could be noticed that
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Figure 15: Convergence plots for two values of σ: Black Circle and densely dotted line,

FV-CF scheme; Black Square and solid line, 4th-order CIR + 4th-order CCS; Black

Square and dashed line, 6th-order CIR + 4th-order CCS; Black Triangle and solid

line, 4th-order CIR + 6th-order CCS; Black Triangle and dashed line, 6th-order CIR +

6th-order CCS.
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not only the algorithm provides the value of the definite integral over the whole525

domain but also of each interval.

The Fourier analysis showed that when some values of α and β are employed,

diffusive errors are not introduced for the integrals in the intervals. Each one

of the rules developed in the previous section was compared in some numerical

tests. They showed to work in a more than acceptable way with the exception530

of the 8th-order rule.

It would be interesting to use a non-uniform discretization [19] by rewriting

all the derivations of CIR with a variable length hi or apply a transformation ξ =

ξ (x) where the nodes are equidistant. More work is required to understand the

abnormal behaviour of the eighth-order rule and to move to higher dimensions.535
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