000095443 001__ 95443
000095443 005__ 20210902121711.0
000095443 0247_ $$2doi$$a10.1021/acsnano.9b09453
000095443 0248_ $$2sideral$$a117303
000095443 037__ $$aART-2020-117303
000095443 041__ $$aeng
000095443 100__ $$aBaumann, Kevin N.
000095443 245__ $$aCoating and Stabilization of Liposomes by Clathrin-Inspired DNA Self-Assembly
000095443 260__ $$c2020
000095443 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095443 5203_ $$aThe self-assembly of the protein clathrin on biological membranes facilitates essential processes of endocytosis and has provided a source of inspiration for materials design by the highly ordered structural appearance. By mimicking the architecture of the protein building blocks and clathrin self-assemblies to coat liposomes with biomaterials, advanced hybrid carriers can be derived. Here, we present a method for fabricating DNA-coated liposomes by hydrophobically anchoring and subsequently connecting DNA-based triskelion structures on the liposome surface inspired by the assembly of the protein clathrin. Dynamic light scattering, ¿-potential, confocal microscopy, and cryo-electron microscopy measurements independently demonstrate successful DNA coating. Nanomechanical measurements conducted with atomic force microscopy show that the DNA coating enhances the mechanical stability of the liposomes relative to uncoated ones. Furthermore, we provide the possibility to reverse the coating process by triggering the disassembly of the DNA coats through a toehold-mediated displacement reaction. Our results describe a straightforward, versatile, and reversible approach for coating and stabilizing lipid vesicles through the assembly of rationally designed DNA structures. This method has potential for further development toward the ordered arrangement of tailored functionalities on the surface of liposomes and for applications as hybrid nanocarriers.
000095443 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E47-17R$$9info:eu-repo/grantAgreement/ES/MCIU/RTI2018-095629-J-I00$$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2018-CIE-04$$9info:eu-repo/grantAgreement/ES/UZ/UZ2018-CIE-04
000095443 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095443 590__ $$a15.881$$b2020
000095443 591__ $$aCHEMISTRY, PHYSICAL$$b12 / 162 = 0.074$$c2020$$dQ1$$eT1
000095443 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b11 / 106 = 0.104$$c2020$$dQ1$$eT1
000095443 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b14 / 178 = 0.079$$c2020$$dQ1$$eT1
000095443 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b21 / 333 = 0.063$$c2020$$dQ1$$eT1
000095443 592__ $$a5.554$$b2020
000095443 593__ $$aEngineering (miscellaneous)$$c2020$$dQ1
000095443 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020$$dQ1
000095443 593__ $$aNanoscience and Nanotechnology$$c2020$$dQ1
000095443 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ1
000095443 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095443 700__ $$aPiantanida, Luca
000095443 700__ $$0(orcid)0000-0002-4254-3148$$aGarcía-Nafría, Javier$$uUniversidad de Zaragoza
000095443 700__ $$aSobota, Diana
000095443 700__ $$aVoïtchovsky, Kislon
000095443 700__ $$aKnowles, Tuomas P.J.
000095443 700__ $$0(orcid)0000-0003-3109-4284$$aHernández-Ainsa, Silvia$$uUniversidad de Zaragoza
000095443 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000095443 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000095443 773__ $$g14, 2 (2020), 2316-2323$$pACS Nano$$tACS nano$$x1936-0851
000095443 8564_ $$s7441696$$uhttps://zaguan.unizar.es/record/95443/files/texto_completo.pdf$$yVersión publicada
000095443 8564_ $$s144754$$uhttps://zaguan.unizar.es/record/95443/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095443 909CO $$ooai:zaguan.unizar.es:95443$$particulos$$pdriver
000095443 951__ $$a2021-09-02-09:21:10
000095443 980__ $$aARTICLE