Resumen: This paper performs technical, economic and environmental feasibility analyses of two different solar cogeneration plants, consisting of a solar system (a parabolic trough collector field coupled with thermal energy storage), an Organic Rankine Cycle (ORC), and mechanical chillers, that should cover the electrical and cooling demands of a commercial center located in Zaragoza (Spain). System A is hybridized with an auxiliary biomass boiler that complements the solar system’s thermal production, providing a constant heat supply to the ORC, which operates at full load during the operating hours of the solar system. In contrast, system B is not hybridized with biomass, so the ORC is fully driven by the solar system, operating at partial load according to the solar resource availability. Both systems are connected to the electrical grid, allowing electricity purchases and sales when needed. The design procedure involves the sizing of the equipment as well as the modelling of the hourly behavior of each system throughout the year. The physical analysis is complemented by an economic assessment, which considers investment and variable costs, as well as an estimate of the significant environmental benefits of the proposed plants. The solar plants are compared to a conventional system in which all the electrical consumption is covered with electricity purchased from the grid. The costs of the electricity produced by systems A and B are estimated at 0.2030 EUR/kWh and 0.1458 EUR/kWh, which are about 49% and 7% higher than the electricity purchase price in Spain (0.1363 EUR/kWh). These results indicate that while none of the solar plants are presently competitive with the conventional system, system B (without biomass hybridization) is actually closer to economic feasibility in the short and medium term than system A (with biomass hybridization). Idioma: Inglés DOI: 10.3390/en13184807 Año: 2020 Publicado en: Energies 13, 18 (2020), [29 pp.] ISSN: 1996-1073 Factor impacto JCR: 3.004 (2020) Categ. JCR: ENERGY & FUELS rank: 70 / 114 = 0.614 (2020) - Q3 - T2 Factor impacto SCIMAGO: 0.597 - Control and Optimization (Q2) - Electrical and Electronic Engineering (Q2) - Renewable Energy, Sustainability and the Environment (Q2) - Energy Engineering and Power Technology (Q2) - Fuel Technology (Q2) - Energy (miscellaneous) (Q2)