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Abstract  14 

The development of SERS substrates for chemical detection of specific analytes 15 

requires appropriate selection of plasmonic metal and the surface where it is deposited. 16 

Here we deposited Ag nanoplates on three substrates: i) conventional SiO2/Si wafer, ii) 17 

stainless steel mesh and iii) graphite foils. The SERS enhancement of the signal was 18 

studied for Rhodamine 6G (R6G) as common liquid phase probe molecule. We 19 

conducted a comprehensive study with =532, 633 and 785 nm on all the substrates. 20 

The best substrate was investigated, at the optimum laser 785 nm, for gas phase 21 

detection of dimethyl methyl phosphonate (DMMP), simulant of the G-series nerve 22 

agents, at a concentration of 2.5 ppmV (14 mg/m3). The spectral fingerprint was clearly 23 

observed; with variations on the relative intensities of SERS Raman bands compared to 24 

bulk DMMP in liquid phase reflects the DMMP-Ag interactions. These interactions 25 

were simulated by Density Functional Theory (DFT) calculations and the simulated 26 

spectra matched with the experimental one. Finally, we were detected the characteristics 27 

DMMP fingerprint with hand-held portable equipment. These results open the way for 28 

the application of SERS technique on real scenarios where robust, light-weight, 29 

miniaturized and simple to use and cost-effective tools are required by first responders. 30 
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1. Introduction  34 

The nerve gas attacks with sarin in Matsumoto (1994) and Tokyo (1995) and in the 35 

armed conflict in Syria (Goutha 2013 and Khan Shaykhun 2017) are recent and 36 

representative examples of the present world threat spectrum. Chemical Warfare Agents 37 

(CWAs), initially developed in the First World War, include vesicant and blister agents 38 

such as phosgene (PD) and mustard gas (HD) and nerve agents, as sarin (GB) and 39 

venomous agent X (VX). The nerve agents are highly toxic due to the irreversible 40 

binding with the nerve sites responsible for acetylcholinesterase breakdown, a necessary 41 

process in neurotransmission. Sarin gas presents the highest toxicity with a IDLH 42 

(Immediately Dangerous to Life or Health) of 0.1 mg·m-3. These CWAs are able to 43 

spread out in the atmosphere, creating a toxic scenario in few seconds. The early 44 

detection and identification of these agents in gas phase is essential for the safety of first 45 

responders and for the efficient evacuation of threatened public spaces. 46 

Surface Enhanced Raman Spectroscopy (SERS) is a technique capable of label-free 47 

ultrasensitive vibrational “fingerprinting”, and as such it is recognized as highly 48 

interesting method for explosive and chemical threat detection [1]. The technique has 49 

also become suitable for on-site detection thanks to the development of portable 50 

equipment with adequate spectral resolution (ranging from 7 to 12cm-1) and low weight 51 

(330 to 2450g) at reasonable prices, ca. 10 thousand euros without spectral library. 52 

However there are still several challenges to be overcome before this technique can be 53 

implemented as “off-the-shelf” solution for CWA detection. 54 

SERS mainly relies on the enhancement of the Raman signal due to the plasmon 55 

resonance of a metallic nanostructure. This effect only occurs when the target molecule 56 

is in close contact to the metal, and for this reason an interaction i.e. physical or 57 

chemical adsorption is required between the molecule and the metal. The magnitude of 58 

the enhancement depends on several parameters including composition, size, 59 

morphology, topology, surface distribution, and dielectric environment of the metallic 60 

nanostructure on substrate surface. Many efforts have been devoted in SERS field for 61 

the development of optimum SERS substrates ranging from fancy shapes of 62 

nanoparticles with sharp edges to ordered nanostructures whose the shape and spacing 63 

was optimized with simulation and then on fabricated in cleanroom. Other key factors 64 
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for the highly sensitive detection of molecules include the cross-section of the molecule, 65 

its stability, interactions with the SERS substrate and its solid, liquid or gaseous state. 66 

Most of the SERS applications in the open literature refer to the detection in liquid 67 

phase and only few reports for gas phase detection at concentrations below 10 ppmV 68 

could be found. Van Duyne and coworkers reported the detection of 8 ppmV of benzene 69 

thiol on a SERS substrate consisting of well-ordered silica nanospheres coated with a 70 

200 nm thick Ag film [2]. A recyclable surface-enhanced Raman scattering (SERS) 71 

substrate, consisting of Ag nanorods coated with an ultrathin HfO2 shell (Ag 72 

NRs@HfO2), was able to detect, after 40 minutes exposure, concentrations in the gas 73 

phase as low as 20ppb of the molecule 2-Naphthalenethiol (2-NAT). Then substrate was 74 

easily regenerated by heating at 250ºC for 25 seconds [3]. The SERS detection of 75 

volatile organic compounds (VOCs) biomarkers in human breath, such as acetone in the 76 

case of diabetes or hydrogen cyanide in patients with cystic fibrosis, is gaining of 77 

importance as non-invasive tool in primary screening diagnosis. The group of Boisen 78 

detected 5ppmV of hydrogen cyanide in gas phase [4] and later on P. aeruginosa 79 

cultures [5]. The term of plasmonic nose was recently coined for a SERS substrate that 80 

consists on a core-shell structure of Ag nanocubes encapsulated in porous metal organic 81 

framework MOF, in particular ZIF-8 [6]. The VOCs adsorbed on the porous layer 82 

formed a 3D confinement space for the molecules near the plasmonic structure. In this 83 

system 200 ppmV of toluene were detected and the detection limit could be lowered to 84 

50ppb for 2-nitrotoluene, a molecule with higher cross section. Another recent example 85 

of low concentration in gas phase was the detection of 10ppmV of benzene. In this case 86 

the strategy for decreasing the detection limit involved deep cooling of the SERS 87 

substrate down to -80ºC, to promote adsorption and condensation of the molecules [7]. 88 

Recently, a 3D porous substrate successfully detected for the first time 0.1 ppmV of 89 

NO2 in the gas phase with a hand-held Raman detector [8]. The high surface area 90 

employed consisted of a 3D multilayer structure made of Au coated-Ag nanowires 91 

(AgNWs) forming lots of random hot spots in the cross points of the fibers. In our 92 

laboratory, the detection of 625 ppbV of DMMP, a surrogate molecule of the G-series 93 

nerve agents which are of particular concern due to its extreme toxicity and persistence, 94 

was recently reported using a substrate consisting of self-assembled AuNPs coated with 95 

a citrate layer that acted as an effective trap for the target molecules [9]. The above 96 

results illustrate the importance of substrate selection for gas phase using SERS. It must 97 
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provide high electromagnetic enhancement (EF), but also chemical affinity towards the 98 

target molecule while avoiding band interference with the functional groups responsible 99 

for this affinity.  100 

In this work we selected Ag nanoplates as the plasmonic material to be used in 101 

DMMP detection in view of four reasons: i) the optical properties of Ag (real and 102 

imaginary parts of the dielectric function), that makes this metal the main candidate to 103 

get interesting optical effects, including plasmon resonances [10]; ii) the specific 104 

interaction of DMMP with Ag through the P-O bond, as already reported in the first 105 

study of DMMP detection in roughened Ag electrodes [11]; iii) the electromagnetic 106 

field enhancement at the tips and edges of the nanoplates; and finally, iv) the 107 

coincidence of the plasmon resonance band of Ag nanoplates with the excitation laser 108 

wavelength used for the Raman measurements, 785nm. We have compared the response 109 

of the synthesized Ag nanoplates on three different substrates, SiO2/Si, stainless steel 110 

mesh and graphite foil. The SERS response was analyzed using Rhodamine (R6G) as 111 

probe molecule with lasers of λ = 532, 633 and 785 nm. The same substrates were also 112 

studied for the detection of 2.5 ppmV of DMMP in gas phase with a benchtop and 113 

portable Raman equipments. The interactions of the DMMP molecule with the Ag 114 

surface were simulated using Density Functional Theory (DFT) calculations carried out 115 

by Gaussian09 quantum chemistry program [12] to explain the relative intensities 116 

variation of the characteristic Raman vibrational modes. 117 

2. Materials and methods  118 

2.1 Materials 119 

Silver nitrate (AgNO3, 99.9999%), sodium citrate tribasic dehydrate (>99%), 120 

hydrogen peroxide solution (H2O2, 30% wt), potassium bromide (KBr, >99%), sodium 121 

borohydride (NaBH4, >99%), poly(diallyl dimethylammonium (PDDA, 20% wt), 122 

rhodamine 6G (99%) and dimethyl methylphosphonate (DMMP, 97%) were purchased 123 

from Sigma-Aldrich. All solutions were prepared in distilled water. Acetone and 124 

isopropyl alcohol were also purchased from Sigma-Aldrich. DMMP vapours were 125 

generated using a calibrated permeation tube (MT-PD-Experimental 107-100-7845-126 

HE3-C50, 126.78 ng/min ± 4.81 ng/min at 80ºC) from VALCO. 127 

 128 

2.2 Preparation of SERS substrates 129 
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The Ag nanoplates (Ag nPlates) were synthesized according to a previously reported 130 

method [13]. Briefly, in a 20 mL vial, the following aqueous solutions were sequentially 131 

added while stirring: H2O (8.5 mL); AgNO3 (3.75 mL, 0.5 mM); sodium citrate (1 mL, 132 

25 mM); H2O2 (28.2 µL); KBr (10 µL, 1 mM). Finally NaBH4 (1.25 mL, 10 mM) was 133 

quickly added to the solution to cause Ag reduction. A colour transition from yellow to 134 

blue could be observed in the solution after approximately two minutes, indicating plate 135 

formation. Ag nPlates solutions were then centrifuged afterwards for 20 minutes at 136 

21,000 rpm, and the supernatant was centrifuged again. The obtained precipitates were 137 

resuspended in water and citrate was added to obtain a solution with a final 138 

concentration of 80 mg/L of Ag and 2.5 mM of sodium citrate. 139 

The Ag nPlates were deployed on three different supports (4mm x 8mm): SiO2/Si 140 

chip (Sil’Tronix 1 µm of wet thermal SiO2 wafer), stainless steel mesh (see SEM image 141 

in Fig. S1) and graphite foil (RivaTherm-HD type from Kempchen). Figure S2 shows 142 

digital photographs of the three different supports. Before the deposition the supports 143 

were sequentially washed with acetone, isopropanol and water during 10 min each, in 144 

an ultrasound bath. After, SERS substrates were immersed in an aqueous solution of 145 

PDDA (0.2% v/v) during 4 hours, washed with distilled water and dried for 10 minutes 146 

at 100 °C. Finally, the supports were immersed in the Ag nplates suspension overnight 147 

and allowed to dry at room temperature, to obtain the SERS substrates. In the case of 148 

graphite, before immersing in the PDDA solution the surface was peeled-off with scotch 149 

tape. The obtained SERS substrates are denoted as nPlates@SiO2/Si, Ag nPlates@SS 150 

and Ag nPlates@graphite for the remainder of this work. 151 

2.3 Material Characterization 152 

Size distribution and morphology of Ag nPlates were studied by TEM (FEI Tecnai 153 

T200). Scanning electron microscopy (SEM) images were obtained using a FEG 154 

INSPECT 50. Five SEM images of each SERS substrates after coating were analysed to 155 

assess the Ag nPlates density on the surface using ImageJ analysis software. A UV-Vis 156 

Spectrophotometer Varian Cary 50 Spectrometer was used to measure the absorbance 157 

properties of Ag nPlates in solution and Surface Plasmon Resonance (SPR) spectra of 158 

the Ag nPlates coated on a glass substrate following the same protocol described above 159 

for the other substrates. The measurements of the UV-Vis absorption spectra for the Ag 160 

nPlates coated on a stainless steel mesh and graphite substrate were performed in a 161 
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Jasco V-670 spectrometer equipped with a diffuse reflectance chamber. The 162 

measurements of the solid surfaces were allways obtained with white BaSO4 as 163 

reference for the background. 164 

2.4 Raman Spectroscopy for characterization of SERS substrates.  165 

An Alpha 300 Raman spectrometer of WITec was used with a confocal optical 166 

microscope (480nm as lateral spatial resolution, 2 cm-1 spectral resolution). Raman-167 

SERS spectra were collected in backscattering geometry. Excitation of the samples was 168 

carried out with lasers 532nm, 633nm and 785 nm at room temperature and applying a 169 

irradiance of 0.13 mW/µm2, 0.67 mW/µm2 and 0.88 mW/µm2, respectively. 170 

The analytical enhancement factor (AEF) [14], of the different substrates, was 171 

calculated according to equation (1). R6G was selected as probe molecule monitoring 172 

its C-C stretching mode displaced at 1512 cm-1.  173 

ܨܧܣ ൌ

ௌாோௌܫ
ௌாோௌܥ
ோ௔௠௔௡ܫ
ோ௔௠௔௡ܥ

 (1) 

Where CRaman and CSERS are the R6G concentration in the Raman measurements and 174 

SERS conditions, respectively. And IRaman and ISERS are the normalized intensity values 175 

(cts·mW-1·s-1) of the 1512 cm-1 band for normal Raman and SERS measurements, respectively.  176 

A droplet of 2µL aqueous solution R6G 10 µM was deposited on the SERS 177 

substrate and dried under ambient conditions. The R6G spectrum of the SERS substrate 178 

was measured in ten different points of the dried droplet and the intensity of the peak at 179 

1512 cm-1 was averaged. The normal Raman R6G spectrum was measured focusing the 180 

laser beam, 633 nm and 785 nm, in the aqueous solution R6G 1 mM. For the 532 nm 181 

laser line, the R6G droplet was dried before acquisition to avoid fluorescence effects. 182 

2.5 Experimental set-up for gas phase measurements 183 

SERS experiments for detecting DMMP in gas phase were conducted in a gas cell 184 

(2.7x10-2 cm3), where a gas stream, 10ml STP/min, containing 2.5 ppmV (14 mg/m3) of 185 

DMMP in nitrogen was fed continuously. DMMP vapours were generated using a 186 

calibrated permeation tube as described in our previous work [9]. Two Raman 187 

equipments were used: the benchtop equipment described above (Alpha 300 Raman 188 

spectrometer, WITec) and a portable Raman BWTEK i-Raman pro system (6 cm-1 189 
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spectral resolution). In the latter case, an excitation wavelength of 785nm with a power 190 

laser of 280 mW (0.035 mW/µm2), 1s of integration time and averaging 100 spectra 191 

were used for all the measurements. A schematic drawing together with a picture of the 192 

set-up with the portable Raman and the gas cell for measurements are presented in Fig. 193 

1. 194 

 195 

Fig. 1. a) Scheme of the experimental set-up used for detection of CWA vapours. b) Digital 196 

photograph of the real set-up including the portable Raman and the microfluidic gas chamber.  197 

2.6 DFT calculations 198 

Geometry optimizations and frequency analysis calculations for the 199 

organophosphorous compound and Ag atoms were undertaken using DFT methods. All 200 

the calculations were carried out using the Gaussian 09 [12] software package.  201 

The ground state geometries were optimized employing the density functional 202 

theory (DFT) [15,16] with the B3LYP hybrid functional (Becke’s gradient-corrected 203 

exchange correlation in conjunction with the Lee–Yang–Parr correlation functional with 204 

three parameters) and the 6-311++G(d,p) one-electron atomic basis sets. The adsorbed 205 

DMMP molecules and the Ag atoms were calculated with the 6-311++G(d,p) basis set 206 

and the LANL2DZ basis set considering a pseudo potential, respectively. 207 

3. Results and Discussion 208 

3.1 Characterization of SERS substrates 209 

The synthesis of the Ag nPlates was reproducible and in all the cases the UV-Vis 210 

spectrum (Fig. 2a) displayed the main broad band at around 700nm, assigned to the in-211 

plane dipole plasmon resonance. The other two LSPR bands at 460 nm and 331 nm are 212 
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assigned to the in-plane quadrupole and out-of-plane quadrupole plasmon resonances of 213 

triangular nanoplates, respectively [17]. We observed that during storage at room 214 

temperature and in the darkness, the peak intensity progressively decreased and blue 215 

shifted to 640 nm after 30 days (see Fig. 2 a). The Localize Surface Plasmon Resonance 216 

(LSPR) is very dependent on the shape and size of the nanoparticles, and this evolution 217 

is probably caused by surface atomic migration within the Ag nPlate that evolves 218 

towards more thermodynamically stable forms [18]. In our case this involves a 219 

progressive smoothening of the plates, since the round shape (111), is more stable than 220 

tips (110) in triangular shape. The analysis of TEM images for freshly made samples 221 

(Fig. 2b) shows a mixture of Ag nanoparticles and nanoplates resulting in an average 222 

yield of 85% to plates with an edge of 38 ±15 nm (N>500). 223 

 224 

Fig 2. a) UV Vis spectra of aqueous solution containing Ag nPlates: evolution with time during 225 

storage. Insert: digital photograph of Ag nanoplates solution. TEM image of synthesized Ag 226 

plates: b) freshly made and c) aged 30 days. Scale bar 100 nm.  227 

The SEM images presented in Fig. 3 show a homogeneous distribution of the Ag 228 

nPlates deposited on different surfaces. The analysis of the SEM images resulted in a 229 

similar surface coverage for the three substrates 42±5% (SiO2/Si chip), 41±5% 230 

(stainless steel mesh) and 44±3% (graphite foil) These values are higher than the 30% 231 

coverage that we previously found with Au NPs deposited on SiO2/Si surfaces [9]. This 232 

could be attributed to the planar structure of the Ag nanoplates, versus the spherical Au 233 

nanoparticles. It is also possible to observe densely packed aggregates of nanoplates, 234 
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resulting in close contact of their edges that will result in couplings between LSPRs of 235 

the metallic nanoplates [19]. The UV-Vis spectrum for the Ag nPlates deposited on the 236 

glass substrate broadens and the maximum is blue shifted compared to the nanoplate 237 

solution (see Fig. S3). This observation could be attributed to the differences in the 238 

dielectric permittivity either of the propagating media of the light, changing from water 239 

in the liquid solution to air in the case of the coated substrates [20] or differences in the 240 

differences in the properties of underlying substrates [21,22]. The broadening of the 241 

spectrum favors the coupling of the plasmon with the different lasers and specially with 242 

the 785nm due to the blue shifting observed. In the case of the non-transparent 243 

substrates stainless steel and graphite, the diffuse reflectance UV-Vis spectra (Figure 244 

S3) showed an increase in the absorption band of the coated substrates in the region 245 

above 700nm corresponding to the SPR of the silver plates. 246 

 247 

Fig. 3. SEM images of Ag nanoplates deposited on these SERS substrates: a) SiO2/Si; b) 248 

stainless steel mesh; c) graphite foil. Insert scale 50 nm. 249 

The three substrates were first characterized with R6G as a probe molecule with 250 

three different lasers 532, 633 and 785 nm. The as collected spectra, without any 251 

modifications (i.e. baseline corrections and smoothing) are presented in Fig. 4. It is 252 

immediately apparent that the highest intensity and lower signal to noise ratio for R6G 253 

it is observed for the 532 nm laser. The Raman intensity depends on the molecules 254 

under study and, when the analyte is a chromophore, close in energy to the frequency of 255 

the excitation, resonant Raman scattering (RRS) occurs. The RRS intensities can be 106 256 

larger than normal (off-resonance) Raman intensities [10], in this case we should called 257 

the technique SERRS instead of just SERS. When the molecule is adsorbed on the 258 

surface of the metal, the strong fluorescence of R6G, is quenched to a certain extent due 259 

to non-radiative interactions with the metal surface. When comparing the raw data of 260 

the spectra at 532 nm, for the three different substrates (Fig. 4a), the fluorescence of 261 
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R6G could observed as a broad band in the spectrum, centered at around 600 cm-1. The 262 

quenching of this signal is clearly more effective for the case of the graphite substrate. It 263 

has been reported that not only graphene, but also other carbonaceous materials could 264 

be considered as good SER(R)S substrates due to resonance effect and quenching 265 

fluorescence either via charge transfer or energy transfer [23]. In fact, for the SiO2/Si 266 

substrate, the one with the lowest conductivity (10-1 S/m) we observed the lowest EF 267 

and SERS gain (Fig. 4) for all the wavelengths tested.  268 

In the case of the excitation with the 633 nm laser, where the energy of the laser is 269 

still near to the excitation of the chromophore, we can still observe the R6G spectra 270 

although with lower intensities for the three supports (Fig. 4b). In the case of 785nm 271 

laser line, this wavelength matches with the plasmon resonance of the Ag nPlates (see 272 

Fig. 2 and Fig. S3), and the spectrum of the R6G molecule could only clearly 273 

distinguished for the graphite support (Fig. 4c), most probably due to charge transfer 274 

from the electrons of the plasmonic metal to the graphite. The easily available, low cost 275 

graphite material could an alternative support for the deposition of active SERS 276 

nanostructures being capable of making an additional contribution to the enhancement 277 

of the signal by different mechanisms, including fluorescence quenching, charge and 278 

energy transfer and also probably resonant effects of this support. This is in accordance 279 

with the observations presented by Sil et al. [23] for different carbonaceous materials 280 

(charcoal, graphite, MWCNT and GO). 281 

From averaging 10 different spots in each experimental condition (excitation 282 

wavelength and substrate), the analytical enhancement factor (AEF) was calculated 283 

(Fig. 4d). In the three studied substrates at the excitation wavelength of 785nm reports 284 

the highest analytical enhancement factor was obtained, even for the spectra on Ag 285 

nPlates@SiO2/Si and Ag nPlates@SS that is less defined. This result is due to the low 286 

signal of R6G in Raman conditions (IRaman) under excitation wavelength of 785 nm. Fig. 287 

S4 shows the Raman spectrum of R6G 1mM under the three excitations wavelength. 288 

   289 
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 290 

Fig. 4. Raman spectra of R6G 10-5M droplet dried on three different SERS substrates: Ag 291 

nPlates@SiO2/Si, Ag nPlates@SS and Ag nPlates@graphite for different excitation 292 

wavelengths: a) 532 nm: b) 633 nm and c) 785nm. d) Analytical EF (AEF) calculated for the 293 

three SERS substrates and for different excitation wavelengths (532, 633 and 785 nm). For 294 

better visualization in a) and c) spectra have been vertically translated.   295 

3.2 CWAs gas phase detection capabilities of the SERS substrates  296 

The SERS substrates were also tested for the measurement of the simulant nerve 297 

agent DMMP in gas phase in the benchtop equipment using the 785nm laser and 298 

graphite substrate, which resulted in the highest AEF. Furthermore in the case of using 299 

633nm and 785nm with SiO2/Si and stainless steel mesh substrates, it was not possible 300 

to get a spectrum. As soon as the laser was focused on the sample, the DMMP 301 

molecules were decomposed and a broad band in the region 1450 to 1700 cm-1, 302 

corresponding to amorphous carbon was observed. This phenomenon is attributed to the 303 

photo-thermal decomposition of the DMMP molecules adsorbed on the enhancing metal 304 

surface [24]. 305 
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The Raman spectrum for neat liquid DMMP and the SERS spectra on Ag 306 

nPlates@graphite for a concentration of 2.5ppmV DMMP in the gas phase are 307 

presented in Fig. 5a and Fig 5b for benchtop and portable Raman equipments, 308 

respectively. First of all, it is important to note that the fingerprint of the DMMP 309 

molecule is observed with both detectors. However the relative intensity of the 310 

characteristic bands differs from the acquired at normal Raman conditions. The Raman 311 

spectra recorded by the portable equipment on randomly selected spots are presented in 312 

Fig. 5b. Due to the lower resolution of the portable equipment, 6 cm-1, compared to 2 313 

cm-1 in the benchtop equipment, the bands are broader and could be also slightly 314 

shifted. This is clearly observed for the main band of the DMMP liquid measured in 315 

both equipments. It is important to note that the spectra were reproducible in all the 316 

randomly selected spots, showing three distinctive bands, with similar intensities and 317 

assigned to PO3, P-C stretching and PO2 bending (for more details see Table 1). This 318 

allowed a clear identification of the DMMP using the hand held instruments, for a gas 319 

phase concentration of 2.5 ppmV.   320 

Fig. 6a shows the molecular structures of the two investigated DMMP-Ag 321 

complexes. The most stable Ag-DMMP geometry, among studied, corresponds with 322 

DMMP molecule adsorbed on 6 Ag atoms (in blue) though P=O group. A less-stable 323 

Ag-DMMP* complex resulting from DMMP approximation of the phosphate group that 324 

looks like an umbrella, (PO3)umbrella is also plotted.  325 

Fig. 6b compiles the simulated Raman spectra of DMMP molecule and DMMP-Ag 326 

complexes. Comparing with the most significant bands from experimental SERS spectra 327 

(see Fig. 5 and Table 1), simulated Raman spectra show similar bands, although 328 

changes in both relative intensities and the position of the bands are clearly noticed. 329 

Bands at 504 and 715 cm-1 assigned to (PO3)umbrella bending and to (P–CH3) stretching + 330 

(P–O) stretching + (P–O–CH3) bending, respectively, are slightly displaced to around 331 

483 and 672 cm-1 (for more details see Table 1). The ratio between these two simulated 332 

bands (Intensity at 672 cm-1 / Intensity at 483 cm-1) for DMMP molecule and Ag-333 

DMMP (P=O) complex is the same. However, the simulated spectrum for Ag-DMMP* 334 

(PO3) shows an increment in this ratio, similar to the one observed experimentally. This 335 

could provide some insight on the adsorption dynamics of DMMP molecules on Ag 336 

plates under experimental conditions. Although less energetically favored, this 337 

geometry is contributing to the dynamic SERS response. However, it should be noticed 338 
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that for simplicity the simulation considers one DMMP molecule and 6 silver atoms 339 

while experimentally, a molecule of DMMP may interact not only with several silver 340 

atoms but also with other DMMP molecules, increasing the possibilities of (PO3)umbrella 341 

– Ag interactions.  342 

 343 

Fig 5. Raman spectra of DMMP liquid and DMMP in vapour phase (2.5 ppmV, 14 mg/m3) 344 

measured on Ag nplates@graphite using: a) the benchtop equipment and b) the portable 345 

equipment. For the portable equipment five different spectra for vapours detection are shown, 346 

measured at different random spots on the support, together with the spectrum of Ag 347 

nPlates@graphite. (a-b) Excitation wavelength 785 nm; grey shadows indicate bands assigned 348 

to DMMP (more information in Table 1). 349 

Table 1. Temptative assignments of the experimental Raman and SERS bands for DMMP pure 350 

liquid and vapor on Ag nPlates@graphite, together with calculated values by DFT simulations. 351 

Band 

Raman Shift of DMMP vibrational modes (cm-1) 
Temptative 
assignment 

[25] 
Pure liquid 

Experimental 

Calculated 
DMMP in 
vacuum 

DMMP Vapors on  
Ag nPlates@graphite: 

Calculated 
Ag- DMMP 

(PO3) 
Benchtop 
equipment

Portable 
equipment 

a 504 483 515 539 469 Bending PO3 
b 715 672 710 712 663 Stretching PC 
c 794 756 814 797 

(broad) 
756 (weak) Bending PO2 

d 825 791 845 785 Bending PO2 
  352 
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 353 

Fig. 6. a) Optimized geometries for the DMMP in vacuum (i) and absorbed on six Ag atoms 354 

according to the following possibilities: (ii) anchoring through the three oxygen atoms 355 

of DMMP (PO3) and (iii) interaction via P=O group. b) Calculated spectra of DMMP 356 

(i) and DMMP-Ag complexes considering de adsorption of DMMP on three silver 357 

atoms through: (ii) the three oxygens (PO3) and (iii) P=O group. Grey shadows 358 

indicate bands assigned to DMMP (more information in Table 1). 359 

To evaluate the reproducibility of the Ag nplates@graphite fabrication method, 360 

three different Ag nplates@graphite substrates were prepared, and the SERS spectra 361 

(2.5ppmV DMMP) were collected randomly in ten different spots. Figure 7a shows the 362 

average peak intensity at 712 cm-1 of DMMP, showing an average relative standard 363 

deviation (RSD) for the SERS intensity of 5%. This value indicates the good 364 

reproducibility of fabrication method and also the detection capabilities of Ag 365 

nPlates@graphite substrates.  366 

Finally, we further evaluate the concept of SERS sensor for rapid CWAs detection 367 

in gas phase. Figure 7b shows the intensity evolution of DMMP, monitoring peak 368 

displayed at 712 cm-1, as a function of exposure time to the vapours of this gas. It is 369 

important to note that the response time t50% defined as the time to reach 50% or 90% of 370 

the final Raman intensity, is t50% =137s and t90% is only 261s. This value is outstanding 371 

compared to the early work for detection of DMMP in gas phase that needed 40 minutes 372 

exposure to acquire a meaningful spectrum with the benchtop equipment available at 373 

that time. This time is slightly higher than the response time that we found in our 374 

previous study with benchtop equipment [9]. It is also important to note that due to the 375 

lower resolution of the handheld equipment, the acquisition time is higher (100s) 376 

compared to (1s) in benchtop equipment. Although it is difficult to compare detection 377 

values for different conditions, molecules and equipment’s, the relevance of the 378 

obtained results it is presented in Table 2 with the available literature data for gas phase 379 
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detection at concentrations below 10 ppm. These results demonstrate the high quality of 380 

Ag nplates@graphite as SERS sensors of gas molecules, combined with handheld 381 

equipment for real applications on field.  382 

 383 

Fig. 7. a) The reproducibility of the Ag nplates@graphite: average intensity of the peak at 712 384 

cm-1of DMMP (2.5 ppmV) of three different Ag nplates@graphite. The error bars indicate 385 

standard deviation. b) Intensity value of the peak at 712 cm-1 of DMMP as a function of 386 

exposure time to 2.5 ppmV. Both experiments were carried out with the portable Raman 387 

equipment.     388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 
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Table 2. Literature review for gas phase detection of different molecules, at concentrations 396 

below 10ppm, with SERS as detection technology.  397 

Material Target molecule 
Raman 
equipment

Limit of 
detection 

Detection 
time 

Ref. 

Ag nPlates@graphite DMMP Portable 2.5 ppmV 137 s 
This 
work 

Cool Ag nanorods Benzene Portable 10 ppmV 2 min [7] 

Ag@silica 
nanospheres 

Benzene thiol 
(BT) 

Portable 8 ppmV 50-100 s [2] 

Au-Ag nanowires NO2 Portable 100 ppbV 3 min [8] 

Agnanorods@HfO2 2-naphtalenethiol Portable 20 ppbV 40 min [3] 

Gold nanopillars 
Hydrogen 
cyanine  

Benchtop 5 ppmV 15 min [5] 

AuNP@citrate DMMP Benchtop 625 ppbV 120s [9] 

Agnanocubes@ZIF8 2-nitrotoluene Benchtop 50 ppbV 15 min [6] 

 398 

4. Conclusions 399 

The effect of different substrates (SiO2/Si, stainless steel mesh and graphite foil), where 400 

plasmonic silver nanoplates were deposited, on the SERS signal, with three lasers 401 

(=532, 633 and 785nm) has been evaluated with two molecules R6G in liquid and 402 

DMMP, 2.5ppmV in gas phase. It has been demonstrated that graphite is the best choice 403 

because of efficient quenching of the fluorescent signal (=532 and 633nm), via charge 404 

transfer or energy transfer. This energy transfer is also important when working with the 405 

785nm laser line, with its wavelength matching the plasmon resonance of the silver 406 

nanoplates. In this case a clear spectrum of R6G could be only distinguished on graphite 407 

support. When working with DMMP, it was only possible to use the 785nm laser in 408 

combination with graphite, otherwise the high energy concentrated on the sample 409 

during measurement decomposed the adsorbed DMMP molecules. The interactions of 410 

the DMMP molecule with the silver surface modify the intensities and positions of the 411 

vibrational Raman bands. DFT simulations suggest such variations by the formation of 412 

Ag-DMMP complexes via the PO3 umbrella. The SERS measurements carried out in 413 

different prepared samples with the handheld Raman equipment for 2.5 ppmV in gas 414 

phase showed a fast response and reproducible fingerprint of the molecule and relative 415 
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standard deviation of SERS intensity signal of 5%, paving the way for on field 416 

applications. 417 
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Figure S1. 536 

 537 

 538 

 539 

Figure S1. SEM image of the stainless steel mesh used as SERS substrate support. 540 

 541 
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Figure S2. 545 

 546 

 547 

 548 

Figure S2. Digital photographs of the three different supports used as SERS substrate: 549 

a) SiO2/Si chip; b) stainless steel mesh and c) graphite foil. Rule in centimeters (cm).  550 

 551 

 552 
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 554 

Figure S3. 555 

 556 

 557 

Figure S3. UV-Vis spectra of deposited Ag nanoplates on (a) glass; (b) Ag nPlates@SS 558 

Mesh and (c) graphite. The spectra of mesh and graphite before incorporating Ag 559 

nPlates are also plotted.  560 

  561 
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Figure S4. 562 

 563 

Figure S4. Raman spectra of Rhodamine 6G (R6G, 1mM) measured under the three different 564 

excitation wavelengths: a) 532nm; b) 633nm and c) 785nm. Grey shadow indicates vibrational 565 

mode selected for AEF calculations: PC stretching around 1512 cm-1.  566 

 567 


