000095474 001__ 95474
000095474 005__ 20230914083250.0
000095474 0247_ $$2doi$$a10.1016/j.egyr.2020.08.013
000095474 0248_ $$2sideral$$a119528
000095474 037__ $$aART-2020-119528
000095474 041__ $$aeng
000095474 100__ $$aSharifi, S.
000095474 245__ $$aComprehensive thermodynamic and operational optimization of a solar-assisted LiBr/water absorption refrigeration system
000095474 260__ $$c2020
000095474 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095474 5203_ $$aAbsorption cooling systems have been investigated for many years due to their ability to use low-grade heat instead of electricity as the energy source. The aim of this work is to advance the performance of a single-effect Lithium bromide/water absorption cooling system. Taking the generator and evaporator temperatures as variables, the system is optimized to maximize exergetic and energetic efficiencies at different operational conditions using a multi-objective–multi-variable Genetic Algorithm. The Group Method of Data Handling neural network approach is adopted to derive correlations between the design variables and operational parameters. Finally, the system is coupled to evacuated tube solar collectors and compared to a similar system. The results reflect a maximum improvement in energetic and exergetic efficiencies of about 9.1% and 3.0%, respectively. This translates into savings of 187 dollars for every square meter of solar collector at present time. This improvement is achieved by decreasing the mean temperature of the generator by 6.2 °C and increasing the mean temperature of the evaporator by 1.6 °C. In the case of applying low-grade heat such as solar energy, it brings about both an improvement in the thermodynamic performances and a reduction in the generator temperature.
000095474 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000095474 590__ $$a6.87$$b2020
000095474 591__ $$aENERGY & FUELS$$b25 / 114 = 0.219$$c2020$$dQ1$$eT1
000095474 592__ $$a1.199$$b2020
000095474 593__ $$aEnergy (miscellaneous)$$c2020$$dQ1
000095474 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095474 700__ $$aNozad Heravi, F.
000095474 700__ $$aShirmohammadi, R.
000095474 700__ $$aGhasempour, R.
000095474 700__ $$aPetrakopoulou, F.
000095474 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, L.M.$$uUniversidad de Zaragoza
000095474 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000095474 773__ $$g6 (2020), 2309-2323$$pEnergy Rep.$$tEnergy Reports$$x2352-4847
000095474 8564_ $$s3308533$$uhttps://zaguan.unizar.es/record/95474/files/texto_completo.pdf$$yVersión publicada
000095474 8564_ $$s561468$$uhttps://zaguan.unizar.es/record/95474/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095474 909CO $$ooai:zaguan.unizar.es:95474$$particulos$$pdriver
000095474 951__ $$a2023-09-13-10:50:56
000095474 980__ $$aARTICLE