000095513 001__ 95513
000095513 005__ 20250131161521.0
000095513 0247_ $$2doi$$a10.3389/fbioe.2020.00857
000095513 0248_ $$2sideral$$a119588
000095513 037__ $$aART-2020-119588
000095513 041__ $$aeng
000095513 100__ $$aAguilar-Machado, Diederich
000095513 245__ $$aEnzymatic Processes Triggered by PEF for Astaxanthin Extraction From Xanthophyllomyces dendrorhous
000095513 260__ $$c2020
000095513 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095513 5203_ $$aThe aim of this study was to evaluate the potential of pulsed electric fields (PEF) to improve the extraction of the lipid-soluble astaxanthin from fresh biomass of a wild-type (CECT 11028) and mutant (ATCC 74219) Xanthophyllomyces dendrorhous strain using ethanol as solvent. Inactivation and propidium uptake studies revealed that inactivation is a good index for estimated the proportion of irreversible permeabilized cells when inactivation is higher than 70% in the two strains. Ethanol was ineffective for extracting carotenoids from the PEF-treated cells (20 kV/cm, 135 µs) of the two strains. However, after aqueous incubation of PEF-treated X. dendrorhous ATCC 74219 cells for 12 h, up to 2.4 ± 0.05 mg/g dried weight (d.w.) of carotenoids were extracted in ethanol. From total carotenoid extracted, around 84% corresponded to all-trans astaxanthin. The detection and quantification of esterase activity in the supernatant and the relationship between the percentage of esterase activity quantified and the amount of carotenoids extracted indicate that the extraction of astaxanthin was mediated by enzymatic esterase activity triggered by PEF during incubation. On the other hand, the formation of a large lipid globule into the cytoplasm of PEF-treated X. dendrorhous CECT 11028 cells during aqueous incubation prevented carotenoid extraction. The process developed in this investigation represents a more sustainable and greener method that those previously used for extracting astaxanthin from yeast.
000095513 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095513 590__ $$a5.89$$b2020
000095513 591__ $$aMULTIDISCIPLINARY SCIENCES$$b11 / 71 = 0.155$$c2020$$dQ1$$eT1
000095513 592__ $$a1.081$$b2020
000095513 593__ $$aBioengineering$$c2020$$dQ1
000095513 593__ $$aHistology$$c2020$$dQ1
000095513 593__ $$aBiotechnology$$c2020$$dQ1
000095513 593__ $$aBiomedical Engineering$$c2020$$dQ1
000095513 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095513 700__ $$0(orcid)0000-0003-4744-8649$$aDelso, Carlota$$uUniversidad de Zaragoza
000095513 700__ $$0(orcid)0000-0002-9337-417X$$aMartinez, Juan Manuel
000095513 700__ $$aMorales-Oyervides, Lourdes
000095513 700__ $$aMontañez, Julio
000095513 700__ $$0(orcid)0000-0003-3957-9091$$aRaso, Javier$$uUniversidad de Zaragoza
000095513 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000095513 773__ $$g8 (2020), 857  1-12$$pFront. Bioeng. Biotechnol.$$tFrontiers in Bioengineering and Biotechnology$$x2296-4185
000095513 8564_ $$s4442647$$uhttps://zaguan.unizar.es/record/95513/files/texto_completo.pdf$$yVersión publicada
000095513 8564_ $$s487549$$uhttps://zaguan.unizar.es/record/95513/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095513 909CO $$ooai:zaguan.unizar.es:95513$$particulos$$pdriver
000095513 951__ $$a2025-01-31-16:13:23
000095513 980__ $$aARTICLE