000095518 001__ 95518 000095518 005__ 20220426091143.0 000095518 0247_ $$2doi$$a10.1063/5.0009758 000095518 0248_ $$2sideral$$a119202 000095518 037__ $$aART-2020-119202 000095518 041__ $$aeng 000095518 100__ $$aXia, C. 000095518 245__ $$aEffect of memory, intolerance, and second-order reputation on cooperation 000095518 260__ $$c2020 000095518 5060_ $$aAccess copy available to the general public$$fUnrestricted 000095518 5203_ $$aThe understanding of cooperative behavior in social systems has been the subject of intense research over the past few decades. In this regard, the theoretical models used to explain cooperation in human societies have been complemented with a growing interest in experimental studies to validate the proposed mechanisms. In this work, we rely on previous experimental findings to build a theoretical model based on two cooperation driving mechanisms: second-order reputation and memory. Specifically, taking the donation game as a starting point, the agents are distributed among three strategies, namely, unconditional cooperators, unconditional defectors, and discriminators, where the latter follow a second-order assessment rule: shunning, stern judging, image scoring, or simple standing. A discriminator will cooperate if the evaluation of the recipient''s last actions contained in his memory is above a threshold of (in)tolerance. In addition to the dynamics inherent to the game, another imitation dynamics, involving much longer times (generations), is introduced. The model is approached through a mean-field approximation that predicts the macroscopic behavior observed in Monte Carlo simulations. We found that, while in most second-order assessment rules, intolerance hinders cooperation, it has the opposite (positive) effect under the simple standing rule. Furthermore, we show that, when considering memory, the stern judging rule shows the lowest values of cooperation, while stricter rules show higher cooperation levels. 000095518 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E36-17R$$9info:eu-repo/grantAgreement/ES/DGA/UZ-I-2015-022-PIP$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/FIS2017-87519-P 000095518 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000095518 590__ $$a3.642$$b2020 000095518 591__ $$aPHYSICS, MATHEMATICAL$$b4 / 55 = 0.073$$c2020$$dQ1$$eT1 000095518 591__ $$aMATHEMATICS, APPLIED$$b13 / 265 = 0.049$$c2020$$dQ1$$eT1 000095518 592__ $$a0.97$$b2020 000095518 593__ $$aApplied Mathematics$$c2020$$dQ1 000095518 593__ $$aMathematical Physics$$c2020$$dQ1 000095518 593__ $$aStatistical and Nonlinear Physics$$c2020$$dQ1 000095518 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020$$dQ1 000095518 593__ $$aMedicine (miscellaneous)$$c2020$$dQ1 000095518 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000095518 700__ $$0(orcid)0000-0002-9769-8796$$aGracia-Lázaro, Carlos$$uUniversidad de Zaragoza 000095518 700__ $$0(orcid)0000-0002-0895-1893$$aMoreno, Yamir$$uUniversidad de Zaragoza 000095518 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica 000095518 773__ $$g30, 6 (2020), 063122$$pChaos$$tCHAOS$$x1054-1500 000095518 8564_ $$s4763060$$uhttps://zaguan.unizar.es/record/95518/files/texto_completo.pdf$$yVersión publicada 000095518 8564_ $$s43809$$uhttps://zaguan.unizar.es/record/95518/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000095518 909CO $$ooai:zaguan.unizar.es:95518$$particulos$$pdriver 000095518 951__ $$a2022-04-26-08:58:46 000095518 980__ $$aARTICLE