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Abstract 

Focused Electron Beam Induced Deposition (FEBID) is a leading nanolithography technique in 

terms of resolution and the capability for three-dimensional (3D) growth of functional 

nanostructures. However, FEBID still presents some limitations with respect to the precise control 

of the dimensions of the grown nano-objects as well as its use on insulating substrates. In the 

present work, we overcome both limitations by employing electrically-biased metal structures 

patterned on the surface of insulating substrates. Such patterned metal structures serve for charge 

dissipation and also allow the application of spatially-dependent electric fields. We demonstrate 

that such electric fields can dramatically change the dimensions of the growing 3D nanostructures 
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by acting on the primary electron beam and the generated secondary electrons. In the performed 

experiments, the diameter of Pt-C and W-C vertical nanowires grown on quartz, MgO and 

amorphous SiO2 is tuned by application of moderate voltages (up to 200 V) on the patterned metal 

microstructures during growth, achieving diameters as small as 50 nm. We identify two 

competing effects arising from the generated electric fields: a slight change in the primary beam 

focus point and a strong action on the secondary electrons. Beam defocus is exploited to achieve 

the in-situ modulation of the diameter of 3D FEBID structures during growth. 

 

Keywords: focused electron beam induced deposition, three-dimensional nanostructures, 

nanowires, nanolithography, electrically-biased growth. 

 

1. Introduction 

 

One of the prominent properties searched by any lithography technique is the capability to be 

used on an arbitrary substrate. In the case of lithography techniques based on charged particles, 

such as electron beam lithography (EBL) and focused ion beam (FIB) lithography, a limiting 

factor is the difficulty of working on insulating substrates [1][2]. The building of electric fields in 

the vicinity of an insulating substrate (due to charging effects) produces unwanted beam 

deflections that ruin the resolution or even impede their practical application [3][4][5]. In the case 

of EBL, the problem can be circumvented by working under critical-energy conditions [6], using 

variable-pressure EBL [7], or including additional steps in the process, like the evaporation of a 

metal layer on top of the resist that is subsequently etched away [8]. In the case of FIB, it has been 

found that using electron irradiation simultaneously is helpful towards charge minimization [9]. 

Focused Electron Beam Induced Deposition (FEBID) is another charged-particle nanolithography 

technique suffering from the same problem when applied on insulating substrates. FEBID is 
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capable of nanometer-scale resolution for the growth of two-dimensional [10] and three-

dimensional structures [11], and relies on the decomposition of a precursor gas adsorbed on a 

substrate through the application of a finely-focused electron beam [12][13][14][15]. The FEBID 

technique is applied for circuit edit and mask repair [16], creation of electrical contacts [17], 

growth of magnetic nanowires [18][19], fabrication of plasmonic nanostructures [20][21], 

photodetection [22], gas sensing [23], etc., thus being an important lithography technique in 

Nanotechnology [24] and Materials Science [25]. In general, these applications are developed 

using substrates allowing the charge dissipation and the avoidance of detrimental electric 

potentials in the proximity of the substrate’s surface. In fact, we have recently shown that the use 

of an insulating substrate (such as polycarbonate) hampers the growth of high-resolution 

nanostructures by FEBID unless pads for charge dissipation exist on the substrate, close to the 

area of growth [26]. In the present work, we introduce a general strategy to overcome the charging 

problem in FEBID, consisting on the use of patterned metal structures fabricated by optical 

lithography or by any other lithography technique. Moreover, if the patterned metal structure on 

an insulating substrate is electrically biased, large local electric fields can be created on the 

substrate’s surface, producing a tremendous impact on the trajectories of the primary electrons 

and the generated secondary electrons. We will show that this new degree of freedom in FEBID 

is useful to tune the dimensions of 3D nanostructures grown by this technique. Previous proof-

of-concept work has shown that an electric field produced by a continuous metallic substrate can 

modify the dimensions of FEBID deposits grown on its surface [27]. Instead, our work focuses 

on patterned metallic structures with micrometric holes, which allows the application of tunable 

high electric fields inside the holes and the FEBID growth on insulating substrates. 

In our study, we identify two competing effects arising from the generated electric fields: a slight 

change in the primary beam focus point and a strong action on the secondary electrons. These 

findings are first exploited to grow out-of-plane FEBID nanowires on insulating substrates with 

diameter down to 50 nm. Secondly, the growth of 3D FEBID structures with variable diameter is 

achieved by in-situ tuning of the beam focus. Although the dimension broadening effect of beam 
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defocus was reported in FEBID [28], in-situ control of this parameter to obtain 3D structures with 

tailored varying diameters represents a new avenue in the use of FEBID for the growth of 

functional magnetic, superconducting or photonic materials. 

 

2. Methods 

 

The Pt-C and W-C nanostructures were grown in the commercial Helios Nanolab 650 Dual Beam 

system equipped with a Schottky field emission gun (S-FEG) electron column and a gas injector 

system (GIS). The deposits were fabricated selecting an electron beam voltage of 30 kV, an 

electron beam current of 25 pA and a chamber growth pressure of 1 × 10-5 mbar (base pressure of 

2 × 10-6 mbar). The growth pattern was a single circle, continuously scanned by the electron beam 

for 211 seconds and 60 seconds for Pt-C vertical nanowires, and for 175 seconds for W-C ones. 

FEBID experiments have been performed using various insulating substrates (MgO, quartz and 

amorphous SiO2) in order to verify that the observed behaviour is general for non-conductive  

systems and cannot be attributed to one particular type of substrate. The tested precursors are 

(CH3)3Pt(CpCH3) for Pt-C deposition [29] and W(CO)6 for W-C deposition [30]. As expected, 

bare insulating MgO and quartz substrates did not allow the growth of Pt-C or W-C vertical 

nanowires, due to the presence of large and uncontrolled electric fields on the substrate surface 

that affect dramatically the trajectory of the incoming electron beam and the secondary electrons 

generated at the substrate. In the case of growth of vertical nanowires by FEBID, charging effects 

are expected to be very important because the electron irradiation point is fixed, and most of the 

charges accumulate in the substrate, below and in the proximity of the nanowire’s standing point. 

As shown in Figure S1 in the Supplementary File, it was found that no nanowire could be grown 

on MgO and quartz substrates, in contrast to the use of 300 nm-thick amorphous SiO2 substrate 

on Si, where charge dissipation is possible via the Si substrate. 

Our strategy to avoid charging effects during the growth of vertical nanowires by FEBID is 
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sketched in Figure 1. Optical lithography has been used to pattern a periodic array of holes in a 

Cu thin layer grown on top of the insulating substrate (other lithography techniques and/or metal 

could have been used). The 500 nm Cu film is perforated with circular holes of diameter ~4 µm. 

The importance of the shape and dimension of the holes will be later discussed.  

 

Figure 1. Sketch illustrating the FEBID process carried out on an insulating substrate with an 

electrically-biased patterned metal structure in order to tune the dimensions of three-dimensional 

nanostructures by application of local electric fields. 
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3. Results and discussion 

 

The growth of the Pt-C nanowires has been performed following the method described in section 

2. A continuous electron irradiation on the point of interest, whilst the precursor is flowing, gives 

rise to the growth of out-of-plane nanowires. The current understanding of the growth process 

implies that the growth rate primarily depends on the electron current, the efficiency of the 

primary and generated secondary electrons for precursor dissociation, and on the precursor 

availability, which depends on the direct precursor flux arriving to the place of growth as well as 

on the precursor diffusion from the substrate. During the growth process, electric fields can a 

priori be relevant in two ways: the build-up of uncontrolled electric fields due to charging effects 

can hamper the nanowire’s growth and the use of controlled electric fields can modify the 

trajectories of the primary and secondary electrons, enhancing the efficiency of the precursor 

dissociation. The use of the perforated Cu layer has been found to be efficient to evacuate the 

charge produced during the nanowires’ growth, as particularly shown in Figure 2. In this figure, 

it can be noted that there is no difference between performing the growth on the copper layer itself 

and on an insulating MgO substrate, in the centre of a hole perforated on the Cu layer. In both 

cases, a Pt-C nanowire grows with diameter of 70 nm and similar length. This means that charging 

effects are avoided with this strategy.  
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Figure 2. SEM micrographs obtained after 211 s of growth of Pt-C vertical nanowires on an 

insulating MgO substrate (red frame) at the centre of a 4-µm-diameter hole of the perforated 

copper layer and onto the copper layer (green frame). The nanowires have been artificially 

coloured (the original images can be seen in the Supplementary File, Figure S2). 

 

Additionally, Figure 1 illustrates the possibility of getting benefit from an additional degree of 

freedom: the application of an electric potential to the perforated Cu layer. For that, an external 

voltage source is used to provide a voltage difference between the Cu layer and the electrical 

ground of the system, which coincides with that of the sample holder. A cable connects the 

external source to the sample holder through a chamber feedthrough and a microwire is bonded 
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between the sample holder and the Cu perforated layer. This source allows applying DC voltages 

from -200 V to +200 V. As a consequence, large variations in the local electric fields are produced 

inside and around the holes of the perforated Cu layer, as shown in Figure 3.  

In order to quantitatively describe the electric field produced by the perforated metallic structure, 

here we calculate the total electric field in the vicinity of a circular hole, using the superposition 

principle. The total electric field is calculated as the field due to an infinite sheet (without the 

hole) minus the field due to a disk of the same size as the circular hole, considering that both, 

sheet and disk, carry the same surface charge density, σ, generated through the application of an 

electric potential. The radial, Er, disk, and axial, Ez, disk, field as a function of the distance from the 

symmetry axis of an uniformly-charged circular disk of radius R can be calculated using the 

following expressions [31]: 
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 . Figure 3 shows the resulting numerical calculations of the electric field 

in the vicinity of a circular hole of 2 microns in radius in two different planes of the patterned 

metallic structure. The vector map of the electric field inside the hole, xy plane in Figure 1, is 

displayed in Figure 3(a), which illustrates that the application of a negative (positive) DC voltage 

in such structure produces large and highly directional electric fields pointing towards (or from) 

the centre of the hole. In the centre of the hole, the electric field vanishes. The total electric field 

in the plane perpendicular to the hole, xz plane in Figure 1, corresponds to the vector map shown 

in Figure 3(b). The electric field is very small along the symmetry axis of the circular hole and 
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grows rapidly as the distance from this axis increases. 

 

Figure 3. Numerical calculations of the electric field in the vicinity of a circular hole of 2 microns 

in radius in two different planes of the patterned metallic structure, produced by the application 

of a negative voltage to the chip: (a) Electric field in the hole plane, xy plane in Figure 1, at a 

distance z = 1 micron and (b) electric field in the plane perpendicular to the hole, xz plane in 

Figure 1, containing the vertical symmetry axis of the hole. Electric field values are expressed in 

units of σ / (2 ε0). 

 

It has been observed that the growth of the nanowires under different voltage values applied to 

the perforated metal layer, whilst keeping constant the other growth conditions, affects 

dramatically the dimensions of the nanowires, as shown in Figure 4. In these experiments all the 
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Pt-C nanowires are grown at the centre of the 4-µm-diameter holes of a perforated Cu film with 

amorphous SiO2 substrate. Experiments were carried out by growing nanowires under various 

voltages in the -200 V to +200 V range. The deposition time has been chosen to grow nanowires 

with maximum length of 3 µm, given that longer nanowires can suffer from precursor depletion 

and beam drift, as well as variations in the electric field along their height, as shown in Figure 3. 

As shown in Figure 4(a), the nanowire’s diameter is found to change from a large value around 

100 nm under -200 V to a minimum value of 50 nm at -25 V, increasing again to 90 nm under 

+200 V. This figure illustrates the tuning of the value of the nanowire’s diameter in a factor of 2 

by application of the local electric fields created. The aspect ratio of the nanowire, defined as the 

quotient between the length (L) and the diameter (f), is also represented in Figure 4(a). It shows 

a maximum value around -25 V, in good correspondence with the minimum value of the diameter 

at such voltage, and indicates that the aspect ratio increases a factor of 4 working under such 

voltage in comparison to -200 V. SEM micrographs of three Pt-C nanowires grown respectively 

under voltages of -100 V, -35 V, and +100 V are shown in Figure 4(b), 4(c) and 4(d). In the first 

case, under -100 V, the diameter at 1 µm height is 73 nm, whereas it decreases to 50 nm under -

35 V and increases again to 83 nm under +100 V. Moreover, the nanowire’s length is respectively 

at those voltages 2.6 µm (-100 V), 2.9 µm (-35 V) and 2.2 µm (+100 V), corresponding to linear 

growth rates of 43.3 nm/s, 48.3 nm/s, and 36.7 nm/s, respectively. Thus, the results are conclusive 

with respect to an optimized nanowire growth in terms of resolution under negative voltages 

around -25 V.  
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Figure 4. For Pt-C nanowires grown for 60 s on amorphous SiO2 substrate, (a) dependence of 

their diameter and the ratio between their length and diameter with the voltage applied to the 

perforated metallic structure. Each data point represents the average value after measurements of 

several nanowires grown under the same conditions and at various locations in each nanowire. 

The lines are visual guides. SEM micrographs of selected nanowires grown under an external 

voltage of (b) -100 V, (c) -35 V, (d) +100 V. The nanowires have been artificially coloured (the 

original images can be seen in the Supplementary File, Figure S3) and correspond to the points 

marked with green arrows on (a). 
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Similar experiments have been carried out to investigate the influence of local electric fields on 

the dimensions of W-C nanowires grown by FEBID using a perforated Cu film on the same 

amorphous SiO2 substrate by means of the W(CO)6 precursor. As shown in the Supplementary 

File (Figure S4), the minimum nanowire’s diameter (65 nm) occurs in the voltage range -25 V to 

-50 V and the aspect ratio is maximized in the same voltage range. In this case, the degree of 

tunability of the diameter and the aspect ratio, compared to the Pt-C case, is lower but substantial 

(a factor of 1.3 and 1.7 respectively). The set of results obtained for Pt-C and W-C nanowires are 

thus conclusive to establish spatially-dependent electric fields as a new degree of freedom to tune 

the dimensions of nanowires grown by the FEBID technique. The origin of the effect will be 

discussed hereafter in the light of the physical phenomena involved in the FEBID growth and the 

electric field distribution around the perforated metallic structure (calculations shown in Figure 

3).  

Regarding the physical phenomena involved in the growth of vertical structures by FEBID, 

Fowlkes et al. noted that the most significant contribution to the dissociation of the precursor 

molecules arises from electrons in the primary beam (PE) and their generated secondary electrons 

(SE-I), with lower relevance from backscattered electrons (BSE) and their generated secondary 

electrons (SE-II) [32]. Later, Smith et al. stressed the important role played by forward-scattered 

electrons (FSE) in the growth of pillars as well as the dependence of the effect with the primary 

beam energy and the resulting growth regime [33]. Moreover, Arnold et al. showed that SE-II 

electrons are responsible for the halo deposit around the main deposit in two-dimensional 

deposits, affecting the final deposit resolution [34]. A similar study by Schmied et al., but for 

three-dimensional deposits, has shown various competing effects, with significant broadening of 

the deposit width under intermediate or low electron beam energy [35]. The FEBID process is 

thus complex and depends on many parameters, but in general the precursor dissociation process 

is determined by high-energy electrons (mainly arising from PE and FSE) as well as by low-

energy electrons (mainly SE-I but also SE-II). As a consequence, our experimental finding of a 

large effect of local electric fields on the dimensions of FEBID deposits should be correlated with 
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the effect produced by such electric fields on the trajectories of these electrons responsible for the 

precursor dissociation. In the following, we provide a qualitative explanation of the observed 

effect, which is sketched in Figure 5. 

We put forward that the perforated Cu film is in fact acting as a small electrostatic lens. 

Electrostatic lenses can be found in electron/ion microscopes [36] and other devices based on 

charged particles [37] with the aim of focusing or defocusing a charged beam. In our case, as the 

primary electron beam approaches the perforated charged film, it suffers a deviation towards the 

optical axis (negative voltage) or off the optical axis (positive voltage), as sketched in Figure 5. 

In both cases, this effectively leads to an electron beam defocus. As reported by Plank et al. [28], 

the effect of defocusing the primary electron beam leads in FEBID to an increase of the 

nanowire’s diameter. On the other hand, the high electric field will strongly modify the trajectory 

of the secondary electrons [27], which are also crucial for the FEBID growth, as discussed above. 

Due to the low energy of SE-I and SE-II electrons (< 50 eV range) [38], they will undergo strong 

attraction or repulsion towards the optical axis for negative or positive voltage respectively. In 

fact, similar voltage values in the range of a few tens or hundreds of volts are actually used in 

electron microscopes to optimize the imaging contrast by secondary electrons, where biasing 

voltage can be applied to the sample itself [39][40], or to the electron detector [41][42]. In our 

application, the use of a negative voltage will push SE-I and SE-II electrons to the hole centre of 

the patterned metallic film, contributing to decrease the nanowire’s diameter. Summarizing, when 

a negative voltage is applied to the perforated Cu film, two effects will compete: nanowire 

narrowing due to the effect of the electric field on the SE-I and SE-II electrons and nanowire 

broadening due to the defocusing effect of the electric field on the PE electrons. This is in 

agreement with the experimental results, shown in Figure 4 and Figure S4. Starting from 0 V, the 

nanowire diameter first decreases down to an applied voltage around -30 V, to increase again 

down to -200 V. As the sketch in Figure 5 illustrates, this is the expected evolution given the rapid 

focusing of the secondary electrons towards the hole centre at low voltages and the smoother 

increase of the primary beam diameter with the voltage. At positive voltage, the diameter is 
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always increasing with voltage given that both effects contribute to the nanowire broadening. 

 

Figure 5. Sketch illustrating the relevant phenomena involved in the growth of pillars by FEBID 

when an external positive or negative voltage is applied to a patterned metallic layer on top of the 

substrate. On the one hand, the primary beam becomes slightly defocused by application of 

positive or negative electric fields, giving rise to the nanowire broadening. On the other hand, the 

secondary electrons produced in the substrate and the growing structure will be strongly attracted 

to or repelled from the central optical axis, depending on the negative or positive sign of the 

applied voltage and contributing respectively to the nanowire narrowing or broadening. 

 

In order to verify this hypothesis, additional experiments were performed where the electron beam 

focus conditions were controllably changed during the nanowire growth. For that, the focus height 

(z) was varied with respect to the optimum focus condition in order to investigate the 

corresponding changes in the nanowire diameter and height. The experiments consisted of the 
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growth of more than fifty Pt-C nanowires for 60 s on the amorphous SiO2 substrates for different 

z values. The obtained results for the values of the diameter and length/diameter ratio are 

represented in Figure 6. In order to check that the broadening effect is independent of the voltage 

applied to the patterned metal layer, the experiments were performed at -25 V and at -200 V, 

respectively represented in Figure 6(a) and 6(b). The z value has been typically swept between -

20 µm and 20 µm, which leads to enormous differences in the nanowire’s diameter (up to a factor 

of 3) and in the length/diameter ratio (up to a factor of 12).  
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Figure 6. For Pt-C nanowires grown on SiO2 for 60 s under the same conditions, dependence 

with the primary beam focus height of the diameter at half nanowires’ height and the ratio between 

their length and diameter. In these experiments, the voltage applied to the patterned metal layer 

was respectively (a) -25 V and (b) -200 V. Each data point represents the average value after 

measurements of several nanowires grown under the same conditions and at various locations in 

each nanowire. The lines are visual guides. 
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These results highlight, on the one hand, the importance of a good primary beam focus in order 

to reach the highest resolution in the growth of three-dimensional nanostructures. In order to show 

which differences appear in the SEM images when the z value varies in the -20 µm to 20 µm 

range, an example is shown in Figure S5 in the Supplementary File. On the other hand, the results 

interestingly show an additional degree of freedom to play with during the growth of three-

dimensional nanostructures by FEBID. In order to exploit this additional parameter, we have 

varied the z value during the growth of single nanowires in order to create nanowires with 

modulated diameter. First, as shown in the left part of Figure 7, a Pt-C nanowire with large 

diameter (146 nm) starts to grow on the amorphous SiO2 substrate due to the primary beam 

defocus (z value of 20 µm out of focus). But, at 72 s, by bringing the sample into focus with a 

quick (in about 1 s) change in the z position, a narrow section (64 nm in diameter) starts to grow. 

After another 72 s, we again modify the z position 20 µm, producing a primary beam defocus and 

the corresponding increase of the nanowire’s diameter to 119 nm. After 72 s growth in these 

conditions, the growth is terminated, leaving a diameter-modulated nanowire with large-narrow-

large sections. A second diameter-modulated nanowire has been grown following a similar 

strategy but with narrow-large-narrow sections, as shown in Figure 7 on the right. This strategy 

to in-situ modulate the nanowire’s diameter based on beam defocus should in principle work on 

any metal substrate. However, the use of a perforated metal layer allows the growth of modulated 

nanowires on insulating substrates and provides further diameter modulation through the use of 

the applied voltage. 
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Figure 7. Pt-C nanowires with modulation of diameter, grown on SiO2 by means of the in-situ 

variation of the primary electron beam focus condition. Each thin and thick diameter region in the 

nanowires was fabricated for 72 s, which is marked with dot red lines on the images. The 

nanowires have been artificially coloured (the original images can be seen in the Supplementary 

File, Figure S6). 

 

It is interesting to mention that, despite every section in the nanowires of Figure 7 has been grown 

for 72 s, their respective length is different. This is expected for sections with dissimilar diameter, 

where one would expect conservation of the volume growth rate instead of the linear growth rate. 

But it also occurs for sections with the same diameter, which can be explained by the 

diminishment of the growth rate with an increasing distance to the substrate caused by precursor 

diffusion effects [19]. 
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4. Conclusions and perspectives 

 

In the current work, we introduce patterned metallic microstructures to allow FEBID growth on 

insulating substrates and to tune the lateral dimension of three-dimensional nanostructures. In 

fact, when a voltage is applied to the patterned metallic microstructure, the spatially-dependent 

electric field generated acts as a small electrostatic lens, affecting the primary and secondary 

electrons involved in the growth of the nanowires. This new approach has been applied to the 

growth of Pt-C (and W-C) nanowires, finding that the width and aspect ratio can be changed by 

a factor of 2 and 4 respectively by application of voltages up to 200 V. These results emphasize 

the potentiality of spatially-dependent local electric fields to tune the growth of 3D structures by 

FEBID. The effect of the local electric fields on the primary electron beam has been found to be 

equivalent to that of a beam defocus, which broadens the diameter of the growing nanostructure. 

This finding has been applied to the growth of nanowires with modulated diameter in one single 

step, with either large-narrow-large sections or narrow-large-narrow sections. On the other hand, 

the local electric fields also attract (repel) the secondary electrons towards (from) the optical axis 

of the primary beam, producing the shrinkage (broadening) of the growing nanostructure.  

In the following, we put forward some perspectives opened by the current results and deserving 

future exploration. 

-One can think over the insertion of perforated metal plates in an automatized way on top of 

insulating substrates with small gap distance. This would be similar to the automatic insertion of 

apertures in electron microscopes. In this fashion, and via the application of controlled voltages 

to such perforated metal plates, an additional and automatized knob for diameter modulation 

would be available for FEBID growth of three-dimensional nanostructures. 

-Although our work here has been focused on metal layers with round holes, different geometries 

could be given to the holes, thus producing tailored distributions of electric fields. This could be 

applied to grow 3D structures with asymmetric tailored arms. 
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-The produced FEBID deposits could be used as hard-mask structures [43] on insulating 

substrates for subsequent lithography steps where, typically, the insulator is subsequently etched 

away except on the areas covered by the hard mask. This approach could be competitive with 

respect to EBL, FIB or other patterning techniques suffering from charging effects. 

-The use of electrically-biased patterned layers proposed here could also work for FIBID growth 

on insulating substrates. In the case of FIBID, the precursor dissociation mechanisms are still 

under debate [44], but the relevant role of secondary electrons in the growth of pillars has been 

confirmed [45][46]. 

-In-situ modification of the applied voltage to the patterned metal film or in-situ change of the 

focus height could be useful towards the growth of 3D functional nanostructures with varying 

diameter. As an example, in 3D magnetic nanowires, diameter changes are natural locations for 

magnetic domain-wall pinning, with applications in magnetic storage and logics [47][48]. 

- Other possible interesting materials for which this technique could offer advantages are 

plasmonic materials, such as Au and Ag, and magnetic materials, such as Co and Fe. The growth 

of core-shell nanowires is also possible in FEBID, which cam be of application for the growth of 

hybrid materials harnessing multifunctional properties [49]. 

-The use of a patterned metal layer allows for the growth of one nanowire per hole (as shown in 

the Supplementary File, Figure S7). Once all the nanowires have been grown, the Cu plate can be 

etched away by means of an etching solution, which would allow further sample processing. 

Similar approach is used for graphene grown by Chemical Vapour Deposition on a metal 

substrate, which is subsequently etched away, and the graphene is transferred to an arbitrary 

substrate [50]. 

-Future full-fledged simulations of the electron trajectories (such as Monte Carlo simulations) 

including the presence of spatially inhomogeneous electric fields, if feasible, could provide a more 

detailed understanding of the physical phenomena behind the experimental results shown in the 

current work. 
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In summary, tuning of nanowire dimensions during FEBID growth has been demonstrated by the 

use of controlled voltage applied to a patterned metal layer on top of the substrate. The use of 

spatially-dependent electric fields on the substrate represents a new degree of freedom for the 

growth of tailored 3D nanostructures by FEBID. The local electric fields have been found to act 

on the trajectories of the primary beam and of the secondary electrons, both contributing to the 

precursor dissociation and thus to the lateral dimension of the growing nanostructures. In addition, 

single nanowires with modulated diameter (with either large-narrow-large sections or narrow-

large-narrow sections) have been achieved by in-situ acting on the beam defocus, offering a new 

route to create three-dimensional complex nanostructures with tailored lateral dimensions.  
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SUPPLEMENTARY INFORMATION 

  



-In Figure S1, we show that it is not possible to grow 3D nanowires on fully insulating bare 

substrates made of materials such as MgO (b) or quartz (c), in contrast to the use of amorphous 

SiO2 on Si substrate (a), given that, in the latter case, the charge is dissipated through the 

conductive Si. 

 

Figure S1. SEM images of 3D Pt-FEBID nanowires grown on the insulating (a) amorphous SiO2, 

(b) MgO and (c) quartz substrates. All the deposits were fabricated at 30 kV, 25 pA, with the GIS 

needle position at x,y,z = 50 µm, and with a deposit time of 211 s. The nanowire only grows on 

the amorphous SiO2 substrate because of the underlying conductive Si substrate that is able to 

dissipate the charge accumulated during growth. 
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Figure S2. Original SEM micrographs of Figure 2, without artificial colour. 
 
 
 
 

 
 
Figure S3. Original SEM micrographs of Figure 4, without artificial colour. 
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-In Figure S4, we show the growth of W-C nanowires on the Aragon_Chip. The results are 

indicative of diameter modulation (a) and change in the length-to-diameter ratio (b) by 

application of voltage to the Aragon_Chip, which produces high electric fields on the primary 

beam and the generated secondary electrons. 

 

Figure S4. For W-C nanowires grown on SiO2 for 175 s using the same conditions, dependence 

of their diameter and the ratio between their length and diameter, with the voltage applied to the 

perforated copper film. Each data point represents the average value after measurements of 

several nanowires grown under the same conditions and at various locations in each nanowire. 

 

  



-In Figure S5, we show SEM micrographs of the same growth area when it is in focus (b) or 

defocused by +20 µm (a) and -20 µm (c). 

 

Figure S5. SEM micrographs of a hole of the Aragon_Chip with a 3D Pt-FEBID nanowire grown 

on SiO2 with the electron beam focused (a) 20 µm above the height of the copper surface, (b) at 

the height of the copper surface and (c) 20 µm under the height of the copper surface (in all cases 

there is no voltage applied to the Aragon_Chip). 
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Figure S6. Original SEM micrographs of Figure 7, without artificial colour. 
 
 

 
Figure S7. SEM micrograph illustrating a broad view of the Aragon_Chip with 15 grown 
nanowires. 
 
 

 


