000095623 001__ 95623
000095623 005__ 20210902121822.0
000095623 0248_ $$2sideral$$a119225
000095623 037__ $$aART-2020-119225
000095623 041__ $$aeng
000095623 100__ $$0(orcid)0000-0002-8191-3199$$aOller-Marcen, A.M.
000095623 245__ $$aFurther generalizations of the parallelogram law
000095623 260__ $$c2020
000095623 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095623 5203_ $$aIn a recent work of Alessandro Fonda, a generalization of the parallelogram law in any dimension N >= 2 was given by considering the ratio of the quadratic mean of the measures of the (N - 1)-dimensional diagonals to the quadratic mean of the measures of the faces of a parallelotope. In this paper, we provide a further generalization considering not only (N - 1)-dimensional diagonals and faces, but the k-dimensional ones for every 1 <= k <= N - 1.
000095623 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095623 590__ $$a0.743$$b2020
000095623 591__ $$aMATHEMATICS$$b226 / 330 = 0.685$$c2020$$dQ3$$eT3
000095623 592__ $$a0.229$$b2020
000095623 593__ $$aDiscrete Mathematics and Combinatorics$$c2020$$dQ4
000095623 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095623 773__ $$g15, 2 (2020), 153-158$$pContrib. discret. math.$$tCONTRIBUTIONS TO DISCRETE MATHEMATICS$$x1715-0868
000095623 85641 $$uhttps://arxiv.org/abs/1910.06645$$zTexto completo de la revista
000095623 8564_ $$s88539$$uhttps://zaguan.unizar.es/record/95623/files/texto_completo.pdf$$yVersión publicada
000095623 8564_ $$s41081$$uhttps://zaguan.unizar.es/record/95623/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095623 909CO $$ooai:zaguan.unizar.es:95623$$particulos$$pdriver
000095623 951__ $$a2021-09-02-10:09:04
000095623 980__ $$aARTICLE