PI-Regler mit Anti-Windup fir eine
feldorientierte Motorregelung fir ein
Elektrofahrzeug

Bachelorthesis - Abschlussprojekt

“ GEORG-SIMON-OHM
HOCHSCHULE NURNBERG

Autor: Luis Alfonso Puertollano Ventura
Studienbereich: Elektro- und Informationstechnik
Matrikelnummer: 2350382
Erstprifer: Prof. Dr.- Ing. Armin Dietz
Zweitprifer: Prof. Dr.- Ing. Norbert Gral}
Datum: 23/08/2012

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

Einleitung
Die Arbeit wurde in Rahmen des europeischen StudentenAustauschprogramms ERASMUS am
Institut ELSYS durchgefiihrt.

Es geht um die Programmierung und Steuerung des Motors eines bereits vorhandenen
Elektrofahrzeugs (E-Buggy). Flir das Fahrzeug braucht man verschiedene Komponenten, wie
einen Umrichter der von einem Mikrocontroller gesteuert und geregelt wird, andere
Leistungselektronik Elemente, sowie ein kleines Batteriemanagement.

Luis Alfonso Puertollano Ventura 1

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

Inhaltsverzeichnis
A, ABKUrZUNGSVEIZEICRNISeiiiie ettt e e e ee e e e abe e e e s nraeeeeanes 3
L. ZUSAMMENTASSUNG ... iiiii ittt et ee e et e e st e e e e ette e e e st e e e e e abaeeeeateeeeseenbeeeesantaeeeenteeesnnsees 4
2. Vergleich der REgIEITYPEN...... ...t e e et e e e e e e e snnraaaeeaeean 5
3. Pl-Regler mit Anti-WINAUP ..ccociiiieeee et e et e e e e e e eraa e e e e e e e e eannraaeeeaaeas 6
3.1. Eigenschaften des PI-REEIEISeeeee ettt e e e e e 7
3.2, Anti-WiINdup Methodecooeeiiiiiiieee e e e e e arae e e 9
4. Realisierung des PI-REEIEISueii ettt e e e e e e e rarae e e e nree e e naees 14
4.1. PI-Regler mit Anti-Windup-Funktionalitdtcccceeeiiiiiieiiiie e 15
4.1.1. NI AlISTEIUNE .ttt e e e e e e e e e e e e e e e abeseeeeaeeeennnns 15
4.1.2. Berechnung und Anti-Windup-Algorithmus..........cccceeeeeciiieei s 16
4.1.3. =02 o] 0 1Y YU UUURE 17
4.1.4. Einstellungen des REEIEIS........eiiciiie ettt e 23
V3 N = = T o1 o] o =4 =1 .41 0 24
B. LiteraturverzeiChnis........ooo oo e s 25
GT ¥ o] o F=Y oV -SRI RSRP 26
C.1. Mikrocontrollers INfiNeon XC2287M......ccoceieiieiriiieniie et e 26

Luis Alfonso Puertollano Ventura 2

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

A. Abkiirzungsverzeichnis

uC Mikrocontroller

FOC Feldorientierte Regelung (engl. Field Oriented Control)

PWM Pulsenweitenmodulation

PMSM Permanenterregte Synchronmaschine (engl. Permanent Magnet

Synchronous Motors)

Luis Alfonso Puertollano Ventura

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

1. Zusammenfassung
Das Projekt E-Buggy hat zum Ziel der Bau eines Elektrofahrzeugs (E-Buggy). Daflir wurden
verschiedene Teams gebildet, welche sich verschiedenen Teilprojekten gewidmet haben. Dazu
gehort das Design des Fahrzeuges, die Untersuchung der Batterie und das Programmieren der
Leistungelektronik. Ich personlich habe mich besonders mit der Motorregelung beschaftigt.

Fiir die Steuerung der PMSM, wird die feldorientierte Regelung (Field Oriented Control, FOC)
genutzt (Abb. 1). Daflir war es zunachst notig zu lernen, wie jedes Teilaufgabe funktioniert.
Dazu gehort zum Beispiel: die Anwendung der Park- und Clark-Transformationen, die Funktion
des Umrichters, das Programmieren eines Pl-Reglers in C fiir den Infineon uC XC2287M.

Fiir diesen Teil der Arbeit, hat man sich in der PI-Regler beschéaftigt. So kann man mit dem
Elektromotor und seinem Drehmoment arbeiten (Abb. 1), ohne die maximale Grenze des
Motorstromes zu lberschreiten. Um das ganzen Regelungsystem gut funktionieren zu machen,
muss man auch anpassende Reglerparameter hingefiligt werden.

U,

PI Drehzahlregler PI Stromregler Park’ T. LJ
n L a [d;

o Wy B 7

n i = |

e

u
: RZM
4 2
u e
PI Stromregler k @ Bé-Briicke
3 Uy IGRTs

g
—— 3
i, i, i
d.gq a.f ®
i i ‘
< ap -t ab.clt
Park T. Clark T.

Drehgeber)-7
PMSM

Abbildung 1: Struktur der Feldorientierten Motorregelung [Sahhary, 2008]
Folgende Programme wurden eingesetz:

e DAVE — Auto code generation.

¢ TASKING VX-toolset for C166 — C/C++ compiler and debugger.

* DAS Control Server — Device Acces Server.

e UDE Desktop 3.0 — Universal Debug Engine, Develop and test software applications.

Luis Alfonso Puertollano Ventura 4

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

2. Vergleich der Reglertypen

In der Abbildung 2 (Abb. 2) ist der Vergleich von P-, |-, Pl-, PD- und PID-Regler in einem
Regelkreis mit PT2-Glied als Regelstrecke dargestellt. Es ist deutlich zu sehen, dass die Regler
ohne I-Anteil (P und PD) eine bleibende Regelabweichung aufweisen. Erst die Regler mit I-
Anteil kdnnen auf den normierter Endwert von 1 ausregeln. Beim reinen I-Regler geht das so
langsam, dass es gar nicht mehr auf dem Diagramm zu sehen ist. Der Hauptzweck eines I-
Anteils ist also die Vermeidung bleibender Regelabweichungen. Daher ist ein I-Anteil
normalerweise nicht noétig, wenn die Strecke schon einen I-Anteil besitzt (ausnahme: es wird
ein doppelter I-Anteil zur Vermeidung von Schleppfehlern benotigt).

Die schnellsten Regler sind die mit einem D-Anteil (PD- und PID-Regler). Der D-Anteil kommt
deshalb hauptsachlich zum Einsatz, wenn schnelle Dynamik gefragt ist oder die Strecke selbst
schon instabil ist. Voraussetzung fiir die Schnelligkeit ist allerdings, dass keine Begrenzung im
Stellglied oder Aktuator auftritt. In der Praxis ist eine Begrenzung meistens nicht zu vermeiden,
deshalb gilt die Sprungantwort in der Praxis nur fir kleine Spriinge.

Die Regler ohne D-Anteil, aber mit P-Anteil (P- und PI-Regler) sind mittelschnell. Fiir einfache
Regelaufgaben reicht auch oft schon ein reiner P-Regler aus, wenn die bleibende
Regelabweichung vernachlassigt werden kann oder wenn die Strecke schon einen I-Anteil
besitzt.

Vergleich der Reglertypen in einem Regelkreis

14

1.2

1.0

FID
- [(FD
0.8
_ /\p
0.6

Sprungantwort

0.4

I

L e R e e S N T . T
nn 0. 10 15 n 25 an 25 4n 4.5 in
Zeitis

Abbildung 2: Vergleich der Antwort der Reglertypen [www.rn-wissen.de, Regelungstechnik]

Luis Alfonso Puertollano Ventura 5

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fir ein Elektrofahrzeug

3. PI-Regler mit Anti-Windup
Der Pl-Regler (Proportional-Integral Regler) besteht aus den Anteilen des P-Gliedes K, und |-
Gliedes mit der Zeitkonstante Ty. Er kann sowohl aus einer Parallelstruktur oder aus einer
Reihenstruktur definiert werden. Der Begriff der Nachstellzeit Ty stammt aus der
Parallelstruktur des Reglers (Abb. 3).

Abbildung 3: Struktur des PIl-Reglers [Udenar]

So dass diese Ideale Sprungsantwort sehen kann (Abb. 4):

t

u(t) =Kp=*e(t) + Kif e(t)dr (3.1)
0

K, = Proportionale Verstarkung
Ki = Integral Verstarkung

u(t)

Tn Tn t

Abbildung 4: Idealer Sprungantwort des PI-Reglers [Wikipedia, Pl-Regler]

Signaltechnisch wirkt der PI-Regler gegenliber dem I-Regler so, dass nach einem
Eingangssprung dessen Wirkung um die Nachstellzeit Ty vorverlegt ist. Durch den I-Anteil wird
die stationdre Genauigkeit gewahrleistet, die Regelabweichung wird nach dem Einschwingen
der RegelgroBe zu Null.

Luis Alfonso Puertollano Ventura 6

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

3.1. Eigenschaften des PI-Reglers

¢ Kompensation eines PT1-Gliedes der Strecke: Er kann mit dem PD-Glied ein PT1-Glied
der Strecke kompensieren und damit den offenen Regelkreis vereinfachen.

¢ Keine Regelabweichung bei konstantem Sollwert: Durch das I-Glied wird im
stationaren Zustand bei konstantem Sollwert die Regelabweichung zu Null.

e Langsamer Regler: Der durch das I|-Glied erworbene Vorteil der Vermeidung einer
stationaren Regelabweichung hat auch den Nachteil, dass eine zusatzliche Polstelle mit
-90 ° Phasenwinkel in den offenen Regelkreis eingefligt wird, was eine Reduzierung der
Kreisverstarkung Ky bedeutet. Deshalb ist der PI-Regler kein schneller Regler.

* 2 Einstellparameter: Der Regler enthalt nur zwei Einstellparameter, Ky, = Kp / Ty und Ty,

¢ Regelstrecke hoherer Ordnung: kann optimal an einer Regelstrecke hoherer Ordnung
eingesetzt werden, von der nur die Sprungantwort bekannt ist. Durch Ermittlung der
Ersatztotzeit Ty (Verzugszeit) und der Ersatzverzogerungs-Zeitkonstante Tg
(Ausgleichszeit) kann das PD-Glied des Reglers die Zeitkonstante T kompensieren. Fir
die I-Regler-Einstellung der verbleibenden Regelstrecke mit Ersatztotzeit TU gelten die
bekannten Einstellvorschriften.

e Regelstrecke mit 2 dominanten Zeitkonstanten: er kann eine Regelstrecke mit zwei
dominanten Zeitkonstanten von PT1-Gliedern regeln, wenn die Kreisverstarkung
reduziert wird und die langere Dauer des Einschwingens der Regelgrofle auf den
Sollwert akzeptiert wird. Dabei kann mit Ky jeder gewlinschte Dampfungsgrad D
eingestellt werden, von aperiodisch (D=1) bis schwach gedampft schwingend (D gegen
0).

¢ PD-Glied ohne Differenzierung: Das in der Reihenstruktur entstandene PD-Glied des PI-
Reglers ist mathematisch ohne Differenzierung entstanden. Deshalb entsteht bei der
Realisierung des Reglers in der Parallelstruktur auch keine parasitdare Verzogerung.
Wegen eines moglichen Windup-Effektes durch Regelstreckenbegrenzung der
StellgroRe u(t) ist die schaltungsmalige Realisierung des PI-Reglers in Parallelstruktur
anzustreben.

Die Grundidee des Pl-Reglers (Abb. 5) ist einfach und Ildsst sich vergleichen mit der
Entscheidungsfindung von Menschen, welche haufig auf der Kenntniss von Vergangenheit und
Gegenwart basiert. Der PI-Regler macht das Gleiche mit dem Regler. Das Steuersignal besteht
aus zwei Teilen:

e Ein proportionaler Teil zum Auffinden des Fehlers (Regelverhalten aufgrund der
gegenwartigen Information).

e Ein proportionaler Teil zum Integral-Fehler der Vergangenheit (Regelverhalten
aufgrund der vergangenen Information).

Luis Alfonso Puertollano Ventura 7

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

So dass:

Symbol Reglergleichung Sprungantwiort

¥

PI it =Ep o)+ KiIe(r)dr 1
0

Software Pl-Regler:

7
|

| esum = esum + &

' ¥y =Kp * e + KL ¥ Ta ¥ esum
i

Abbildung 5: PI-Regler [www.rn-wissen.de, Regelungstechnik]

Ubertragungsfunktion der Parallelstruktur. Solche Werten werden so normalerweise
berechnet:

1+ TnxS
Tn*S

U _
E(S =%

K
&=

TN und KP sind berechnet so dass es keine Oberschingungen erscheinen. Wenn man es falsch
macht, kann folgendes passieren (Abb. 6):

. —— /\ //
: \/ldeWUW”

0.25

1 2 3 4 5 6 7
Abbildung 6: Sprungsnatworte mit Oberschwingungen [Luis Puertollano, 2012]

Deswegen, werden die kritische Werte berechnet, um an der Grenze den
Oberschwingungen zu bleiben, und werden danach wie folgendes benutzt:

Tn=0. 83 T

Luis Alfonso Puertollano Ventura 8

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

Obwohl viele Aspekte eines Steuersystems von der linearen Regelungstechnik verstanden
werden kdnnen, missen einige nicht-lineare Effekte beriicksichtigt werden. Bei der
Implementierung eines Reglers sind dies zum Beispiel:

e Ein motor hat eine nominale Geschwindigkeit (wie in unserem Fall).
* Ein Ventil hat eine maximale und eine minimale Offnung.
e Eine Stromversorgung eines elektrischen Gerates ist begrenzt.

3.2. Anti-Windup Funktion
Fiir eine Steuerung mit einer Vielzahl von Betriebsbedingungen kann es vorkommen, dass die
RegelgroRRe die vorgegebenen Grenzen des Aktuators erreicht. Wenn dies passiert, bleibt die
Rickkopplungsschleife in ihrer Grenze unabhangig von dem Prozel3-Ausgang. Bei Verwendung
eines integralen Reglers wird ein moglicher Fehler immer weiter seinen Wert steigern. Der
Integral-Anteil wird ganz groR und es wird die Wirkung "Windup" produziert (Abb. 7).

1.4 ¢

1.2 ¢

0.8 t

0.6

0.4 1

0.2 ¢

0.2 0.4 0.6 0.8 1 1.2 1.4

Abbildung 7: Beispiel von Windup [Luis Puertollano, 2012]

Dies kann so vermieden werden:

¢ Der Begrenzung der Reglerabweichung bewirkt, dass der Ausgang des Reglers nicht die
Begrenzung des Aktuators erreichen kann. Dies produziert haufig Begrenzungen in der
Wirkung des Reglers, aber kann nichts gegen den Windup-Effekt, welcher von
Stérungen produziert wird, ausrichten.

e Ein anderer Weg ist die Neuberechnung des Integralanteils: Wenn der Ausgang
gesattigt ist, wird das Integral neu berechnet, so dass der neue Wert ein
Ausgangssignal an der Sattigungsgrenze darstellt.

Eine andere Methode ist die konditionale Integration zur Begrenzung des Integralliberlaufs.
Man benutzt ein Schalter, wenn das Signal sehr weit weg von dem stationaren Status liegt. In
diesem Fall, wird der I-Anteil nur unter solchen Bedingungen benutzt. In anderen Fallen, bleibt
der I-Anteil gleich. Es wird auch ,Festbinden des Integrators” genannt.

Luis Alfonso Puertollano Ventura 9

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

¥
-

E— = jF—.—hLI

+
_’ +
+ —_
L L TR

|
F 3

Abbildung 8: PI-Regler Parallelform und Begrenzung [www.20sim.com]

+ 1
' u |: y
+ ’J
1
1+ =Ti TR

Abbildung 9: PI-Regler Seriesform und Begrenzung [www.20sim.com]

Der Unterschied zwischen Eingang und Ausgang (TR) ist riickgekoppelt in den I-Anteil durch
den 1/T, Verstirkung (Abbs. 8 und 9). Eine gute Uberwachung ist die Riickkopplung mit Anti-
Windup. Der Aktuator ist von einem Signal-Begrenzer vertreten worden.

Sobald der Begrenzer sattigt, bekommt das Signal einen unterschiedlichen Wert von null
aufwarts und vermeidet, dass der I-Anteil in Windup geht (Abb. 10). Reset-Zeitkonstanten

bestimmen dabei, wie schnell auf Windup des Integrators reagiert wird.

sin anti-windup .. ‘ Con anti-wi‘\dup J

Abbildung 10: Antwort ohne und mit Anti-Windup [micros-designs, Suky, CreativeCommons]

Luis Alfonso Puertollano Ventura 10

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

Abbildung 11: Antwort mit Switch On-Off Methode [micros-designs, Suky, CreativeCommons]

Luis Alfonso Puertollano Ventura 11

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

Der Ziel des Anti-Windups ist der Integration zu begrenzen (Abb. 12).

u(t)u(t) !)]
' 9 '__] | without saturation (a)
90 | . u(t)
L5 . with saturation
1.0 \\\)CTI;:“&
0.5 1 with anti-windup
[} T T T T __! T T
0 1 2 3 | 5 6 tls] 7
ylt) 4
1.95 - with saturation (b)
L.00 /@ —
0.75 4 with anti-windup
.504 without saturation
.25 7
[} T T T T J T -
0 1 2 3 1) 6 tls] T

Abbildung 12: Antwort des Systems mit und ohne Anti-Windup

[Universitat Bochum, Christian Schmid, 2005]

Diese PI-Regler mit Anti-Windup missen angewendet werden, so dass ihre Funktion von
einem UC ausgelibt werden kann. Der Aktuator wird begrenzt und gibt ein Signal (Abb. 13),

welches auf der folgenden Grundidee begrenzt wird:

output = minimum; (input < minimum)

output = input; (minimum <= input <= maximum)

output = maximum; (input > maximum)

Luis Alfonso Puertollano Ventura

12

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

Lirmit
4
3
2 IMAXimum -
1
2
£0 1|
(]
1 —/
__________ F minimum
iy, T
-3
-4

-4 -3 -2 -1 0 1 2 3 4
input

Abbildung 13: Grundfunktionsweise des Reglers mit Anti-Windup stationares Vorhalten
[http://www.20sim.com]

Ein Beispiel des Grundprogrammes ware folgendes:

Programm-Code in C:

e =w — x; // Vergleich

esum = esum + e; // Integration I-Anteil

if (esum < —400){esum = —400; } // Begrenzung I-Anteil
if (esum < 400){esum = 400; }

y = Kp * e 4+ Ki * Ta * esum;//Reglergleichung

if (y < 0){y = 0;}// Begrenzung Stellgrope

if (y < 1023){y = 1023;}

PWM = vy; // Ubergabe Stellgrépe

Luis Alfonso Puertollano Ventura

13

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fir ein Elektrofahrzeug

4. Realisierung des PI-Reglers
Fir die Codeentwicklung wird die Software ,TASKING VX-toolset for C166“ eingesetzt (Abb. 14).

]

P RCRETRE TRET R R R) A IR | TR IR R R 2]
[¢] Regulador.c &3 =8t

// Berech mo del regqulador

long calcRegler (volatile struct PIRegler *ptrRegler)
{

ng des Regler Algorithmus -> Calculo del algor

// Berechnung der Regel Abweichung - Calculo
ptrRegler->RegelAbweichung = ptrRegler->FuehrungsGroesse - ptrRegler->RegelGroesse;

// Begrenzung fir den Regler Eingang - Limitacién i:
if (ptrRegler->RegelAbweichung > ptrRegler->EingangsBegrenzungMax) L3
{

ptrRegler->RegelAbweichung = ptrRegler->EingangsBegrenzungMax;
}
else if (ptrRegler->RegelAbweichung < ptrRegler->EingangsBegrenzungMin)
{

ptrRegler->RegelAbweichung = ptrRegler->EingangsBegrenzungMin;

// Berx o de la suma del regulador
ptrRegler->Summe = ptrRegler->Summe + ptrRegler->RegelAbweichung;

// Begrenzung der Regler Summe - Limitacidén de la suma del regulador
if (ptrRegler->Summe > ptrRegler->SummenBegrenzungMax)
{

ptrRegler->Summe = ptrRegler->SummenBegrenzungMax;
}

i O R P VP

< »

[21 Problems 23 =] Consolei e=] Propertiesi ¥ Debué_ 4 Searcl;_

) errors, 9 warnings, 1 other

>

Description Resource Path Location ID Type
& 166 W505: implicit declaration of function "printf" MAIN.c /10_PWM 455 1697 C/C++ Problen
& 166 W525: discarded 'const’ qualifier at initializer SinusQ1_15.c /10_PWM 4214 1700 C/C++ Problen
& 166 W525: discarded 'const' qualifier at initializer SinusQ1_15.c /10_PWM 4215 1701 C/C++ Problen
& 166 W560: possible truncation at implicit conversion to type "chi serio_XC2287... /10_PWM 224 1699 C/C++ Problen
M ARAWSAN: naccihla triincatinn at imnlicrit Famvarcinn #a hma "un MAIN ~ AN DWAM 21 1A02 C/Cas Denahlan
BB @~~~ %5 TASKING De... ([] TASKING C/... |
@ C/C++ Projec 82\ % Navigator | =8 | 1= Outline 2 =08
e Bes” R o %~
[ccus0.h A = Regulador.h a
[g ccuel.c initRegler(struct PIRegler*) : void
[CCu6Lh calcRegler(struct PIRegler*) : long
[g 10.c getReglerKP(struct PIRegler”) : in’
[Ioh setReglerkP(struct PIRegler*, int)
MAIN. getReglerKl(struct PIRegler®) : int
MAIN.h setReglerK(struct PIRegler*, int) :
Regulador.c getReglerStellGroesse(struct PIRe
Regulador.h setReglerStellGroesse(struct PIRes -
SCS.c getReglerFuehrungsGroesse(strus
SCS.h

setReglerFuehrungsGroesse(struc
getReglerRegelGroesse(struct PIR
setReglerRegelGroesse(struct PIR
getReglerRegelAbweichung(struc

serio_XC2287M_2.h
serio_XC2287M.c
serio_XC2287M.h

()

Si“U5Q1.15-C setReglerRegelAbweichung(struc
SinusQ1_15.h getReglerEingangsBegrenzungM
U0C0.c setReglerEingangsBegrenzungM:
UoCo.h = getReglerEingangsBegrenzungM
USICO.c setReglerEingangsBegrenzungMi
USICO0.h

getReglerAusgangsBegrenzunglv
XC22xMREGS.h

setReglerAusgangsBegrenzungM

_connection_failed_report_.txt getReglerAusgangsBegrenzunghv

__connection_failed_report__Coni
1.prop J
10_PWM_1024.dpt =
[2) 10_PWM.board.launch |
|5 10_PWM.dav

[3) 10_PWM.dpt

ks 10_PWM.IsI

) 10_PWM.rtf

77,10,EWM.sjmuJ,a,tg‘r.Iaunch
n »

| m | »

DEDPDPRFRPREREPRERERERBED

>

[.m

212192923

Abbildung 14: Ansicht von TASKING VX-toolset for C166 [Luis Puertollano, 2012]

Luis Alfonso Puertollano Ventura 14

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

4.1. PI-Regler mit Anti-Windup-Funktionalitat

4.1.1. Initialisierung

Hier wird der Regler initialisiert, und wird folgende Werte fiir die verschiedenen Glieden

benutzen:

// Initialisierung des Reglers — Werten die man fir die verschiedenen Glieden will.

void initRegler(volatile struct PIRegler *ptrRegler)
{
ptrRegler->KP =

ptrRegler->KI| =

ptrRegler->StellGroesse =
ptrRegler->FuehrungsGroesse =

ptrRegler->RegelGroesse =

ptrRegler->RegelAbweichung

ptrRegler->EingangsBegrenzungMax

ptrRegler->EingangsBegrenzungMin

ptrRegler->AusgangsBegrenzungMax

ptrRegler->AusgangsBegrenzungMin

ptrRegler->Abtastzeit =

ptrRegler->Summe =

ptrRegler->SummenBegrenzungMax =

ptrRegler->SummenBegrenzungMin

0;// Proportionalkonstant - Constante proporcional

0;// Integrationskonstant - Constante de integracién

0;// Stellgrésse - Control de la variable
0;// Fihrungsgrésse - Comando de la variable

0;// Regelgrosse - Control de la variable

0;// Abweichung (Unterschied) - Desviacién

0;// Maximal Eingangs Begrenzung -
Limitacién maxima de entrada

0;// Minimal Eingangs Begrenzung -
Limitacion minima de entrada

0;// Maximal Ausgangs Begrenzung -
Limitacién maxima de salida

0;// Minimal Ausgangs Begrenzung -
Limitacién minima de salida

0;// Abtastzeit - Tiempo de muestreo

0;// Summe - Suma

0;// Maximal Summe Begrenzung -
Limitacion maxima de la suma

0;// Minimal Summe Begrenzung -
Limitacién minima de la suma

Luis Alfonso Puertollano Ventura

15

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

4.1.2. Berechnung und Anti-Windup-Algorithmus
Hier wird es beschrieben wie man die Berechnung des Pl-Reglers programmiert ist:

// Berechnung des Regler Algorithmus -> Calculo del algoritmo del regulador

long calcRegler(volatile struct PIRegler *ptrRegler)

{
// Berechnung der Regel Abweichung - Calculo

ptrRegler->RegelAbweichung = ptrRegler->FuehrungsGroesse - ptrRegler->RegelGroesse;

// Begrenzung fir den Regler Eingang - Limitacion
if(ptrRegler->RegelAbweichung > ptrRegler->EingangsBegrenzungMax)
{

ptrRegler->RegelAbweichung = ptrRegler->EingangsBegrenzungMax;

}

else if(ptrRegler->RegelAbweichung < ptrRegler->EingangsBegrenzungMin)

{

ptrRegler->RegelAbweichung = ptrRegler->EingangsBegrenzungMin;

// Berechnung der Regler Summe - Célculo de la suma del regulador

ptrRegler->Summe = ptrRegler->Summe + ptrRegler->RegelAbweichung;

// Begrenzung der Regler Summe - Limitacién de la suma del regulador
if(ptrRegler->Summe > ptrRegler->SummenBegrenzungMax)
{

ptrRegler->Summe = ptrRegler->SummenBegrenzungMax;

}

else if(ptrRegler->Summe < ptrRegler->SummenBegrenzungMin)

{

ptrRegler->Summe = ptrRegler->SummenBegrenzungMin;

Luis Alfonso Puertollano Ventura 16

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

// Berechnung der StellgréRe - Calculo de la variable de control
ptrRegler->StellGroesse = ptrRegler->KP * ptrRegler->RegelAbweichung +

ptrRegler->KI * ptrRegler->Abtastzeit * ptrRegler->Summe;

// Begrenzung fiir den Regler Ausgang - Limitacion de la salida del regulador
if(ptrRegler->StellGroesse > ptrRegler->AusgangsBegrenzungMax)

{

ptrRegler->StellGroesse = ptrRegler->AusgangsBegrenzungMax;

}

else if(ptrRegler->StellGroesse < ptrRegler->AusgangsBegrenzungMin)

{

ptrRegler->StellGroesse = ptrRegler->AusgangsBegrenzungMin;

return ptrRegler->StellGroesse;

}

/***/

4.1.3. Ergebnisse
Hier wird es beschrieben wie man die Ergebnisse des PI-Reglers bekommen kann:

// Get Methode fiir KP

int getReglerKP(volatile struct PIRegler *ptrRegler)

{

return ptrRegler->KP;

// Set Methode fiir KP
void setReglerKP(volatile struct PIRegler *ptrRegler, int kp)

{

ptrRegler->KP = kp;

Luis Alfonso Puertollano Ventura

17

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

/***/

// Get Methode fiir Kl

int getReglerKI(volatile struct PIRegler *ptrRegler)

return ptrRegler->Kl;

// Set Methode fir Kl

void setReglerKl(volatile struct PIRegler *ptrRegler, int ki)

ptrRegler->KP = ki;

/***/

// Get Methode fiir StellGroesse

long getReglerStellGroesse(volatile struct PIRegler *ptrRegler)

return ptrRegler->StellGroesse;

// Set Methode fiir StellGroesse

void setReglerStellGroesse(volatile struct PIRegler *ptrRegler, long stellgroesse)

ptrRegler->StellGroesse = stellgroesse;

/***/

// Get Methode fiir FuehrungsGroesse

long getReglerFuehrungsGroesse(volatile struct PIRegler *ptrRegler)

return ptrRegler->FuehrungsGroesse;

Luis Alfonso Puertollano Ventura 18

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

// Set Methode fir FuehrungsGroesse

void setReglerFuehrungsGroesse(volatile struct PIRegler *ptrRegler, long fuehrungsgroesse)

{

ptrRegler->FuehrungsGroesse = fuehrungsgroesse;

}

/***/
// Get Methode fiir RegelGroesse
long getReglerRegelGroesse(volatile struct PIRegler *ptrRegler)

{

return ptrRegler->RegelGroesse;

// Set Methode fiir RegelGroesse

void setReglerRegelGroesse(volatile struct PIRegler *ptrRegler, long regelgroesse)

{

ptrRegler->RegelGroesse = regelgroesse;

}

/***/

// Get Methode fiir RegelAbweichung

long getReglerRegelAbweichung(volatile struct PIRegler *ptrRegler)

{

return ptrRegler->RegelAbweichung;

// Set Methode fir RegelAbweichung
void setReglerRegelAbweichung(volatile struct PIRegler *ptrRegler, long regelabweichung)

{

ptrRegler->RegelAbweichung = regelabweichung;

Luis Alfonso Puertollano Ventura 19

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

/***/

// Get Methode fiir EingangsBegrenzungMax

long getReglerEingangsBegrenzungMax(volatile struct PIRegler *ptrRegler)

return ptrRegler->EingangsBegrenzungMax;

// Set Methode fiir EingangsBegrenzungMax

void setReglerEingangsBegrenzungMax(volatile struct PIRegler *ptrRegler, long eingangsBegrenzungMax)

ptrRegler->EingangsBegrenzungMax = eingangsBegrenzungMax;

/***/

// Get Methode fiir EingangsBegrenzungMin

long getReglerEingangsBegrenzungMin(volatile struct PIRegler *ptrRegler)

return ptrRegler->EingangsBegrenzungMin;

// Set Methode fiir EingangsBegrenzungMin

void setReglerEingangsBegrenzungMin(volatile struct PIRegler *ptrRegler, long eingangsBegrenzungMin)

ptrRegler->EingangsBegrenzungMin = eingangsBegrenzungMin;

/***/

// Get Methode fiir AusgangsBegrenzungMax

long getReglerAusgangsBegrenzungMax(volatile struct PIRegler *ptrRegler)

return ptrRegler->AusgangsBegrenzungMax;

Luis Alfonso Puertollano Ventura 20

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

// Set Methode fir AusgangsBegrenzungMax

void setReglerAusgangsBegrenzungMax(volatile struct PIRegler *ptrRegler, long ausgangsBegrenzungMax)

ptrRegler->AusgangsBegrenzungMax = ausgangsBegrenzungMax;

/***/

// Get Methode fiir AusgangsBegrenzungMin

long getReglerAusgangsBegrenzungMin(volatile struct PIRegler *ptrRegler)

return ptrRegler->AusgangsBegrenzungMin;

// Set Methode fiir AusgangsBegrenzungMin

void setReglerAusgangsBegrenzungMin(volatile struct PIRegler *ptrRegler, long ausgangsBegrenzungMin)

ptrRegler->AusgangsBegrenzungMin = ausgangsBegrenzungMin;

/***/

// Get Methode fiir Abtastzeit

int getReglerAbtastzeit(volatile struct PIRegler *ptrRegler)

return ptrRegler->Abtastzeit;

// Set Methode fiir Abtastzeit

void setReglerAbtastzeit(volatile struct PIRegler *ptrRegler, int abtastzeit)

ptrRegler->Abtastzeit = abtastzeit;

Luis Alfonso Puertollano Ventura 21

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

/***/

// Get Methode fiir SummenBegrenzungMax

long getReglerSummenBegrenzungMax(volatile struct PIRegler *ptrRegler)

return ptrRegler->SummenBegrenzungMax;

// Set Methode fiir SummenBegrenzungMax

void setReglerSummenBegrenzungMax(volatile struct PIRegler *ptrRegler, long summenBegrenzungMax)

ptrRegler->SummenBegrenzungMax = summenBegrenzungMax;

/***/

// Get Methode fiir SummenBegrenzungMin

long getReglerSummenBegrenzungMin(volatile struct PIRegler *ptrRegler)

return ptrRegler->SummenBegrenzungMin;

// Set Methode fiir SummenBegrenzungMin

void setReglerSummenBegrenzungMin(volatile struct PIRegler *ptrRegler, long summenBegrenzungMin)

ptrRegler->SummenBegrenzungMin = summenBegrenzungMin;

/***/

Luis Alfonso Puertollano Ventura 22

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

4.1.4. Einstellungen des Reglers
Hier wird es geschrieben wie man die Parametereinstellungen des PI-Reglers:

// Reglereinstellungen setzen fiir Id-Regler - Establecer los parametros del Regulador (Potencia reactiva)

void mainSetPIReglerldParams(struct PIRegler *ptrPIReglerld)

{
setReglerKP(ptrPIReglerld, 0);
setReglerKl(ptrPIReglerld, 0);
setReglerEingangsBegrenzungMax(ptrPIReglerld, 350);
setReglerEingangsBegrenzungMin(ptrPIReglerld, -350);
setReglerAusgangsBegrenzungMax(ptrPIReglerld, 52213);
setReglerAusgangsBegrenzungMin(ptrPIReglerld, -52213);
setReglerAbtastzeit(ptrPIReglerld, 1);
setReglerSummenBegrenzungMax(ptrPIReglerld, 100000);

setReglerSummenBegrenzungMin(ptrPIReglerld, -100000);

// Reglereinstellungen setzen fiir Ig-Regler - Establecer los parametros del Regulador (Potencia activa)

void mainSetPIReglerlgParams(struct PIRegler *ptrPIReglerlq)

{
setReglerKP(ptrPIReglerlq, 0);
setReglerKl(ptrPIReglerlq, 0);
setReglerEingangsBegrenzungMax(ptrPIReglerlq, 350);
setReglerEingangsBegrenzungMin(ptrPIReglerlq, -350);
setReglerAusgangsBegrenzungMax(ptrPIReglerlq, 52213);
setReglerAusgangsBegrenzungMin(ptrPIReglerlq, -52213);
setReglerAbtastzeit(ptrPIReglerlq, 1);
setReglerSummenBegrenzungMax(ptrPIReglerlg, 100000);

setReglerSummenBegrenzungMin(ptrPIReglerlq, -100000);

Luis Alfonso Puertollano Ventura 23

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

Mit diesem Code wird der Regler definiert, d.h. die Ausgangsbegrenzungen und die Parameter
des Reglers. Und man muss auch den Regler initialisieren. Damit wird folgender Code in der

Main.c File geschrieben:

4.2. Hauptprogramm
Hier wird es geschrieben, wie man die anderen Teilen des Programms anrufen muss:

// Initialisierung des Reglers

void initRegler(volatile struct PIRegler *ptrReglerld);

void initRegler(volatile struct PIRegler *ptrReglerlq);

void mainSetPIReglerldParams(struct PIRegler *ptrPIReglerld);

void mainSetPIReglerlgParams(struct PIRegler *ptrPIReglerlq);

Luis Alfonso Puertollano Ventura 24

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

B. Literaturverzeichnis
[1] Laboratorio de procesos industriales:

http://www.elai.upm.es:8009/spain/Asignaturas/ControlProcesos/archivos/Practicas/Practica
1.pdf

[2] Regelungstechnik:
http://www.rn-wissen.de/index.php/Regelungstechnik

[3] Anti-Windup:
http://www.20sim.com/webhelp/library/signal/control/pid control/antiwindup.htm

[4] Control PID con Anti-Windup:
http://www.micros-designs.com.ar/control-pid-con-anti-windup-en-pic/

[5] Regelungstechnik:
http://de.wikipedia.org/wiki/Regler#PI-Regler

[6] Infineon: [AP16084] FOC of a PMSM Application Note, V1.0, May 2004

[7] Sahhary, Bassel; Elektrische Antreibe mit dauermagneterregten Maschinen im dynamischen
sensorlosen Betrieb. Hamburg, 2008.

[8] Nickl, Felix; Feoldorientierte Motorregelung fiir ein Elektrofahrzeug; Niirnberg, 2011.

[9] Control system with anti-windup measure:
http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node92.html

[10] Universidad de Zaragoza;
Regelungstechnik-, Leistungs-, und Digitalelektronikunterlagen.

[11] [Sahhary 2008] Sahhary, Bassel: Elektrische Antriebe mit dauermagneterregten
Maschinen im dynamischen sensorlosen Betrieb, Helmut-Schmidt-Universitat Hamburg, Diss.,
2008. http://opus.unibw-hamburg.de/opus/volltexte/2009/1904/pdf/2009_Sahhary.pdf,
Abruf: 01.02.2011

[12]Datenblatter:

http://www.infineon.com/dgd|/XC2287M-
PB.pdf?folderld=db3a3043132679fb01133eb909a307c3&fileld=db3a30431c69a49d011c94d56
aa7058d

[13] [Udenar] Universidad de Colombia, Kolumbien Universitat

Luis Alfonso Puertollano Ventura 25

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fir ein Elektrofahrzeug

C. Anhang

C.1. Mikrocontrollers Infineon XC2287M

Alles ausklappen

Unterkategorie auswahlen

XC2000 Development Tools, Software and (£ Service, Support and Training
Kits

The XC223xM (LQFP-64), XC226xM (LQFP-100) and XC228xM (LQFP-144) microcontroller series is based on Infineon's popular and
well-established C166 architecture. With a Flash size of up to 832 KByte and a 80MHz performance, the microcontroller is well suited
for automotive body applications.

Key features:

= 80 MHz frequency = 80 MIPS performance

= Up to 832 KB of flash memory and S0 KB of RAM
= Parallel Flash Programming

= Up to 4 PWM units (CCUB) to drive 3-phase motor
= Two very fast 10-bit A/D converters

= Up to 6 serial interfaces (USIC channels)

= Upto 6 CAN

= Low PIN count package LQFP-64

= Low power consumption

= Low power modes

= DAP - Device Access Port (2 wire JTAG, replaces S wire JTAG)

XC22xxM Series
Subfamily XC2287TM
Core Core C166SV2
Frequency 40-80
(MHZ)
Package QFP144 | EEEESSS
| Microcontrollers
Flash Program 384-768 e
Flash (kB) \
Flash Data Flash 64
(kB)
SRAM 7 SRAM 26-50
(kB)
CAN Channels 6 (256)
(message
objects)
ADC Channels 24
Universal Serial 8

Interface
[USIC] Channels*

Capture CCu1 0
Compare

. ccu2 1
Units
[CCu]™ ccue 4
Temperatur -40°C to
(Tambient) +125°C

Abbildung 15: Dattenblatt des XC2287M Mikrocontroller [Infineon]

Luis Alfonso Puertollano Ventura 26

PI-Regler mit Anti-Windup fiir eine feldorientierte
Motorregelung fiir ein Elektrofahrzeug

XC2287M

Next Generation Microcontroller
with 32 - Bit Performance

Block Diagram XC2287M

PSRAM ocDs
32KB Debug Support
Flash

64 KB EBC

XBUS Control
External Bus
Control

Osc | PLL
Clock
G eneration

GPIO Ports

Further Features

B Two synchronizable A/D converters with 24 channels, optional data pre-processing, and a conversion time down to 1.2ps
B 16-Channel general purpose capture/compare unit

B Four capture/compare units for flexible PWM signal generation (3 capture/compare channels and 1 compare channel)
B Multi-functional general purpose timer unit with 5 timers

B Eight serial interface channels to be used as UART, LIN, buffered SPI, IIC Bus Interface, IIS Interface

B On-Chip MultiCAN Interface (Rev. 2.0B active) with 256 message objects on 6 CAN nodes and gateway functionality

W On-chip real time clock

B Enhanced power saving modes with flexible power management

B Programmable watchdog timer and oscillator watchdog

W Up to 119 general purpose I/0 lines

B On-chip bootstrap loader

B Supported by a large range of development tools

W On-chip debug supportvia JTAG interface

B 144-pin green LQFP package, 0.5 mm (19.7 mil) pitch

B Temperature range: -40° to +125°C

B Single Power Supply from 3.0V to 5.5V

B Hardware CRC-Checker with Programmable Polynomial to supervise On-Chip Memory Areas

Abbildung 16: Diagram Block XC2287M [Infineon]

Luis Alfonso Puertollano Ventura 27

