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Einleitung 
Die Arbeit wurde in Rahmen des europeischen StudentenAustauschprogramms ERASMUS am 

Institut ELSYS durchgeführt. 

Es geht um die Programmierung und Steuerung des Motors eines bereits vorhandenen 

Elektrofahrzeugs (E-Buggy). Für das Fahrzeug braucht man verschiedene Komponenten, wie 

einen Umrichter der von einem Mikrocontroller gesteuert und geregelt wird, andere 

Leistungselektronik Elemente, sowie ein kleines Batteriemanagement. 
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A. Abkürzungsverzeichnis 

 

µC Mikrocontroller 

FOC Feldorientierte Regelung (engl. Field Oriented Control) 
PWM Pulsenweitenmodulation 

PMSM Permanenterregte Synchronmaschine (engl. Permanent Magnet 

Synchronous Motors) 
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1. Zusammenfassung 
Das Projekt E-Buggy hat zum Ziel der Bau eines Elektrofahrzeugs (E-Buggy). Dafür wurden  

verschiedene Teams gebildet, welche sich verschiedenen Teilprojekten gewidmet haben. Dazu 

gehört das Design des Fahrzeuges, die Untersuchung der Batterie und das Programmieren der 

Leistungelektronik. Ich persönlich habe mich besonders mit der Motorregelung beschäftigt. 

Für die Steuerung der PMSM, wird die feldorientierte Regelung (Field Oriented Control, FOC) 

genutzt (Abb. 1). Dafür war es zunächst nötig zu lernen, wie jedes Teilaufgabe funktioniert. 

Dazu gehört  zum Beispiel: die Anwendung der Park- und Clark-Transformationen, die Funktion 

des Umrichters, das Programmieren eines PI-Reglers in C für den Infineon µC XC2287M. 

Für diesen Teil der Arbeit, hat man sich in der PI-Regler beschäftigt. So kann man mit dem 

Elektromotor und seinem Drehmoment arbeiten (Abb. 1), ohne die maximale Grenze des 

Motorstromes zu überschreiten. Um das ganzen Regelungsystem gut funktionieren zu machen, 

muss man auch anpassende Reglerparameter hingefügt werden. 

 
Abbildung 1: Struktur der Feldorientierten Motorregelung [Sahhary, 2008] 

Folgende Programme wurden eingesetz: 

• DAvE – Auto code generation. 

• TASKING VX-toolset for C166 – C/C++ compiler and debugger. 

• DAS Control Server – Device Acces Server. 

• UDE Desktop 3.0 – Universal Debug Engine, Develop and test software applications. 
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2. Vergleich der Reglertypen 
In der Abbildung 2 (Abb. 2) ist der Vergleich von P-, I-, PI-, PD- und PID-Regler in einem 

Regelkreis mit PT2-Glied als Regelstrecke dargestellt. Es ist deutlich zu sehen, dass die Regler 

ohne I-Anteil (P und PD) eine bleibende Regelabweichung aufweisen. Erst die Regler mit I-

Anteil können auf den normierter Endwert von 1 ausregeln. Beim reinen I-Regler geht das so 

langsam, dass es gar nicht mehr auf dem Diagramm zu sehen ist. Der Hauptzweck eines I-

Anteils ist also die Vermeidung bleibender Regelabweichungen. Daher ist ein I-Anteil 

normalerweise nicht nötig, wenn die Strecke schon einen I-Anteil besitzt (ausnahme: es wird 

ein doppelter I-Anteil zur Vermeidung von Schleppfehlern benötigt). 

Die schnellsten Regler sind die mit einem D-Anteil (PD- und PID-Regler). Der D-Anteil kommt 

deshalb hauptsächlich zum Einsatz, wenn schnelle Dynamik gefragt ist oder die Strecke selbst 

schon instabil ist. Voraussetzung für die Schnelligkeit ist allerdings, dass keine Begrenzung im 

Stellglied oder Aktuator auftritt. In der Praxis ist eine Begrenzung meistens nicht zu vermeiden, 

deshalb gilt die Sprungantwort in der Praxis nur für kleine Sprünge. 

Die Regler ohne D-Anteil, aber mit P-Anteil (P- und PI-Regler) sind mittelschnell. Für einfache 

Regelaufgaben reicht auch oft schon ein reiner P-Regler aus, wenn die bleibende 

Regelabweichung vernachlässigt werden kann oder wenn die Strecke schon einen I-Anteil 

besitzt. 

  
Abbildung 2: Vergleich der Antwort der Reglertypen [www.rn-wissen.de, Regelungstechnik] 
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3. PI-Regler mit Anti-Windup 
Der PI-Regler (Proportional–Integral Regler) besteht aus den Anteilen des P-Gliedes KP und I-

Gliedes mit der Zeitkonstante TN. Er kann sowohl aus einer Parallelstruktur oder aus einer 

Reihenstruktur definiert werden. Der Begriff der Nachstellzeit TN stammt aus der 

Parallelstruktur des Reglers (Abb. 3). 

 
Abbildung 3: Struktur des PI-Reglers [Udenar] 

 

So dass diese Ideale Sprungsantwort sehen kann (Abb. 4): 

���� � �� ∗ 	��� 
 �� � 	�
� �

�

�
 

 

 
(3.1.) 

Kp → Proportionale Verstärkung 

Ki → Integral Verstärkung 

 

Abbildung 4: Idealer Sprungantwort des PI-Reglers [Wikipedia, PI-Regler] 

Signaltechnisch wirkt der PI-Regler gegenüber dem I-Regler so, dass nach einem 

Eingangssprung dessen Wirkung um die Nachstellzeit TN vorverlegt ist. Durch den I-Anteil wird 

die stationäre Genauigkeit gewährleistet, die Regelabweichung wird nach dem Einschwingen 

der Regelgröße zu Null. 
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3.1. Eigenschaften des PI-Reglers 

• Kompensation eines PT1-Gliedes der Strecke: Er kann mit dem PD-Glied ein PT1-Glied 

der Strecke kompensieren und damit den offenen Regelkreis vereinfachen. 

• Keine Regelabweichung bei konstantem Sollwert: Durch das I-Glied wird im 

stationären Zustand bei konstantem Sollwert die Regelabweichung zu Null. 

• Langsamer Regler: Der durch das I-Glied erworbene Vorteil der Vermeidung einer 

stationären Regelabweichung hat auch den Nachteil, dass eine zusätzliche Polstelle mit 

-90 ° Phasenwinkel in den offenen Regelkreis eingefügt wird, was eine Reduzierung der 

Kreisverstärkung KPI bedeutet. Deshalb ist der PI-Regler kein schneller Regler. 

• 2 Einstellparameter: Der Regler enthält nur zwei Einstellparameter, KPI = KP / TN und TN. 

• Regelstrecke höherer Ordnung: kann optimal an einer Regelstrecke höherer Ordnung 

eingesetzt werden, von der nur die Sprungantwort bekannt ist. Durch Ermittlung der 

Ersatztotzeit TU (Verzugszeit) und der Ersatzverzögerungs-Zeitkonstante TG 

(Ausgleichszeit) kann das PD-Glied des Reglers die Zeitkonstante TG kompensieren. Für 

die I-Regler-Einstellung der verbleibenden Regelstrecke mit Ersatztotzeit TU gelten die 

bekannten Einstellvorschriften. 

• Regelstrecke mit 2 dominanten Zeitkonstanten: er kann eine Regelstrecke mit zwei 

dominanten Zeitkonstanten von PT1-Gliedern regeln, wenn die Kreisverstärkung 

reduziert wird und die längere Dauer des Einschwingens der Regelgröße auf den 

Sollwert akzeptiert wird. Dabei kann mit KPI jeder gewünschte Dämpfungsgrad D 

eingestellt werden, von aperiodisch (D=1) bis schwach gedämpft schwingend (D gegen 

0). 

• PD-Glied ohne Differenzierung: Das in der Reihenstruktur entstandene PD-Glied des PI-

Reglers ist mathematisch ohne Differenzierung entstanden. Deshalb entsteht bei der 

Realisierung des Reglers in der Parallelstruktur auch keine parasitäre Verzögerung. 

Wegen eines möglichen Windup-Effektes durch Regelstreckenbegrenzung der 

Stellgröße u(t) ist die schaltungsmäßige Realisierung des PI-Reglers in Parallelstruktur 

anzustreben. 

Die Grundidee des PI-Reglers (Abb. 5) ist einfach und lässt sich vergleichen mit der 

Entscheidungsfindung von Menschen, welche häufig auf der Kenntniss von Vergangenheit und 

Gegenwart basiert. Der PI-Regler macht das Gleiche mit dem Regler. Das Steuersignal besteht 

aus zwei Teilen: 

• Ein proportionaler Teil zum Auffinden des Fehlers (Regelverhalten aufgrund der 

gegenwärtigen Information). 

• Ein proportionaler Teil zum Integral-Fehler der Vergangenheit (Regelverhalten 

aufgrund der vergangenen Information). 
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So dass: 

 
Abbildung 5: PI-Regler [www.rn-wissen.de, Regelungstechnik] 

Übertragungsfunktion der Parallelstruktur. Solche Werten werden so normalerweise 

berechnet: 

  

TN und KP sind berechnet so dass es keine Oberschingungen erscheinen. Wenn man es falsch 

macht, kann folgendes passieren (Abb. 6): 

  
Abbildung 6: Sprungsnatworte mit Oberschwingungen [Luis Puertollano, 2012] 

Deswegen, werden die kritische Werte berechnet, um an der Grenze den 

Oberschwingungen zu bleiben, und werden danach wie folgendes benutzt: 
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Obwohl viele Aspekte eines Steuersystems von der linearen Regelungstechnik verstanden 

werden können, müssen einige nicht-lineare Effekte berücksichtigt werden. Bei der 

Implementierung eines Reglers sind dies zum Beispiel:  

• Ein motor hat eine nominale Geschwindigkeit (wie in unserem Fall). 

• Ein Ventil hat eine maximale und eine minimale Öffnung. 

• Eine Stromversorgung eines  elektrischen Gerätes ist begrenzt. 

3.2. Anti-Windup Funktion 

Für eine Steuerung mit einer Vielzahl von Betriebsbedingungen kann es vorkommen, dass die 

Regelgröße die vorgegebenen Grenzen des Aktuators erreicht. Wenn dies passiert, bleibt die 

Rückkopplungsschleife in ihrer Grenze unabhängig von dem Prozeß-Ausgang. Bei Verwendung 

eines integralen Reglers wird ein möglicher Fehler immer weiter seinen Wert steigern. Der 

Integral-Anteil wird ganz groß und es wird die Wirkung "Windup" produziert (Abb. 7). 

 

 
Abbildung 7: Beispiel von Windup [Luis Puertollano, 2012] 

 

Dies kann so vermieden werden: 

• Der Begrenzung der Reglerabweichung bewirkt, dass der Ausgang des Reglers nicht die 

Begrenzung des Aktuators erreichen kann. Dies produziert häufig Begrenzungen in der 

Wirkung des Reglers, aber kann nichts gegen den Windup-Effekt, welcher  von 

Störungen produziert wird, ausrichten. 

• Ein anderer Weg ist die Neuberechnung des Integralanteils: Wenn der Ausgang 

gesättigt ist, wird das Integral neu berechnet, so dass der neue Wert ein 

Ausgangssignal an der Sättigungsgrenze darstellt. 

Eine andere Methode ist die konditionale Integration zur Begrenzung des Integralüberlaufs. 

Man benutzt ein Schalter, wenn das Signal sehr weit weg von dem stationären Status liegt. In 

diesem Fall, wird der I-Anteil nur unter solchen Bedingungen benutzt. In anderen Fällen, bleibt 

der I-Anteil gleich. Es wird auch „Festbinden des Integrators“  genannt. 
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Abbildung 8: PI-Regler Parallelform und Begrenzung [www.20sim.com] 

 
Abbildung 9: PI-Regler Seriesform und Begrenzung [www.20sim.com] 

Der Unterschied zwischen Eingang und Ausgang (TR) ist rückgekoppelt in den I-Anteil durch 

den 1/Ta Verstärkung (Abbs. 8 und 9). Eine gute Überwachung ist die Rückkopplung mit Anti-

Windup. Der Aktuator ist von einem Signal-Begrenzer vertreten worden. 

Sobald der Begrenzer sättigt, bekommt das Signal einen unterschiedlichen Wert von null 

aufwärts und vermeidet, dass der I-Anteil in Windup geht (Abb. 10). Reset-Zeitkonstanten 

bestimmen dabei, wie schnell auf Windup des Integrators reagiert wird. 

 

Abbildung 10: Antwort ohne und mit Anti-Windup [micros-designs, Suky, CreativeCommons] 
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Abbildung 11: Antwort mit Switch On-Off Methode [micros-designs, Suky, CreativeCommons] 
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Der Ziel des Anti-Windups ist der Integration zu begrenzen (Abb. 12). 

 

Abbildung 12: Antwort des Systems mit und ohne Anti-Windup 

[Universität Bochum, Christian Schmid, 2005] 

Diese PI-Regler mit Anti-Windup müssen angewendet werden, so dass ihre Funktion von 

einem µC ausgeübt werden kann. Der Aktuator wird begrenzt und gibt ein Signal (Abb. 13), 

welches auf der folgenden Grundidee begrenzt wird: 

������ � �������;	������ < ��������  
������ � �����;	�������� <� ����� <� ��������				  
������ � �� ����;	��!��� > �� �����  
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Abbildung 13: Grundfunktionsweise des Reglers mit Anti-Windup stationares Vorhalten 

[http://www.20sim.com] 

Ein Beispiel des Grundprogrammes wäre folgendes: 

Programm-Code in C: 

	 � # −  ; // Vergleich 

	%�� � 	%�� 
 	; // Integration I-Anteil 

if �	%�� < −400�{	%�� � −400; } // Begrenzung I-Anteil 

if �	%�� < 400�{	%�� � 400; } 
* � Kp ∗ e + Ki ∗ Ta ∗ esum;//Reglergleichung 

if �* < 0�{* = 0; } // Begrenzung Stellgröβe 

if �* < 1023�{* = 1023; } 

789 = *; // Übergabe Stellgröβe 
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4. Realisierung des PI-Reglers 

Für die Codeentwicklung wird die Software „TASKING VX-toolset for C166“ eingesetzt (Abb. 14). 

 
Abbildung 14: Ansicht von TASKING VX-toolset for C166 [Luis Puertollano, 2012] 
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4.1. PI-Regler mit Anti-Windup-Funktionalität 

4.1.1. Initialisierung 

Hier wird der Regler initialisiert, und wird folgende Werte für die verschiedenen Glieden 

benutzen: 

// Initialisierung des Reglers – Werten die man für die verschiedenen Glieden will. 

void initRegler(volatile struct PIRegler *ptrRegler) 

{ 

 ptrRegler->KP   = 0;// Proportionalkonstant - Constante proporcional 

 ptrRegler->KI   = 0;// Integrationskonstant - Constante de integración 

 

 ptrRegler->StellGroesse  = 0;// Stellgrösse - Control de la variable 

 ptrRegler->FuehrungsGroesse = 0;// Führungsgrösse - Comando de la variable 

 ptrRegler->RegelGroesse  = 0;// Regelgrösse - Control de la variable 

 

 ptrRegler->RegelAbweichung = 0;// Abweichung (Unterschied) - Desviación 

 

 ptrRegler->EingangsBegrenzungMax = 0;// Maximal Eingangs Begrenzung -  

Limitación máxima de entrada 

 ptrRegler->EingangsBegrenzungMin = 0;// Minimal Eingangs Begrenzung -  

Limitación mínima de entrada 

 ptrRegler->AusgangsBegrenzungMax = 0;// Maximal Ausgangs Begrenzung -  

Limitación máxima de salida 

 ptrRegler->AusgangsBegrenzungMin = 0;// Minimal Ausgangs Begrenzung -  

Limitación mínima de salida 

 

 ptrRegler->Abtastzeit  = 0;// Abtastzeit - Tiempo de muestreo 

 

 ptrRegler->Summe   = 0;// Summe - Suma 

 ptrRegler->SummenBegrenzungMax = 0;// Maximal Summe Begrenzung -  

Limitación máxima de la suma 

 ptrRegler->SummenBegrenzungMin = 0;// Minimal Summe Begrenzung -  

Limitación mínima de la suma 

}  
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4.1.2. Berechnung und Anti-Windup-Algorithmus 

Hier wird es beschrieben wie man die Berechnung des PI-Reglers programmiert ist: 

// Berechnung des Regler Algorithmus -> Cálculo del algoritmo del regulador 

long calcRegler(volatile struct PIRegler *ptrRegler) 

{ 

 // Berechnung der Regel Abweichung - Cálculo 

 ptrRegler->RegelAbweichung = ptrRegler->FuehrungsGroesse - ptrRegler->RegelGroesse; 

 

 // Begrenzung für den Regler Eingang - Limitación 

 if(ptrRegler->RegelAbweichung > ptrRegler->EingangsBegrenzungMax) 

 { 

  ptrRegler->RegelAbweichung = ptrRegler->EingangsBegrenzungMax; 

 } 

 else if(ptrRegler->RegelAbweichung < ptrRegler->EingangsBegrenzungMin) 

 { 

  ptrRegler->RegelAbweichung = ptrRegler->EingangsBegrenzungMin; 

 } 

 

 // Berechnung der Regler Summe - Cálculo de la suma del regulador 

 ptrRegler->Summe = ptrRegler->Summe + ptrRegler->RegelAbweichung; 

 

 // Begrenzung der Regler Summe - Limitación de la suma del regulador 

 if(ptrRegler->Summe > ptrRegler->SummenBegrenzungMax) 

 { 

  ptrRegler->Summe = ptrRegler->SummenBegrenzungMax; 

 } 

 else if(ptrRegler->Summe < ptrRegler->SummenBegrenzungMin) 

 { 

  ptrRegler->Summe = ptrRegler->SummenBegrenzungMin; 

 } 
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 // Berechnung der Stellgröße - Cálculo de la variable de control 

 ptrRegler->StellGroesse = ptrRegler->KP * ptrRegler->RegelAbweichung + 

     ptrRegler->KI * ptrRegler->Abtastzeit * ptrRegler->Summe; 

 

 // Begrenzung für den Regler Ausgang - Limitación de la salida del regulador 

 if(ptrRegler->StellGroesse > ptrRegler->AusgangsBegrenzungMax) 

 { 

  ptrRegler->StellGroesse = ptrRegler->AusgangsBegrenzungMax; 

 } 

 else if(ptrRegler->StellGroesse < ptrRegler->AusgangsBegrenzungMin) 

 { 

  ptrRegler->StellGroesse = ptrRegler->AusgangsBegrenzungMin; 

 } 

 

 return ptrRegler->StellGroesse; 

} 

/*********************************************************************/ 

4.1.3. Ergebnisse 

Hier wird es beschrieben wie man die Ergebnisse des PI-Reglers bekommen kann: 

// Get Methode für KP 

int getReglerKP(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->KP; 

} 

 

// Set Methode für KP 

void setReglerKP(volatile struct PIRegler *ptrRegler, int kp) 

{ 

 ptrRegler->KP = kp; 
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} 

/*********************************************************************/ 

// Get Methode für KI 

int getReglerKI(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->KI; 

} 

 

// Set Methode für KI 

void setReglerKI(volatile struct PIRegler *ptrRegler, int ki) 

{ 

 ptrRegler->KP = ki; 

} 

/*********************************************************************/ 

// Get Methode für StellGroesse 

long getReglerStellGroesse(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->StellGroesse; 

} 

 

// Set Methode für StellGroesse 

void setReglerStellGroesse(volatile struct PIRegler *ptrRegler, long stellgroesse) 

{ 

 ptrRegler->StellGroesse = stellgroesse; 

} 

/*********************************************************************/ 

// Get Methode für FuehrungsGroesse 

long getReglerFuehrungsGroesse(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->FuehrungsGroesse; 
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} 

 

// Set Methode für FuehrungsGroesse 

void setReglerFuehrungsGroesse(volatile struct PIRegler *ptrRegler, long fuehrungsgroesse) 

{ 

 ptrRegler->FuehrungsGroesse = fuehrungsgroesse; 

} 

/*********************************************************************/ 

// Get Methode für RegelGroesse 

long getReglerRegelGroesse(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->RegelGroesse; 

} 

 

// Set Methode für RegelGroesse 

void setReglerRegelGroesse(volatile struct PIRegler *ptrRegler, long regelgroesse) 

{ 

 ptrRegler->RegelGroesse = regelgroesse; 

} 

/*********************************************************************/ 

// Get Methode für RegelAbweichung 

long getReglerRegelAbweichung(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->RegelAbweichung; 

} 

 

// Set Methode für RegelAbweichung 

void setReglerRegelAbweichung(volatile struct PIRegler *ptrRegler, long regelabweichung) 

{ 

 ptrRegler->RegelAbweichung = regelabweichung; 
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} 

/*********************************************************************/ 

// Get Methode für EingangsBegrenzungMax 

long getReglerEingangsBegrenzungMax(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->EingangsBegrenzungMax; 

} 

 

// Set Methode für EingangsBegrenzungMax 

void setReglerEingangsBegrenzungMax(volatile struct PIRegler *ptrRegler, long eingangsBegrenzungMax) 

{ 

 ptrRegler->EingangsBegrenzungMax = eingangsBegrenzungMax; 

} 

/*********************************************************************/ 

// Get Methode für EingangsBegrenzungMin 

long getReglerEingangsBegrenzungMin(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->EingangsBegrenzungMin; 

} 

 

// Set Methode für EingangsBegrenzungMin 

void setReglerEingangsBegrenzungMin(volatile struct PIRegler *ptrRegler, long eingangsBegrenzungMin) 

{ 

 ptrRegler->EingangsBegrenzungMin = eingangsBegrenzungMin; 

} 

/*********************************************************************/ 

// Get Methode für AusgangsBegrenzungMax 

long getReglerAusgangsBegrenzungMax(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->AusgangsBegrenzungMax; 



PI-Regler mit Anti-Windup für eine feldorientierte 

Motorregelung für ein Elektrofahrzeug 

 

Luis Alfonso Puertollano Ventura 21 

 

} 

 

// Set Methode für AusgangsBegrenzungMax 

void setReglerAusgangsBegrenzungMax(volatile struct PIRegler *ptrRegler, long ausgangsBegrenzungMax) 

{ 

 ptrRegler->AusgangsBegrenzungMax = ausgangsBegrenzungMax; 

} 

/*********************************************************************/ 

// Get Methode für AusgangsBegrenzungMin 

long getReglerAusgangsBegrenzungMin(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->AusgangsBegrenzungMin; 

} 

 

// Set Methode für AusgangsBegrenzungMin 

void setReglerAusgangsBegrenzungMin(volatile struct PIRegler *ptrRegler, long ausgangsBegrenzungMin) 

{ 

 ptrRegler->AusgangsBegrenzungMin = ausgangsBegrenzungMin; 

} 

/*********************************************************************/ 

// Get Methode für Abtastzeit 

int getReglerAbtastzeit(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->Abtastzeit; 

} 

 

// Set Methode für Abtastzeit 

void setReglerAbtastzeit(volatile struct PIRegler *ptrRegler, int abtastzeit) 

{ 

 ptrRegler->Abtastzeit = abtastzeit; 
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} 

/*********************************************************************/ 

// Get Methode für SummenBegrenzungMax 

long getReglerSummenBegrenzungMax(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->SummenBegrenzungMax; 

} 

 

// Set Methode für SummenBegrenzungMax 

void setReglerSummenBegrenzungMax(volatile struct PIRegler *ptrRegler, long summenBegrenzungMax) 

{ 

 ptrRegler->SummenBegrenzungMax = summenBegrenzungMax; 

} 

/*********************************************************************/ 

// Get Methode für SummenBegrenzungMin 

long getReglerSummenBegrenzungMin(volatile struct PIRegler *ptrRegler) 

{ 

 return ptrRegler->SummenBegrenzungMin; 

} 

 

// Set Methode für SummenBegrenzungMin 

void setReglerSummenBegrenzungMin(volatile struct PIRegler *ptrRegler, long summenBegrenzungMin) 

{ 

 ptrRegler->SummenBegrenzungMin = summenBegrenzungMin; 

} 

 

 

/*********************************************************************/ 
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4.1.4. Einstellungen des Reglers 

Hier wird es geschrieben wie man die Parametereinstellungen des PI-Reglers: 

// Reglereinstellungen setzen für Id-Regler - Establecer los parámetros del Regulador (Potencia reactiva) 

 

void mainSetPIReglerIdParams(struct PIRegler *ptrPIReglerId) 

{ 

   setReglerKP(ptrPIReglerId, 0); 

   setReglerKI(ptrPIReglerId, 0); 

   setReglerEingangsBegrenzungMax(ptrPIReglerId, 350); 

   setReglerEingangsBegrenzungMin(ptrPIReglerId, -350); 

   setReglerAusgangsBegrenzungMax(ptrPIReglerId, 52213); 

   setReglerAusgangsBegrenzungMin(ptrPIReglerId, -52213); 

   setReglerAbtastzeit(ptrPIReglerId, 1); 

   setReglerSummenBegrenzungMax(ptrPIReglerId, 100000); 

   setReglerSummenBegrenzungMin(ptrPIReglerId, -100000); 

} 

 

// Reglereinstellungen setzen für Iq-Regler  - Establecer los parámetros del Regulador (Potencia activa) 

void mainSetPIReglerIqParams(struct PIRegler *ptrPIReglerIq) 

{ 

   setReglerKP(ptrPIReglerIq, 0); 

   setReglerKI(ptrPIReglerIq, 0); 

   setReglerEingangsBegrenzungMax(ptrPIReglerIq, 350); 

   setReglerEingangsBegrenzungMin(ptrPIReglerIq, -350); 

   setReglerAusgangsBegrenzungMax(ptrPIReglerIq, 52213); 

   setReglerAusgangsBegrenzungMin(ptrPIReglerIq, -52213); 

   setReglerAbtastzeit(ptrPIReglerIq, 1); 

   setReglerSummenBegrenzungMax(ptrPIReglerIq, 100000); 

   setReglerSummenBegrenzungMin(ptrPIReglerIq, -100000); 

} 
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Mit diesem Code wird der Regler definiert, d.h. die Ausgangsbegrenzungen und die Parameter 

des Reglers. Und man muss auch den Regler initialisieren. Damit wird folgender Code in der 

Main.c File geschrieben: 

4.2. Hauptprogramm 

Hier wird es geschrieben, wie man die anderen Teilen des Programms anrufen muss: 

// Initialisierung des Reglers 

void initRegler(volatile struct PIRegler *ptrReglerId); 

void initRegler(volatile struct PIRegler *ptrReglerIq); 

void mainSetPIReglerIdParams(struct PIRegler *ptrPIReglerId); 

void mainSetPIReglerIqParams(struct PIRegler *ptrPIReglerIq); 
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C. Anhang  

C.1. Mikrocontrollers Infineon XC2287M 

 

Abbildung 15: Dattenblatt des XC2287M Mikrocontroller [Infineon] 
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Abbildung 16: Diagram Block XC2287M [Infineon] 


