

PI-Regler mit Anti-Windup für eine

feldorientierte Motorregelung für ein

Elektrofahrzeug
Bachelorthesis - Abschlussprojekt

Autor: Luis Alfonso Puertollano Ventura

Studienbereich: Elektro- und Informationstechnik

Matrikelnummer: 23 50 38 2

Erstprüfer: Prof. Dr.- Ing. Armin Dietz

Zweitprüfer: Prof. Dr.- Ing. Norbert Graß

Datum: 23/08/2012

[Escriba aquí una descripción breve del documento. Normalmente, una descripción breve es

un resumen corto del contenido del documento. Escriba aquí una descripción breve del

documento. Normalmente, una descripción breve es un resumen corto del contenido del

documento.]

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 1

Einleitung
Die Arbeit wurde in Rahmen des europeischen StudentenAustauschprogramms ERASMUS am

Institut ELSYS durchgeführt.

Es geht um die Programmierung und Steuerung des Motors eines bereits vorhandenen

Elektrofahrzeugs (E-Buggy). Für das Fahrzeug braucht man verschiedene Komponenten, wie

einen Umrichter der von einem Mikrocontroller gesteuert und geregelt wird, andere

Leistungselektronik Elemente, sowie ein kleines Batteriemanagement.

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 2

Inhaltsverzeichnis

A. Abkürzungsverzeichnis .. 3

1. Zusammenfassung ... 4

2. Vergleich der Reglertypen ... 5

3. PI-Regler mit Anti-Windup .. 6

3.1. Eigenschaften des PI-Reglers .. 7

3.2. Anti-Windup Methode .. 9

4. Realisierung des PI-Reglers ... 14

4.1. PI-Regler mit Anti-Windup-Funktionalität .. 15

4.1.1. Initialisierung ... 15

4.1.2. Berechnung und Anti-Windup-Algorithmus.. 16

4.1.3. Ergebnisse ... 17

4.1.4. Einstellungen des Reglers .. 23

4.2. Hauptprogramm .. 24

B. Literaturverzeichnis ... 25

C. Anhang .. 26

C.1. Mikrocontrollers Infineon XC2287M .. 26

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 3

A. Abkürzungsverzeichnis

µC Mikrocontroller

FOC Feldorientierte Regelung (engl. Field Oriented Control)
PWM Pulsenweitenmodulation

PMSM Permanenterregte Synchronmaschine (engl. Permanent Magnet

Synchronous Motors)

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 4

1. Zusammenfassung
Das Projekt E-Buggy hat zum Ziel der Bau eines Elektrofahrzeugs (E-Buggy). Dafür wurden

verschiedene Teams gebildet, welche sich verschiedenen Teilprojekten gewidmet haben. Dazu

gehört das Design des Fahrzeuges, die Untersuchung der Batterie und das Programmieren der

Leistungelektronik. Ich persönlich habe mich besonders mit der Motorregelung beschäftigt.

Für die Steuerung der PMSM, wird die feldorientierte Regelung (Field Oriented Control, FOC)

genutzt (Abb. 1). Dafür war es zunächst nötig zu lernen, wie jedes Teilaufgabe funktioniert.

Dazu gehört zum Beispiel: die Anwendung der Park- und Clark-Transformationen, die Funktion

des Umrichters, das Programmieren eines PI-Reglers in C für den Infineon µC XC2287M.

Für diesen Teil der Arbeit, hat man sich in der PI-Regler beschäftigt. So kann man mit dem

Elektromotor und seinem Drehmoment arbeiten (Abb. 1), ohne die maximale Grenze des

Motorstromes zu überschreiten. Um das ganzen Regelungsystem gut funktionieren zu machen,

muss man auch anpassende Reglerparameter hingefügt werden.

Abbildung 1: Struktur der Feldorientierten Motorregelung [Sahhary, 2008]

Folgende Programme wurden eingesetz:

• DAvE – Auto code generation.

• TASKING VX-toolset for C166 – C/C++ compiler and debugger.

• DAS Control Server – Device Acces Server.

• UDE Desktop 3.0 – Universal Debug Engine, Develop and test software applications.

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 5

2. Vergleich der Reglertypen
In der Abbildung 2 (Abb. 2) ist der Vergleich von P-, I-, PI-, PD- und PID-Regler in einem

Regelkreis mit PT2-Glied als Regelstrecke dargestellt. Es ist deutlich zu sehen, dass die Regler

ohne I-Anteil (P und PD) eine bleibende Regelabweichung aufweisen. Erst die Regler mit I-

Anteil können auf den normierter Endwert von 1 ausregeln. Beim reinen I-Regler geht das so

langsam, dass es gar nicht mehr auf dem Diagramm zu sehen ist. Der Hauptzweck eines I-

Anteils ist also die Vermeidung bleibender Regelabweichungen. Daher ist ein I-Anteil

normalerweise nicht nötig, wenn die Strecke schon einen I-Anteil besitzt (ausnahme: es wird

ein doppelter I-Anteil zur Vermeidung von Schleppfehlern benötigt).

Die schnellsten Regler sind die mit einem D-Anteil (PD- und PID-Regler). Der D-Anteil kommt

deshalb hauptsächlich zum Einsatz, wenn schnelle Dynamik gefragt ist oder die Strecke selbst

schon instabil ist. Voraussetzung für die Schnelligkeit ist allerdings, dass keine Begrenzung im

Stellglied oder Aktuator auftritt. In der Praxis ist eine Begrenzung meistens nicht zu vermeiden,

deshalb gilt die Sprungantwort in der Praxis nur für kleine Sprünge.

Die Regler ohne D-Anteil, aber mit P-Anteil (P- und PI-Regler) sind mittelschnell. Für einfache

Regelaufgaben reicht auch oft schon ein reiner P-Regler aus, wenn die bleibende

Regelabweichung vernachlässigt werden kann oder wenn die Strecke schon einen I-Anteil

besitzt.

Abbildung 2: Vergleich der Antwort der Reglertypen [www.rn-wissen.de, Regelungstechnik]

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 6

3. PI-Regler mit Anti-Windup
Der PI-Regler (Proportional–Integral Regler) besteht aus den Anteilen des P-Gliedes KP und I-

Gliedes mit der Zeitkonstante TN. Er kann sowohl aus einer Parallelstruktur oder aus einer

Reihenstruktur definiert werden. Der Begriff der Nachstellzeit TN stammt aus der

Parallelstruktur des Reglers (Abb. 3).

Abbildung 3: Struktur des PI-Reglers [Udenar]

So dass diese Ideale Sprungsantwort sehen kann (Abb. 4):

���� � �� ∗ 	���
 �� � 	�
� �

�

�

(3.1.)

Kp → Proportionale Verstärkung

Ki → Integral Verstärkung

Abbildung 4: Idealer Sprungantwort des PI-Reglers [Wikipedia, PI-Regler]

Signaltechnisch wirkt der PI-Regler gegenüber dem I-Regler so, dass nach einem

Eingangssprung dessen Wirkung um die Nachstellzeit TN vorverlegt ist. Durch den I-Anteil wird

die stationäre Genauigkeit gewährleistet, die Regelabweichung wird nach dem Einschwingen

der Regelgröße zu Null.

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 7

3.1. Eigenschaften des PI-Reglers

• Kompensation eines PT1-Gliedes der Strecke: Er kann mit dem PD-Glied ein PT1-Glied

der Strecke kompensieren und damit den offenen Regelkreis vereinfachen.

• Keine Regelabweichung bei konstantem Sollwert: Durch das I-Glied wird im

stationären Zustand bei konstantem Sollwert die Regelabweichung zu Null.

• Langsamer Regler: Der durch das I-Glied erworbene Vorteil der Vermeidung einer

stationären Regelabweichung hat auch den Nachteil, dass eine zusätzliche Polstelle mit

-90 ° Phasenwinkel in den offenen Regelkreis eingefügt wird, was eine Reduzierung der

Kreisverstärkung KPI bedeutet. Deshalb ist der PI-Regler kein schneller Regler.

• 2 Einstellparameter: Der Regler enthält nur zwei Einstellparameter, KPI = KP / TN und TN.

• Regelstrecke höherer Ordnung: kann optimal an einer Regelstrecke höherer Ordnung

eingesetzt werden, von der nur die Sprungantwort bekannt ist. Durch Ermittlung der

Ersatztotzeit TU (Verzugszeit) und der Ersatzverzögerungs-Zeitkonstante TG

(Ausgleichszeit) kann das PD-Glied des Reglers die Zeitkonstante TG kompensieren. Für

die I-Regler-Einstellung der verbleibenden Regelstrecke mit Ersatztotzeit TU gelten die

bekannten Einstellvorschriften.

• Regelstrecke mit 2 dominanten Zeitkonstanten: er kann eine Regelstrecke mit zwei

dominanten Zeitkonstanten von PT1-Gliedern regeln, wenn die Kreisverstärkung

reduziert wird und die längere Dauer des Einschwingens der Regelgröße auf den

Sollwert akzeptiert wird. Dabei kann mit KPI jeder gewünschte Dämpfungsgrad D

eingestellt werden, von aperiodisch (D=1) bis schwach gedämpft schwingend (D gegen

0).

• PD-Glied ohne Differenzierung: Das in der Reihenstruktur entstandene PD-Glied des PI-

Reglers ist mathematisch ohne Differenzierung entstanden. Deshalb entsteht bei der

Realisierung des Reglers in der Parallelstruktur auch keine parasitäre Verzögerung.

Wegen eines möglichen Windup-Effektes durch Regelstreckenbegrenzung der

Stellgröße u(t) ist die schaltungsmäßige Realisierung des PI-Reglers in Parallelstruktur

anzustreben.

Die Grundidee des PI-Reglers (Abb. 5) ist einfach und lässt sich vergleichen mit der

Entscheidungsfindung von Menschen, welche häufig auf der Kenntniss von Vergangenheit und

Gegenwart basiert. Der PI-Regler macht das Gleiche mit dem Regler. Das Steuersignal besteht

aus zwei Teilen:

• Ein proportionaler Teil zum Auffinden des Fehlers (Regelverhalten aufgrund der

gegenwärtigen Information).

• Ein proportionaler Teil zum Integral-Fehler der Vergangenheit (Regelverhalten

aufgrund der vergangenen Information).

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 8

So dass:

Abbildung 5: PI-Regler [www.rn-wissen.de, Regelungstechnik]

Übertragungsfunktion der Parallelstruktur. Solche Werten werden so normalerweise

berechnet:

TN und KP sind berechnet so dass es keine Oberschingungen erscheinen. Wenn man es falsch

macht, kann folgendes passieren (Abb. 6):

Abbildung 6: Sprungsnatworte mit Oberschwingungen [Luis Puertollano, 2012]

Deswegen, werden die kritische Werte berechnet, um an der Grenze den

Oberschwingungen zu bleiben, und werden danach wie folgendes benutzt:

U HSL

E HSL
= Kp

1+TN∗s

TN∗s

KPI =
Kp
TN

1 2 3 4 5 6 7

0.25

0.5

0.75

1

1.25

1.5

2 4 6 8 10 12 14

-2

-1

1

2

Kp =0.45∗KPKrit
TN =0.83∗TNKrit

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 9

Obwohl viele Aspekte eines Steuersystems von der linearen Regelungstechnik verstanden

werden können, müssen einige nicht-lineare Effekte berücksichtigt werden. Bei der

Implementierung eines Reglers sind dies zum Beispiel:

• Ein motor hat eine nominale Geschwindigkeit (wie in unserem Fall).

• Ein Ventil hat eine maximale und eine minimale Öffnung.

• Eine Stromversorgung eines elektrischen Gerätes ist begrenzt.

3.2. Anti-Windup Funktion

Für eine Steuerung mit einer Vielzahl von Betriebsbedingungen kann es vorkommen, dass die

Regelgröße die vorgegebenen Grenzen des Aktuators erreicht. Wenn dies passiert, bleibt die

Rückkopplungsschleife in ihrer Grenze unabhängig von dem Prozeß-Ausgang. Bei Verwendung

eines integralen Reglers wird ein möglicher Fehler immer weiter seinen Wert steigern. Der

Integral-Anteil wird ganz groß und es wird die Wirkung "Windup" produziert (Abb. 7).

Abbildung 7: Beispiel von Windup [Luis Puertollano, 2012]

Dies kann so vermieden werden:

• Der Begrenzung der Reglerabweichung bewirkt, dass der Ausgang des Reglers nicht die

Begrenzung des Aktuators erreichen kann. Dies produziert häufig Begrenzungen in der

Wirkung des Reglers, aber kann nichts gegen den Windup-Effekt, welcher von

Störungen produziert wird, ausrichten.

• Ein anderer Weg ist die Neuberechnung des Integralanteils: Wenn der Ausgang

gesättigt ist, wird das Integral neu berechnet, so dass der neue Wert ein

Ausgangssignal an der Sättigungsgrenze darstellt.

Eine andere Methode ist die konditionale Integration zur Begrenzung des Integralüberlaufs.

Man benutzt ein Schalter, wenn das Signal sehr weit weg von dem stationären Status liegt. In

diesem Fall, wird der I-Anteil nur unter solchen Bedingungen benutzt. In anderen Fällen, bleibt

der I-Anteil gleich. Es wird auch „Festbinden des Integrators“ genannt.

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 10

Abbildung 8: PI-Regler Parallelform und Begrenzung [www.20sim.com]

Abbildung 9: PI-Regler Seriesform und Begrenzung [www.20sim.com]

Der Unterschied zwischen Eingang und Ausgang (TR) ist rückgekoppelt in den I-Anteil durch

den 1/Ta Verstärkung (Abbs. 8 und 9). Eine gute Überwachung ist die Rückkopplung mit Anti-

Windup. Der Aktuator ist von einem Signal-Begrenzer vertreten worden.

Sobald der Begrenzer sättigt, bekommt das Signal einen unterschiedlichen Wert von null

aufwärts und vermeidet, dass der I-Anteil in Windup geht (Abb. 10). Reset-Zeitkonstanten

bestimmen dabei, wie schnell auf Windup des Integrators reagiert wird.

Abbildung 10: Antwort ohne und mit Anti-Windup [micros-designs, Suky, CreativeCommons]

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 11

Abbildung 11: Antwort mit Switch On-Off Methode [micros-designs, Suky, CreativeCommons]

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 12

Der Ziel des Anti-Windups ist der Integration zu begrenzen (Abb. 12).

Abbildung 12: Antwort des Systems mit und ohne Anti-Windup

[Universität Bochum, Christian Schmid, 2005]

Diese PI-Regler mit Anti-Windup müssen angewendet werden, so dass ihre Funktion von

einem µC ausgeübt werden kann. Der Aktuator wird begrenzt und gibt ein Signal (Abb. 13),

welches auf der folgenden Grundidee begrenzt wird:

������ � �������;	������ < ��������
������ � �����;	�������� <� ����� <� ��������				
������ � �� ����;	��!��� > �� �����

	

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 13

Abbildung 13: Grundfunktionsweise des Reglers mit Anti-Windup stationares Vorhalten

[http://www.20sim.com]

Ein Beispiel des Grundprogrammes wäre folgendes:

Programm-Code in C:

	 � # − ; // Vergleich

	%�� � 	%��
 	; // Integration I-Anteil

if �	%�� < −400�{	%�� � −400; } // Begrenzung I-Anteil

if �	%�� < 400�{	%�� � 400; }
* � Kp ∗ e + Ki ∗ Ta ∗ esum;//Reglergleichung

if �* < 0�{* = 0; } // Begrenzung Stellgröβe

if �* < 1023�{* = 1023; }

789 = *; // Übergabe Stellgröβe

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 14

4. Realisierung des PI-Reglers

Für die Codeentwicklung wird die Software „TASKING VX-toolset for C166“ eingesetzt (Abb. 14).

Abbildung 14: Ansicht von TASKING VX-toolset for C166 [Luis Puertollano, 2012]

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 15

4.1. PI-Regler mit Anti-Windup-Funktionalität

4.1.1. Initialisierung

Hier wird der Regler initialisiert, und wird folgende Werte für die verschiedenen Glieden

benutzen:

// Initialisierung des Reglers – Werten die man für die verschiedenen Glieden will.

void initRegler(volatile struct PIRegler *ptrRegler)

{

 ptrRegler->KP = 0;// Proportionalkonstant - Constante proporcional

 ptrRegler->KI = 0;// Integrationskonstant - Constante de integración

 ptrRegler->StellGroesse = 0;// Stellgrösse - Control de la variable

 ptrRegler->FuehrungsGroesse = 0;// Führungsgrösse - Comando de la variable

 ptrRegler->RegelGroesse = 0;// Regelgrösse - Control de la variable

 ptrRegler->RegelAbweichung = 0;// Abweichung (Unterschied) - Desviación

 ptrRegler->EingangsBegrenzungMax = 0;// Maximal Eingangs Begrenzung -

Limitación máxima de entrada

 ptrRegler->EingangsBegrenzungMin = 0;// Minimal Eingangs Begrenzung -

Limitación mínima de entrada

 ptrRegler->AusgangsBegrenzungMax = 0;// Maximal Ausgangs Begrenzung -

Limitación máxima de salida

 ptrRegler->AusgangsBegrenzungMin = 0;// Minimal Ausgangs Begrenzung -

Limitación mínima de salida

 ptrRegler->Abtastzeit = 0;// Abtastzeit - Tiempo de muestreo

 ptrRegler->Summe = 0;// Summe - Suma

 ptrRegler->SummenBegrenzungMax = 0;// Maximal Summe Begrenzung -

Limitación máxima de la suma

 ptrRegler->SummenBegrenzungMin = 0;// Minimal Summe Begrenzung -

Limitación mínima de la suma

}

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 16

4.1.2. Berechnung und Anti-Windup-Algorithmus

Hier wird es beschrieben wie man die Berechnung des PI-Reglers programmiert ist:

// Berechnung des Regler Algorithmus -> Cálculo del algoritmo del regulador

long calcRegler(volatile struct PIRegler *ptrRegler)

{

 // Berechnung der Regel Abweichung - Cálculo

 ptrRegler->RegelAbweichung = ptrRegler->FuehrungsGroesse - ptrRegler->RegelGroesse;

 // Begrenzung für den Regler Eingang - Limitación

 if(ptrRegler->RegelAbweichung > ptrRegler->EingangsBegrenzungMax)

 {

 ptrRegler->RegelAbweichung = ptrRegler->EingangsBegrenzungMax;

 }

 else if(ptrRegler->RegelAbweichung < ptrRegler->EingangsBegrenzungMin)

 {

 ptrRegler->RegelAbweichung = ptrRegler->EingangsBegrenzungMin;

 }

 // Berechnung der Regler Summe - Cálculo de la suma del regulador

 ptrRegler->Summe = ptrRegler->Summe + ptrRegler->RegelAbweichung;

 // Begrenzung der Regler Summe - Limitación de la suma del regulador

 if(ptrRegler->Summe > ptrRegler->SummenBegrenzungMax)

 {

 ptrRegler->Summe = ptrRegler->SummenBegrenzungMax;

 }

 else if(ptrRegler->Summe < ptrRegler->SummenBegrenzungMin)

 {

 ptrRegler->Summe = ptrRegler->SummenBegrenzungMin;

 }

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 17

 // Berechnung der Stellgröße - Cálculo de la variable de control

 ptrRegler->StellGroesse = ptrRegler->KP * ptrRegler->RegelAbweichung +

 ptrRegler->KI * ptrRegler->Abtastzeit * ptrRegler->Summe;

 // Begrenzung für den Regler Ausgang - Limitación de la salida del regulador

 if(ptrRegler->StellGroesse > ptrRegler->AusgangsBegrenzungMax)

 {

 ptrRegler->StellGroesse = ptrRegler->AusgangsBegrenzungMax;

 }

 else if(ptrRegler->StellGroesse < ptrRegler->AusgangsBegrenzungMin)

 {

 ptrRegler->StellGroesse = ptrRegler->AusgangsBegrenzungMin;

 }

 return ptrRegler->StellGroesse;

}

/***/

4.1.3. Ergebnisse

Hier wird es beschrieben wie man die Ergebnisse des PI-Reglers bekommen kann:

// Get Methode für KP

int getReglerKP(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->KP;

}

// Set Methode für KP

void setReglerKP(volatile struct PIRegler *ptrRegler, int kp)

{

 ptrRegler->KP = kp;

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 18

}

/***/

// Get Methode für KI

int getReglerKI(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->KI;

}

// Set Methode für KI

void setReglerKI(volatile struct PIRegler *ptrRegler, int ki)

{

 ptrRegler->KP = ki;

}

/***/

// Get Methode für StellGroesse

long getReglerStellGroesse(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->StellGroesse;

}

// Set Methode für StellGroesse

void setReglerStellGroesse(volatile struct PIRegler *ptrRegler, long stellgroesse)

{

 ptrRegler->StellGroesse = stellgroesse;

}

/***/

// Get Methode für FuehrungsGroesse

long getReglerFuehrungsGroesse(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->FuehrungsGroesse;

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 19

}

// Set Methode für FuehrungsGroesse

void setReglerFuehrungsGroesse(volatile struct PIRegler *ptrRegler, long fuehrungsgroesse)

{

 ptrRegler->FuehrungsGroesse = fuehrungsgroesse;

}

/***/

// Get Methode für RegelGroesse

long getReglerRegelGroesse(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->RegelGroesse;

}

// Set Methode für RegelGroesse

void setReglerRegelGroesse(volatile struct PIRegler *ptrRegler, long regelgroesse)

{

 ptrRegler->RegelGroesse = regelgroesse;

}

/***/

// Get Methode für RegelAbweichung

long getReglerRegelAbweichung(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->RegelAbweichung;

}

// Set Methode für RegelAbweichung

void setReglerRegelAbweichung(volatile struct PIRegler *ptrRegler, long regelabweichung)

{

 ptrRegler->RegelAbweichung = regelabweichung;

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 20

}

/***/

// Get Methode für EingangsBegrenzungMax

long getReglerEingangsBegrenzungMax(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->EingangsBegrenzungMax;

}

// Set Methode für EingangsBegrenzungMax

void setReglerEingangsBegrenzungMax(volatile struct PIRegler *ptrRegler, long eingangsBegrenzungMax)

{

 ptrRegler->EingangsBegrenzungMax = eingangsBegrenzungMax;

}

/***/

// Get Methode für EingangsBegrenzungMin

long getReglerEingangsBegrenzungMin(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->EingangsBegrenzungMin;

}

// Set Methode für EingangsBegrenzungMin

void setReglerEingangsBegrenzungMin(volatile struct PIRegler *ptrRegler, long eingangsBegrenzungMin)

{

 ptrRegler->EingangsBegrenzungMin = eingangsBegrenzungMin;

}

/***/

// Get Methode für AusgangsBegrenzungMax

long getReglerAusgangsBegrenzungMax(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->AusgangsBegrenzungMax;

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 21

}

// Set Methode für AusgangsBegrenzungMax

void setReglerAusgangsBegrenzungMax(volatile struct PIRegler *ptrRegler, long ausgangsBegrenzungMax)

{

 ptrRegler->AusgangsBegrenzungMax = ausgangsBegrenzungMax;

}

/***/

// Get Methode für AusgangsBegrenzungMin

long getReglerAusgangsBegrenzungMin(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->AusgangsBegrenzungMin;

}

// Set Methode für AusgangsBegrenzungMin

void setReglerAusgangsBegrenzungMin(volatile struct PIRegler *ptrRegler, long ausgangsBegrenzungMin)

{

 ptrRegler->AusgangsBegrenzungMin = ausgangsBegrenzungMin;

}

/***/

// Get Methode für Abtastzeit

int getReglerAbtastzeit(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->Abtastzeit;

}

// Set Methode für Abtastzeit

void setReglerAbtastzeit(volatile struct PIRegler *ptrRegler, int abtastzeit)

{

 ptrRegler->Abtastzeit = abtastzeit;

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 22

}

/***/

// Get Methode für SummenBegrenzungMax

long getReglerSummenBegrenzungMax(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->SummenBegrenzungMax;

}

// Set Methode für SummenBegrenzungMax

void setReglerSummenBegrenzungMax(volatile struct PIRegler *ptrRegler, long summenBegrenzungMax)

{

 ptrRegler->SummenBegrenzungMax = summenBegrenzungMax;

}

/***/

// Get Methode für SummenBegrenzungMin

long getReglerSummenBegrenzungMin(volatile struct PIRegler *ptrRegler)

{

 return ptrRegler->SummenBegrenzungMin;

}

// Set Methode für SummenBegrenzungMin

void setReglerSummenBegrenzungMin(volatile struct PIRegler *ptrRegler, long summenBegrenzungMin)

{

 ptrRegler->SummenBegrenzungMin = summenBegrenzungMin;

}

/***/

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 23

4.1.4. Einstellungen des Reglers

Hier wird es geschrieben wie man die Parametereinstellungen des PI-Reglers:

// Reglereinstellungen setzen für Id-Regler - Establecer los parámetros del Regulador (Potencia reactiva)

void mainSetPIReglerIdParams(struct PIRegler *ptrPIReglerId)

{

 setReglerKP(ptrPIReglerId, 0);

 setReglerKI(ptrPIReglerId, 0);

 setReglerEingangsBegrenzungMax(ptrPIReglerId, 350);

 setReglerEingangsBegrenzungMin(ptrPIReglerId, -350);

 setReglerAusgangsBegrenzungMax(ptrPIReglerId, 52213);

 setReglerAusgangsBegrenzungMin(ptrPIReglerId, -52213);

 setReglerAbtastzeit(ptrPIReglerId, 1);

 setReglerSummenBegrenzungMax(ptrPIReglerId, 100000);

 setReglerSummenBegrenzungMin(ptrPIReglerId, -100000);

}

// Reglereinstellungen setzen für Iq-Regler - Establecer los parámetros del Regulador (Potencia activa)

void mainSetPIReglerIqParams(struct PIRegler *ptrPIReglerIq)

{

 setReglerKP(ptrPIReglerIq, 0);

 setReglerKI(ptrPIReglerIq, 0);

 setReglerEingangsBegrenzungMax(ptrPIReglerIq, 350);

 setReglerEingangsBegrenzungMin(ptrPIReglerIq, -350);

 setReglerAusgangsBegrenzungMax(ptrPIReglerIq, 52213);

 setReglerAusgangsBegrenzungMin(ptrPIReglerIq, -52213);

 setReglerAbtastzeit(ptrPIReglerIq, 1);

 setReglerSummenBegrenzungMax(ptrPIReglerIq, 100000);

 setReglerSummenBegrenzungMin(ptrPIReglerIq, -100000);

}

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 24

Mit diesem Code wird der Regler definiert, d.h. die Ausgangsbegrenzungen und die Parameter

des Reglers. Und man muss auch den Regler initialisieren. Damit wird folgender Code in der

Main.c File geschrieben:

4.2. Hauptprogramm

Hier wird es geschrieben, wie man die anderen Teilen des Programms anrufen muss:

// Initialisierung des Reglers

void initRegler(volatile struct PIRegler *ptrReglerId);

void initRegler(volatile struct PIRegler *ptrReglerIq);

void mainSetPIReglerIdParams(struct PIRegler *ptrPIReglerId);

void mainSetPIReglerIqParams(struct PIRegler *ptrPIReglerIq);

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 25

B. Literaturverzeichnis
[1] Laboratorio de procesos industriales:

http://www.elai.upm.es:8009/spain/Asignaturas/ControlProcesos/archivos/Practicas/Practica

_1.pdf

[2] Regelungstechnik:

http://www.rn-wissen.de/index.php/Regelungstechnik

[3] Anti-Windup:

http://www.20sim.com/webhelp/library/signal/control/pid_control/antiwindup.htm

[4] Control PID con Anti-Windup:

http://www.micros-designs.com.ar/control-pid-con-anti-windup-en-pic/

[5] Regelungstechnik:

http://de.wikipedia.org/wiki/Regler#PI-Regler

[6] Infineon: [AP16084] FOC of a PMSM Application Note, V1.0, May 2004

[7] Sahhary, Bassel; Elektrische Antreibe mit dauermagneterregten Maschinen im dynamischen

sensorlosen Betrieb. Hamburg, 2008.

[8] Nickl, Felix; Feoldorientierte Motorregelung für ein Elektrofahrzeug; Nürnberg, 2011.

[9] Control system with anti-windup measure:

http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node92.html

[10] Universidad de Zaragoza;

Regelungstechnik-, Leistungs-, und Digitalelektronikunterlagen.

[11] [Sahhary 2008] Sahhary, Bassel: Elektrische Antriebe mit dauermagneterregten

Maschinen im dynamischen sensorlosen Betrieb, Helmut-Schmidt-Universität Hamburg, Diss.,

2008. http://opus.unibw-hamburg.de/opus/volltexte/2009/1904/pdf/2009_Sahhary.pdf,

Abruf: 01.02.2011

[12]Datenblätter:

http://www.infineon.com/dgdl/XC2287M-

PB.pdf?folderId=db3a3043132679fb01133eb909a307c3&fileId=db3a30431c69a49d011c94d56

aa7058d

[13] [Udenar] Universidad de Colombia, Kolumbien Universität

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 26

C. Anhang

C.1. Mikrocontrollers Infineon XC2287M

Abbildung 15: Dattenblatt des XC2287M Mikrocontroller [Infineon]

PI-Regler mit Anti-Windup für eine feldorientierte

Motorregelung für ein Elektrofahrzeug

Luis Alfonso Puertollano Ventura 27

Abbildung 16: Diagram Block XC2287M [Infineon]

