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Abstract—GABAB-receptors (GABAB-Rs) are metabotropic, G protein-coupled receptors for the neurotransmitter
GABA. Their activation induces slow inhibitory control of the neuronal excitability mediated by pre- and postsy-
naptic inhibition. Presynaptically GABAB-Rs reduce GABA and glutamate release inhibiting presynaptic Ca2+

channels in both inhibitory and excitatory synapses while postsynaptic GABAB-Rs induce robust slow hyperpo-
larization by the activation of K+ channels. GABAB-Rs are activated by non-synaptic or volume transmission,
which requires high levels of GABA release, either by the simultaneous discharge of GABAergic interneurons
or very intense discharges in the thalamus or by means of the activation of a neurogliaform interneurons in
the cortex. The main receptor subunits GABAB1a, GABAB1b and GABAB2 are strongly expressed in neurons and
glial cells throughout the central nervous system and GABAB-R activation is related to many neuronal processes
such as the modulation of rhythmic activity in several brain regions. In the thalamus, GABAB-Rs modulate the
generation of the main thalamic rhythm, spindle waves. In the cerebral cortex, GABAB-Rs also modulate the most
prominent emergent oscillatory activity—slow oscillations—as well as faster oscillations like gamma frequency.
Further, recent studies evaluating the complexity expressed by the cortical network, a parameter associated with
consciousness levels, have found that GABAB-Rs enhance this complexity, while their blockade decreases it.
This review summarizes the current results on how the activation of GABAB-Rs affects the interchange of infor-
mation between brain areas by controlling rhythmicity as well as synaptic plasticity. � 2020 IBRO. Published by Else-

vier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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SYNAPTIC TRANSMISSION THROUGH
METABOTROPIC GABAB RECEPTORS IN

THALAMUS AND CORTEX

GABAergic neurons are the major inhibitory cell type in

the mammalian brain and exhibit a wide variety of

morphological and physiological properties. The

activation of GABAergic neurons can inhibit

postsynaptic target cells through increases in Cl�

conductance, mediated by the GABAA receptor, and

increases in K+ conductance, mediated by the GABAB

receptor (GABAB-R). GABAB-Rs are widely distributed

in the central nervous system and have been found at

both excitatory and inhibitory neurons (Ulrich and

Bettler, 2007) as well as in other types of neurons such

as dopaminergic (Boyes and Bolam, 2003) or striatal

cholinergic interneurons (Yung et al., 1999; Waldvogel
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et al., 2004). In addition, GABAB-Rs are expressed in glial

cells (López-Bendito et al., 2004); in fact most of the neu-

rons in the central nervous system contain GABAB-Rs

(Steiger et al., 2004). GABAB-Rs are G protein-coupled

receptors for the neurotransmitter GABA. Interestingly,

GABAB-Rs are similar in structure to (and in the same

receptor family as) metabotropic glutamate receptors

(Kaupmann et al., 1997). GABAB-Rs are expressed pre-

and postsynaptically, controlling the release of the neuro-

transmitter and the excitability of the receiving neurons

respectively. Initially, GABAB-Rs were found to be insen-

sitive to the bicuculline component of inhibitory

responses, which was activated by L-baclofen (Bowery

et al., 1980). For many years it was thought that the

GABAB-R family would be found to consist of numerous

receptor subtypes, due to the variety in responses

obtained with the current agonist and antagonist. How-

ever, further investigations demonstrated that there are

only two receptor subtypes, GABAB1a and GABAB1b, both

of them combined with GABAB2 subunits to form hetero-

meric GABAB(1a,2) and GABAB(1b,2) receptors (Jones
ons.org/licenses/by-nc-nd/4.0/).
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et al., 1998; Kaupmann et al., 1998; White et al., 1998).

These receptor units are produced by a different promoter

form by the GABAB1 gene (Bischoff et al., 1999; Steiger

et al., 2004), and they are different in their N-terminal

ectodomain by a pair of sushi repeats only in GABAB1a

(Blein et al., 2004). Both isoforms are found in different

locations; GABAB1a are mainly found in presynaptic termi-

nals, where they control neurotransmitter release (Vigot

et al., 2006), which depending on the specific type of

synapse, excitatory or inhibitory, may inhibit or disinhibit

respectively. The presynaptic action of GABAB-Rs inhibit-

ing glutamate release occurs in many areas of the central

nervous system (Willcockson et al., 1984; Dutar and

Nicoll, 1988; Huston et al., 1995; Emri et al., 1996; Lin

et al., 1996) and most probably in all cortical areas

(Deisz and Prince, 1989; Kang, 1995; Ramoa and Sur,

1996; Ziakopoulos et al., 2000). GABAB-R-mediated inhi-

bition requires the activation of the adenylyl cyclase/pro-

tein kinase A second messenger pathway, through the

triggering of Gai/o-type G proteins and liberation of Gbc
subunits, activating G protein-coupled inward-rectifying

K+ channels and inhibition of voltage-gated Ca2+ chan-
Figure 1. Distribution and role of GABAB-Rs. GABAB-Rs are loca

extrasynaptic membranes. Presynaptic GABAB-Rs prevent neurotransm

regulating the activity of voltage-sensitive Ca2+ channels or inhibiting the rele

autoreceptors inhibit the release of GABA, whereas GABAB heterorecepto

glutamate and several other neurotransmitters. GABAB-Rs are also expresse

induce sIPSCs by activating Kir3-type K+ -channels, which hyperpolarizes

voltage-sensitive Mg2+ block of NMDA receptors and shunts excitatory curren

and dendrites are expressed to regulate the excitability of the network an

excitation during population oscillation and epileptiform activity. Dendritic

propagating action potentials through activation of K+ -channels. During high

GABA depresses its own release by an action on GABAB autoreceptors,

NMDA receptor activation for the induction of LTP. Reprinted from ‘‘Chapter 1

Absence Epilepsy,” by Hua A. Han, Miguel A. Cortez, and O. Carter S

Mechanisms of the Epilepsies (4th edn), Jeffrey Noebels, Massimo Avoli, Mic

Olsen, and Antonio Delgado-Escueta (eds), Oxford University Press:

permission.
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nels (Bettler et al., 2004) (Figure 1). Presynaptic GABAB-

Rs, usually the GABAB1a subunit, inhibit neurotransmitter

release through the inhibition of voltage-gated Ca2+

channels (Gassmann et al., 2004). Presynaptic GABAB-

Rs are termed autoreceptors when controlling GABA

release, and heteroreceptors when inhibiting other types

of neurotransmitter (Figure 1). Often, by means of the

activation of presynaptic GABAB-Rs, GABA decreases

glutamate release mainly by blocking voltage-sensitive

Ca2+ channels and also by the modulation of synaptic

vesicle priming (Maguire et al., 1989; Mintz and Bean,

1993; Sakaba and Neher, 2003). Postsynaptically,

GABAB1b are located in the dendritic spines, controlling

K+ channels that are involved the postsynaptic inhibition

(Pérez-Garci et al., 2006), generating slow inhibitory

potentials by the activation of Kir3-type K+ channels

(Luscher et al., 1997) (Figure 1). GABAB-Rs also

decrease dendritic Ca2+ by blocking voltage gate calcium

channels in the distal dendrites (Chalifoux and Carter,

2011).

GABAB-Rs are broadly distributed along the CNS and

can generate a large combination of outcomes, making
ted presynaptically on

itter release by down-

ase machinery. GABAB

rs inhibit the release of

d postsynaptically. They

the membrane, favors

ts. GABAB-Rs in spines

d to counteract excess

GABAB-Rs inhibit back

-frequency transmission

which permits sufficient

9: GABAB Receptor and

nead in Jasper’s Basic
hael Rogawski, Richard

Oxford. Reused with

mics and synaptic plasticity. Neuroscien
GABAB-Rs a key element for wide

dynamic control of synaptic

transmission. Thus, in order to

understand the role of GABAB-Rs

in synaptic transmission, it is

crucial to identify the specific

components underlying the

studied circuit, as well as the pre-

and postsynaptic location of the

GABAB-Rs. Moreover, in addition

to the structural components, the

dynamic properties of synaptic

transmission should be taken into

account, including the different

regimens of spontaneous brain

activity and the previous history of

synaptic activity at the related

synapses.

One early idea about the

function of GABAB-Rs was that

they controlled slow changes in

neuronal excitability. In most

cases, the activation of GABAB

autoreceptors needs a strong

activation to become active, by

means of synchronous activity or

repetitive stimulation. This was

clearly demonstrated in the

thalamus (Kim et al., 1997) and

also in the hippocampus

(Scanziani, 2000). In line with this

evidence, it has been shown that

GABAB-Rs are located distal to

the release sites that require

GABA volume transmission

(Bettler and Tiao, 2006). This is

true for most brain areas; however,

more recent evidence has demon-

strated a very important exception:
ce (2020), https://doi.org/10.1016/j.neuroscience.2020.03.011

https://doi.org/10.1016/j.neuroscience.2020.03.011


M. V. Sanchez-Vives et al. / Neuroscience xxx (2020) xxx–xxx 3
in the cerebral cortex GABAB-Rs can be strongly acti-

vated by the activity of neurogliaform interneurons. In fact,

it was shown that a single action potential of the neurogli-

aform cells releases enough GABA to generate a slow

inhibition mediated by GABAA and GABAB receptor acti-

vation (Tamas et al., 2003). This type of interneuron tar-

gets both dendritic spines of pyramidal neurons (Tamas

et al., 2003) and different types of interneurons (Oláh

et al., 2007).

Neurogliaform neurons were initially described by

Ramon y Cajal (Ramon y Cajal, 1922). They are located

in all cortical layers, but those in layer 1 are of special

functional relevance in the long-lasting inhibition induced

by GABAB that was demonstrated to elucidate interhemi-

spheric inhibition in mice (Palmer et al., 2012). This type

of indirect long-lasting inhibition is used to explain how

one hemisphere imposes its dominance during a specific

sensory or motor process. The activation of the layer 1

neurons by callosal transmission induced a delayed inhi-

bition by hundreds of milliseconds in the layer 5 pyramidal

neurons. This type of inhibition occurred in the distal den-

drites, induced by the GABA release activating GABA-B1b
receptors on the postsynaptic pyramidal neurons (Palmer

et al., 2012) and suggests the activation of neurogliaform

interneurons induces it. Interestingly, beyond the callosal

transmission, this evidence shows that the activation of

layer 1 inhibits pyramidal neurons for hundreds of mil-

liseconds. In fact, previous studies demonstrated that

the stimulation of distal dendritic regions of pyramidal

neurons recruited a GABAB-R-mediated inhibition (Dutar

and Nicoll, 1988; Pérez-Garci et al., 2006). In addition

to the synaptic transmission and the sensory processing,

this long-lasting inhibition mediated by GABAB-Rs has

been proposed as a mechanism to control brain states.

In an elegant in vitro study in active cortical slices, Mann

and colleges analyzed how electrical stimulation of layer 1

could trigger a transition from Up to Down states (see

below). This interesting result demonstrates that persis-

tent cortical activity can be switched off by the inhibition

mediated by GABAB-R activation (Mann et al., 2009).

Additional studies showed the specific role for two types

of GABAB-Rs, GABAB1a and GABAB1b. Using mouse lines

of knockout phenotypes for both GABAB-Rs, Mann et al.

demonstrated that the transition to the Down state previ-

ously described is only mediated by the activation of the

GABAB1b subunit, and not by the GABAB1a. This result

strongly suggests a postsynaptic mechanism underlying

the modulation of transition states.
Role of GABAB receptors in synaptic plasticity in the
thalamocortical loop

In order to understand the role of GABAB-Rs in synaptic

plasticity, it is crucial to identify the specific components

underlying the studied circuit, as well as the pre- and

postsynaptic location of the GABAB-Rs. Moreover, in

addition to the structural components, the dynamic

properties of synaptic transmission should be taken into

account, including the different regimes of spontaneous

brain activity and the previous history of synaptic activity

at related synapses. This section summarizes the
Please cite this article in press as: Sanchez-Vives MV et al. GABAB receptors: modulation of thalamocortical dyna
knowledge of the GABAB-Rs mediating synaptic

transmission and plasticity in thalamus and cortex.

As mentioned above, cortical inhibition mediated by

the activation of GABAB-Rs plays a crucial role

regulating neuronal excitability and plasticity. GABAB-Rs

contribute to the regulation of inhibition presynaptically,

through the autoinhibition of inhibitory interneurons, and

postsynaptically, by means of long-lasting inhibitory

postsynaptic potentials (Morrisett et al., 1991; Olpe

et al., 1993; Deisz, 1999; Stäubli et al., 1999). Many early

studies tried to understand the role of the GABAB-Rs in

synaptic plasticity by pharmacological blockade of

GABAB-Rs, which often generated contradictory results

showing either an increase (Olpe and Karlsson, 1990;

Olpe et al., 1993; Stäubli et al., 1999) or a reduction of

long-term potentiation (Davies et al., 1991; Mott and

Lewis, 1991). These apparently conflicting results may

be explained by a leading effect of GABAB-R modulation

on either GABAB-R-mediated inhibitory postsynaptic

potentials or autoinhibition of neurotransmission through

GABAA-Rs (Stäubli et al., 1999). In the cerebral cortex,

as well as in other brain regions, presynaptic GABAB-Rs

inhibit glutamate release (Kang, 1995; Ramoa and Sur,

1996). Experiments in thalamocortical slices described

the effect of the GABAB-Rs mediating either intracortical

or thalamo-cortical excitatory synaptic transmission. The

application of the GABAB-R agonist baclofen reduced

the amplitude of intracortical EPSPs, also inducing a

slight increase in the paired-pulse ratio, but without effect-

ing thalamocortical transmission (Gil et al., 1997). Similar

selective suppression of intrinsic but not afferent fiber

synaptic transmission by baclofen was also previously

described in the piriform cortex (Tang and Hasselmo,

1994). These results suggest that cortical GABA release

selectively suppresses specific pathways by activating

presynaptic GABAB-Rs. This type of input selection medi-

ated by GABAB-Rs was also demonstrated in the perirhi-

nal cortex. The electrical stimulation in either the

entorhinal or temporal cortex induced paired pulse

depression (PPD) in the perirhinal cortex, during inter-

pulse interval from 100 to 1000 milliseconds. PPD was

mediated by GABA spilling over onto excitatory synapses,

activating presynaptic GABAB-Rs in glutamatergic termi-

nals. GABAB-R-mediated PPD was greater when the tem-

poral cortex was stimulated, suggesting that this pathway

has a preferred role controlling the firing and synaptic

plasticity of the perirhinal cortex (Ziakopoulos et al.,

2000).

As mentioned previously, postsynaptically GABAB-Rs

activate K+ channels and also directly inhibit Ca2+

mediated dendritic spikes, throughout the dendritic

arbor, in cortical and hippocampal pyramidal neurons

(Pérez-Garci et al., 2006; Larkum et al., 2007; Chalifoux

and Carter, 2011). Ca2+ influx via voltage-sensitive

Ca2+-channels has an important role as an intracellular

messenger, activating intracellular signaling cascades

that are ultimately responsible for altered synaptic effi-

cacy (Grover and Teyler, 1990; Huang and Malenka,

1993). Therefore, GABAB-Rs could modulate long-term

plasticity by direct action on dendritic spines. In vivo

experiments also studied the functions of GABAB-R
mics and synaptic plasticity. Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.03.011
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blockage on short-term synaptic plasticity. Jia and col-

leagues described the impact of the blockage of GABAB-

Rs in the thalamocortical visual pathway (Jia et al., 2004).

They did so by means of electrical stimulation in the dLGN

and recordings in V1 before and after iontophoresis of 2-

hydroxy-saclofen. The authors described that both paired

pulse and short-term depression were reduced by block-

ing GABAB-Rs.

GABAB-Rs are also involved in the induction of long-

term potentiation at visual cortical inhibitory synapses

(Komatsu, 1996). Moreover, GABAB-R activation is nec-

essary for the induction of inhibitory LTP at fast-spiking

cell to pyramidal cell synapses, which converts LTP to

LTD at convergent excitatory pyramidal cell synapses

(Wang and Maffei, 2014). Following these results and

given that long-term plasticity changes are related to the

deprived eye responses, GABAB-Rs have also been

related to the plasticity of the critical period for ocular

dominance in the primary visual cortex of cats. During

the critical period, monocular deprivation induces an ocu-

lar dominance shift. In juvenile animals, the application of

the GABAB-R agonist enhanced the plasticity facilitating

the ocular dominance shift, while the GABAB-R antagonist

impaired it. However, in adult cats the infusion of the

same neuromodulators did not induce any significant

impact on the ocular dominance shift. These results evi-

dence the role of GABAB-Rs in juvenile ocular dominance

plasticity (Cai et al., 2017).
GABAB RECEPTORS AND EMERGENT
RHYTHMIC PATTERNS: THALAMIC ACTIVITY

Thalamocortical rhythms have a relevant role in the

triggering of brain rhythms across different brain states

(Llinas and Ribary, 1993; Steriade et al., 1993b). The tha-

lamic reticular nucleus (TRN), and its interaction with the

thalamic nuclei, has been proposed as a central modula-

tor of corticothalamic feedback that could modulate sleep

states through the modulation of brain rhythms

(McCormick and Bal, 1997; Steriade, 2000; Fernandez

et al., 2018). The TRN is a nucleus with the shape of a

shell around the dorsal thalamus that is formed solely

by GABAergic neurons. These neurons are bursty, oscil-

latory neurons (Kim et al., 1997; Fogerson and

Huguenard, 2016) that have large axonal arborizations

that profusely innervate thalamic nuclei (Jones, 2012).

Furthermore, interlaminar neurons in the visual thalamus

are formed by neurons that are equivalent anatomically,

electrophysiologically, pharmacologically, anatomically,

immunocytochemically, and functionally to the TRN (peri-

geniculate) neurons (Sanchez-Vives et al., 1996) (Fig-

ure 2C). The involvement of the TRN, and thus of

inhibitory interneurons, in the control of brain states, is

such that GABAergic synaptic transmission has been pro-

posed to be critical for anesthetic drugs to induce uncon-

scious states, by enhancing the effects of TRN activity

(Brown et al., 2011). Furthermore, some seizure activity

such as absence seizures and its associated spike and

wave activity also originate in the thalamus (Hosford

et al., 1992; Labate et al., 2005; see below). Alteration

of TRN conductances decreases EEG sleep rhythms
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(Cueni et al., 2008; Espinosa et al., 2008) and other stud-

ies demonstrate that the TRN, and its interaction with tha-

lamocortical neurons, initiates sleep spindles (Figure 2A,

B) (Steriade et al., 1987; Von Krosigk et al., 1993;

Bazhenov et al., 2000; Halassa et al., 2011; Bartho

et al., 2014). Optogenetic studies have shown that TRN

may modulate arousal states through selective inhibition

of thalamic activity, facilitating the onset of slow waves

(Lewis et al., 2015). But, to what extent is the GABAergic

action of TRN neurons mediated by GABAB-Rs? We will

refer here to studies in the TRN section around the visual

thalamus, which is called the perigeniculate nucleus

(PGN), and which maintains the characteristics of TRN.

PGN neurons innervate thalamocortical neurons (excita-

tory) reciprocally (Figure 2C): on their way to the cortex,

the axons of the thalamocortical neurons cross the

PGN, leaving collaterals at this level. In return, the PGN

cells densely innervate the relay cells. In this way, a net-

work of reciprocal interactions between excitatory and

inhibitory neurons is established (Kim et al., 1997). When

these neurons fire in the bursty mode, this reciprocal

innervation results in the generation of spindle waves

(Figure 2B) (Von Krosigk et al., 1993). The inhibition

deactivates low threshold calcium current (Jahnsen and

Llinás, 1984), inducing the rebound burst in thalamocorti-

cal cells that results in a cycle of inhibition and bursting

that then excites PGN cells (Figure 2A,B), which also

burst and further inhibit thalamocortical neurons, which

then results in the 7–14 Hz spindle wave (Von Krosigk

et al., 1993; McCormick and Bal, 1997). The inhibitory

contribution to this cycle relies only on GABAA-Rs, and

the blockade of GABAB-Rs does not affect spindle waves

(Bal et al., 1995a, 1995b).

Thus, when are GABAB-Rs activated? PGN neurons

inhibit not only thalamocortical neurons, but also inhibit

each other laterally, both through GABAA and GABAB

receptors (Figure 3) (Sanchez-Vives et al., 1997). This

is equivalent to what happens between TRN neurons

(Shu and McCormick, 2002). When PGN neurons are dis-

inhibited by blocking GABAA receptors, they fire longer

bursts of high-frequency action potentials. Under these

conditions, it was observed that the inhibition exerted over

thalamocortical neurons (Sanchez-Vives and McCormick,

1997) and also over other PGN neurons (Sanchez-Vives

et al., 1997) was mediated through GABAB-Rs (Fig-

ure 2B). Given that GABAB-Rs have a slower time course,

the recurrent circuit involving thalamocortical and PGN

cells, oscillated at a highly synchronized, slower pace of

3 Hz (Figure 2B). (Sanchez-Vives and McCormick,

1997), a pattern that is highly similar to that generated

during absence seizures (Hosford et al., 1992). There-

fore, the switch of network activity from relying on GABAA

towards relying on GABAB-Rs has a large impact on the

oscillatory rhythm emerging from the thalamocortical net-

work and the activation of GABAB-Rs may be particularly

important to the generation of some forms of generalized

spike-and-wave seizures.

As mentioned above, in order for PGN cells to activate

GABAB-Rs they should be disinhibited in order for them to

have longer and more intense firing patterns. This was

highly suggestive that the activation of GABAB-Rs
mics and synaptic plasticity. Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.03.011

https://doi.org/10.1016/j.neuroscience.2020.03.011


Figure 2. Pre- and postsynaptic GABAB-R modulation of thalamic activity patterns. (A) Activation of a burst of action potentials in the PGN cell

before and after bath application of bicuculline. (B) Spontaneous generation of a spindle wave is associated with repetitive burst firing in the PGN

neuron and the occurrence of repetitive IPSPs in the LGNd cell. The IPSPs are generated by the activity of this PGN cell as well as others. After bath

application of bicuculline, the geniculate slice spontaneously generates abnormal oscillations during which the PGN neuron generates prolonged

high-frequency burst discharges. Source: Kim, U. et al. (1997) Functional dynamics of GABAergic inhibition in the thalamus. Science 278(5335):130-

4. Reused with permission. (C) The cell body and dendrites located in the A-A1 interlaminar zone (IZ). The axon densely innervated lamina A1 and

also innervated lamina C. One branch of the axon passed through lamina A and into the PGN. Source: Sanchez-Vives et al. (1996). Are the

interlaminar zones of the ferret dorsal lateral geniculate nucleus actually part of the perigeniculate nucleus? Journal of Neuroscience 16(19): 5923-

5941. Reused with permission. (D) (Top) IPSCs recorded in a thalamocortical cell with a microelectrode filled with 2M CsAc and held at 259 mV. Each

barrage of IPSCs represents the generation of a spindle wave and was evoked with the local application of glutamate in the PGN. Application of

baclofen (100 mM in the micropipette) results in a large reduction in the amplitude of the initial evoked IPSC as well as the generation of spindle wave-

associated IPSCs. Local application of CGP 35348 reversed these effects. (Bottom) Expansion of spindle wave-associated IPSCs before and after

application of baclofen and after recovery with application of CGP 35348.
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required a larger release of GABA, generally accepting

that several GABAergic neurons should contribute in

order for the extrasynaptic GABAB-Rs to be reached.

However, Kim et al. (1997) demonstrated that the same

single PGN neuron could indeed activate both GABAA

and GABAB, with the difference that the activation of

GABAA and GABAB required prolonged burst firing. Fur-

ther, GABAB-R activation had a delay of 52 ms with

respect to the activation of GABAA-Rs (Kim et al.,

1997), which could be due to the properties of G-

protein-mediated events that are the intermediaries

between receptor binding and K+ channel opening or

the location of receptors as extrasynaptic receptors (Fig-

ure 1) (Mody et al., 1994). Similar features to those

described in the thalamus for GABAB-Rs are described

in the hippocampus for GABAA/GABAB activation and

their impact on rhythmicity (Scanziani, 2000). In more
Please cite this article in press as: Sanchez-Vives MV et al. GABAB receptors: modulation of thalamocortical dyna
recent years, it has been proposed that the activation of

GABAB-Rs even contributes to the generation of thalamic

spindle oscillations (Ulrich et al., 2018), modulates thala-

mocortical excitation of cortical inhibitory and excitatory

neurons, and participates in the processing of sensory

information in the barrel cortex (Porter and Nieves,

2004). Moreover, stimulation of GABAB-Rs has been

found to be effective in cortical seizure-like activity sup-

pression (Chang et al., 2017).

GABAB-Rs are also present on the presynaptic

terminals of both GABAergic neurons (Figure 3E) as

well as thalamocortical connections (Figure 2D), and the

activation of these receptors results in the reduction of

neurotransmitter release (Ulrich and Huguenard, 1996;

Sanchez-Vives et al., 1997b). These results suggest that

the activation of presynaptic GABAB-Rs also plays an

important role in the regulation of intrathalamic activity.
mics and synaptic plasticity. Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.03.011
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Figure 3. Lateral GABAA and GABAB (pre and postsynaptic) inhibition between inhibitory, perigeniculate neurons in the thalamus. (A)
Higher power photomicrograph with Nomarski optics of boutons in the PGN cell. (B) Example of barrage of IPSPs that spontaneously occur in PGN

neurons and presumably result from the burst discharge of single PGN neurons. (C) Evoked barrage of IPSPs in a neighboring PGN cell. Each

compound IPSP is composed of several presumed unitary IPSPs. (D) Local application of bicuculline (400 mM in micropipette) reduces but does not

completely block evoked IPSP. (E) Evoked EPSPs recorded in a PGN cell. The local application of baclofen results in a reduction in the amplitude of

these evoked EPSPs. The local application of CGP 34348 reverses this action of baclofen. Source: Sanchez-Vives et al. (1997). Inhibitory

interactions between perigeniculate GABAergic neurons. Journal of Neuroscience 17(22): 8894-8908. Reused with permission.

6 M. V. Sanchez-Vives et al. / Neuroscience xxx (2020) xxx–xxx
GABAB RECEPTORS AND EMERGENT
RHYTHMIC PATTERNS: CORTICAL ACTIVITY

The cortical network can synchronize its activity in

different rhythmic patterns ranging from infraslow to

ultrafast activity (Buzsaki and Draguhn, 2004). However,

of all these possible frequencies, there is a prominent fre-

quency that dominates the dynamics of the cortical emer-

gent activity during sleep and pathological states: slow

wave activity, driven by slow oscillations. Slow oscillations

emerge from the recurrent interaction between cortical

neurons, making them a network phenomenon (Steriade

et al., 1993c). During the active periods, or Up states,

neocortical neurons (both excitatory and inhibitory) are

depolarized, receive barrages of synaptic inputs and fire

action potentials. During the ensuing Down states, neu-

rons remain hyperpolarized and the synaptic activity is

almost silent. Cortical recordings from different species

agree on the leading role of infragranular layers—in par-

ticular layer 5—in the initiation of Up states (Sanchez-

Vives and McCormick, 2000; Sakata and Harris, 2009;

Chauvette et al., 2010). During Up states, the activity

expresses coherent oscillations at high frequencies in

the beta (15–30 Hz) and gamma (30–90 Hz) range

(Cunningham et al., 2004; Compte et al., 2008). This phe-

nomenon is multiscale such that slow oscillations display

similar characteristics whether they are recorded from the

intact cortex of a sleeping human or from a small piece of

cortex in a plate. It has been proposed that fluctuations of
Please cite this article in press as: Sanchez-Vives MV et al. GABAB receptors: modulation of thalamocortical dyna
Up- and Down-states—the origin of the slow waves—is

the ‘‘default” intrinsic pattern of cortical activity

(Sanchez-Vives and Mattia, 2014; Sanchez-Vives et al.,

2017). The cortex defaults to slow-wave activity due to

changes in neuromodulation, as in sleep (Steriade et al.,

2001; Riedner et al., 2007) or due to changes in the exci-

tatory/inhibitory balance as in deep anesthesia (Steriade,

Conteras et al., 1993a; Chauvette et al., 2011) , or as a

consequence of structural lesions, as when a cortical

gyrus is physically isolated by cutting the underlying white

matter (Timofeev and Steriade, 1996) or in a cortical slab

(Timofeev et al., 2000).

A key element in the balance and control of either

spontaneous emergent or evoked cortical activity is the

relationship between excitation and inhibition. Both

excitatory and inhibitory neurons fire during Up states as

originally described by Steriade et al (1993).

Conductance measurements during Up states reveal

that the weights of excitation and inhibition are well-

balanced in vivo (Haider et al., 2006) and similarly

in vitro (Shu et al., 2003) as has been proposed in a cor-

tical computational model (Compte et al., 2003). Changes

in excitatory and inhibitory conductance in vitro reveal that

both increases and decreases at the beginning/end of Up

states occur in close association with each other (Shu

et al., 2003; Zucca et al, 2017). Indeed, the timing of indi-

vidual excitatory and inhibitory synaptic events also

reveals a remarkable coincidence in the accumulation of

both excitatory and inhibitory synaptic events during the
mics and synaptic plasticity. Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.03.011
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rise of an Up state, both in vitro and in vivo, although it is

1.4 times faster in vivo (Compte et al., 2009). A similar

coincidence between the timing of excitatory and inhibi-

tory events also occurs at the termination of the Up state.

Such interlocking in time of excitation and inhibition is also

found in simultaneous recordings of nearby pairs of corti-

cal neurons (Okun and Lampl, 2008). When measuring

excitatory versus inhibitory conductances, both have

been found to be high at the beginning of the Up state

and tend to progressively decrease, but their ratio

remains constant and close to 1 in both anesthetized

and in vitro preparations (Shu et al., 2003; Haider et al.,

2006). However, other studies report that the inhibitory

conductance is much larger than the excitatory conduc-

tance during Up states in natural sleep (Rudolph et al.,

2007).
Mechanisms of termination of the Up states

Several mechanisms have been proposed that could

account for the termination of Up states. They include:

arrival of excitation (Shu et al., 2003; Haider et al.,

2006), synaptic depression (Bazhenov et al., 2002, but

see Benita et al 2012), thalamic disfacilitation

(Contreras et al., 1996), activation of K+ currents

(Sanchez-Vives and McCormick, 2000; Compte et al.,

2003) or extracellular K+ dynamics (Fröhlich et al.,

2006). The time course of the slow afterhyperpolarization

observed in intracellular recordings during Down states

(e.g. fig. 7C in Contreras et al., 1996; Sanchez-Vives

and McCormick, 2000; Sanchez-Vives et al, 2010), sug-
Figure 4. GABAB-R modulation of cortical Up and Down states (A) Who

CGP55845 (bottom). Insets show equivalent Up states triggered by stimul

GABAA and GABAB receptors in balancing and terminating persistent cortic

permission. (B) Raw signal (blue trace), relative firing rate (black trace) and d

after application of 200 mM CGP 35348 (bottom). (C) Raster plots of the rela

35348 corresponding to the ones in (B). (D) (Top) Average relative firing rate

to the ones in (A). The shadow corresponds to the s.e.m. (Bottom) Down-s

Source: Perez-Zabalza et al.(2020) Modulation of cortical slow oscillatory rhy

study. J Physiol. doi: 10.1113/JP279476. Reused with permission.
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gests that slow K+ currents can contribute to the termina-

tion of Up states and maintenance of Down states.

Different mechanisms involving K+ currents have been

proposed, including ATP-dependent K+ current

(Cunningham et al., 2006) and Ca2+ and Na+-

dependent K+ currents (Sanchez-Vives and McCormick,

2000). Slow K+-mediated afterhyperpolarizations are

blocked by neurotransmitters (acetylcholine, nora-

drenaline) that control the transition from sleep to awake

states (Schwindt et al., 1988; Brumberg et al., 2000), pro-

viding a mechanism for stopping the bistability when

entering the awake state (D’Andola et al, 2017).

GABAB-Rs activation (Parga and Abbott, 2007; Mann

et al., 2009; Wang et al., 2010; Craig et al., 2013; Perez-

Zabalza et al., 2020) is a plausible mechanism involved in

the termination of Up states. More than one of the men-

tioned mechanisms most probably interact and contribute

to the termination of the Up-to-Down state transition.

Mann and colleagues analyzed how electrical stimulation

of layer 1 could trigger a transition from Up to Down

states. This result suggested that persistent cortical activ-

ity can be switched off by GABAB-R-mediated inhibition

(Mann et al., 2009) (Figure 4A). Additional studies

showed a specific role of the two types of GABAB-Rs—

GABAB1a and GABAB1b. Using mouse lines of knockout

phenotypes for both GABAB-Rs, it was found that the

transition to the Down state was mediated by the activa-

tion of the GABAB1b subunit, and not by the GABAB1a,

thus suggesting a postsynaptic mechanism (Craig et al.,

2013). Modelling work has also suggested that GABAB

dynamics have the correct timescale to contribute to this
le-cell recordings in control (top), 500 nM gabazine (middle), and 1M

ation in the same cells. Source: Mann et al. (2009). Distinct roles of

al activity. Journal of Neuroscience, 29(23), 7513-7518. Reused with

etected Up and Down states (red trace) under control activity (top) and
tive firing rate are represented for control activity and for 200 mM CGP

for Up states during the control and 200 mM CGP 35348 corresponding

tate duration decreases whereas the oscillation frequency increases.

thm by GABAB receptors: an in vitro experimental and computational

mics and synaptic plasticity. Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.03.011
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Down state termination process (Parga and Abbott, 2007)

and that they could interact with firing rate adaptation to

modulate the generation of slow oscillations. Indeed,

Perez-Zabalza et al. (2020), not only found a significant

elongation of Up states when GABAB-Rs were blocked

(Figure 4), but different cortical dynamics during the slow

oscillatory regime: subsequent Down states were most

commonly (75% cases) elongated (typical) -and thus the

oscillatory frequency decreased (Figure 4B, C)-, while

the remaining cases were shortened (atypical), therefore

affecting the whole oscillatory cycle. Interestingly GABAB-

R blockade also strikingly increased the regularity of the

slow oscillation dynamics, revealing that the activation

of GABAB-Rs introduces irregularity, variability and

dynamical richness in the spontaneous slow oscilations

(Perez-Zabalza et al., 2020). In this study it was also

found that the Down-to-Up transition slope, which corre-

sponds to the recruitment of the local network (Reig

et al., 2010; Sanchez-Vives et al., 2010), was not affected

by GABAB-R blockade. Interestingly, the Up-to-Down

(downward) transition slope was significantly decreased,

further supporting the role of GABAB-Rs in the termination

of Up states.
Figure 5. GABAB-R modulation of cortical complexity. Brain complexity m

in vitro. (A) Average of EEG responses following TMS (Red) and maximum c

blue, 0 ms; red, 300 ms). Yellow cross: TMS target on the cortex. Source: S

cortical network. Neuron 94:993–1001. Reused with permission. Originally

Spontaneous emerging activity in isolated cortical slices, (top) Local Field

application of 50 lM NE and 0.5 lM CCh (red) and slow wave activity (SW

significant MUA (SS(x,t)) contained in a binary matrix. Source: D’Andola et a

in vitro perturbational study. Cereb Cortex 91:1–10. Reused with permission.

during blockade of slow inhibition (CGP 1 mM). (D) Example of decay in sP

blockade of slow inhibition (CGP 1 mM) Binary matrix SS(x,t) of MUA signific
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GABAB-Modulation Of Cortical Complexity

Throughout different brain states, cortical units interact

in different ways resulting in a variety of cortical

dynamics that are accompanied by switches of

behavioral states (Gervasoni et al., 2004). Such cortical

dynamics result from reciprocal interactions between

excitatory and inhibitory cortical units, depolarizing

simultaneously, but the most active inhibitory popula-

tions vary during different brain states (Gentet et al.,

2010). During awake states, cortical activity is charac-

terized by complex patterns of causal interactions,

whereas this complexity collapses in deep sleep or

anesthesia (Steriade, 2006). The study of the mecha-

nisms that modulate the emergence of complex brain

states is critical to the development of new methodolo-

gies to detect brain state and consciousness levels

(i.e., during anesthesia or in brain-injured patients) and

promote state transitions and recovery of function. The

study of cortical complexity can be approached from

the paradigm of the balance between segregation and

integration of cortical activity, defined as brain complex-

ity (Tononi, 2004). Different methods have been used to

quantify brain complexity in humans. The Perturbational
easured in human using PCI, can be studied in isolated cortical slices

urrent sources (color-coded according to their activation latency: light

anchez-Vives et al. (2017). Shaping the default activity pattern of the

modified from Pigorini et al. (2015) Neuroimage 112, 105-113. (B)
Potential (LFP) and (bottom) Multiunit activity (MUA) under bath

A, blue). PCI was calculated using Lempel-Ziv compression of the

l. (2017). Bistability, causality, and complexity in cortical networks: an

(C) Example of decay in sPCI in awake-like state of a cortical slice and

CI reduction in slow oscillatory activity in a cortical slice and during

antly higher than a threshold activity.

mics and synaptic plasticity. Neuroscience (2020), https://doi.org/10.1016/j.neuroscience.2020.03.011
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Complexity Index (PCI) is one such method, which

determines brain complexity based on the ability of the

network to integrate and differentiate the responses

and cortical interaction following a particular perturbation

(i.e., electrical stimulation) (Casali et al., 2013). Casali

et al. (2013) measured brain complexity based on the

spatiotemporal distribution of significant electroen-

cephalography (EEG) responses following transcranial

magnetic stimulation (TMS). They demonstrated that

during NREM sleep, TMS induced bimodal stereotypical

EEG responses (Figure 1A), while during wakefulness,

TMS triggered complex heterogeneous EEG responses

(Figure 1A) (Casali et al., 2013).

The measurement of complexity using PCI in humans

can distinguish different levels of consciousness but does

not provide information about the mechanisms involved.

To provide a mechanistic approach, D’Andola et al.,

(2017) adapted the PCI measure to the cerebral cortex

in vitro and found that the measure was able to

distinguish variations in cortical complexity for different

simulated ‘‘brain states” reached by varying neurotrans-

mitter concentrations. The authors found that network

complexity was low during slow wave activity, and

increased at induced awake-like states by cholinergic

and noradrenergic agonists (Figure 5B) (D’Andola

et al., 2017). Indeed, it was also demonstrated that sim-

ply increasing neuronal excitability and firing rates do not

imply higher complexity states measured by perturba-

tional methods (D’Andola et al., 2017; Barbero-Castillo

et al., 2020). Thus, while network excitability and neu-

ronal firing patterns are key elements for the normal

functioning of cortical networks and for the transition

between different brain states, there is not a linear rela-

tionship between cortical excitability and complexity. For

example, blocking of GABAA-Rs can lead into rather

high excitability and epileptiform discharges; however,

cortical complexity decreases in these cases (Barbero-

Castillo et al., 2020). Decreasing inhibition by blocking

GABAB-Rs was found to decrease cortical complexity

independently from firing, either departing from an

awake-like, asynchronous state (Figure 5C) or from a

slow wave activity state (Figure 5D) (Barbero-Castillo

et al., 2020), in agreement with the idea that the activa-

tion of GABAB-Rs brings in dynamical richness and

irregularity to the cortical network (Perez-Zabalza et al.,

2020).
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