000095737 001__ 95737
000095737 005__ 20230519145347.0
000095737 0247_ $$2doi$$a10.1139/bcb-2020-0121
000095737 0248_ $$2sideral$$a120177
000095737 037__ $$aART-2021-120177
000095737 041__ $$aeng
000095737 100__ $$0(orcid)0000-0002-8467-0356$$aBuey, Berta
000095737 245__ $$aComparative effect of bovine buttermilk, whey, and lactoferrin on the innate immunity receptors and oxidative status of intestinal epithelial cells
000095737 260__ $$c2021
000095737 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095737 5203_ $$aMilk contains active molecules with important functional properties as the defensive proteins; among them are the whey protein lactoferrin and proteins of the milk fat globule membrane (MFGM) present in buttermilk. The aim of this study has been to investigate the effect of lactoferrin, whey and buttermilk as modulators of intestinal innate immunity and oxidative stress on intestinal epithelial cells, to evaluate its potential use for the development of functional foods. Innate immune Toll-like receptors (TLR2, TLR4, and TLR9) mRNA expression, lipid peroxidation (MDA+4-HDA) and protein carbonyl levels were analyzed in enterocyte-like Caco-2/TC7 cells treated for 24 hours with different concentrations of lactoferrin, whey or buttermilk. None of the substances analyzed caused oxidative damage; however, whey significantly decreased the levels of lipid peroxidation. Furthermore, both lactoferrin and whey were able to reduce the oxidative stress induced by lipopolysaccharide. Respect to TLR receptors, lactoferrin, whey and buttermilk specifically altered the expression of TLR2, TLR4 and TLR9 receptors, with a strong decrease in TLR4 expression. These results suggest that lactoferrin, whey and buttermilk could be interesting potential ingredients for functional foods as they seem to modulate oxidative stress and inflammatory response induced by TLRs activation.
000095737 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/A02-17R$$9info:eu-repo/grantAgreement/ES/MINECO/AGL2017-82987-R
000095737 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000095737 590__ $$a3.73$$b2021
000095737 591__ $$aCELL BIOLOGY$$b132 / 195 = 0.677$$c2021$$dQ3$$eT3
000095737 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b176 / 297 = 0.593$$c2021$$dQ3$$eT2
000095737 594__ $$a6.0$$b2021
000095737 592__ $$a0.694$$b2021
000095737 593__ $$aCell Biology$$c2021$$dQ2
000095737 593__ $$aBiochemistry$$c2021$$dQ2
000095737 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000095737 700__ $$0(orcid)0000-0002-6546-6149$$aBellés, Andrea$$uUniversidad de Zaragoza
000095737 700__ $$0(orcid)0000-0002-5797-3909$$aLatorre, Eva$$uUniversidad de Zaragoza
000095737 700__ $$aAbad, Inés$$uUniversidad de Zaragoza
000095737 700__ $$0(orcid)0000-0003-2555-8425$$aPérez, María Dolores$$uUniversidad de Zaragoza
000095737 700__ $$0(orcid)0000-0002-5306-9365$$aGrasa, Laura$$uUniversidad de Zaragoza
000095737 700__ $$0(orcid)0000-0003-4758-3998$$aMesonero, Jose Emilio$$uUniversidad de Zaragoza
000095737 700__ $$0(orcid)0000-0001-5964-823X$$aSánchez, Lourdes$$uUniversidad de Zaragoza
000095737 7102_ $$11012$$2410$$aUniversidad de Zaragoza$$bDpto. Farmac.Fisiol.y Med.L.F.$$cÁrea Fisiología
000095737 7102_ $$11002$$2050$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Biología Celular
000095737 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000095737 773__ $$g99, 1 (2021), 2020-0121$$pBiochem. cell. biol.$$tBIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE$$x0829-8211
000095737 8564_ $$s2474808$$uhttps://zaguan.unizar.es/record/95737/files/texto_completo.pdf$$yPostprint
000095737 8564_ $$s178957$$uhttps://zaguan.unizar.es/record/95737/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000095737 909CO $$ooai:zaguan.unizar.es:95737$$particulos$$pdriver
000095737 951__ $$a2023-05-18-13:22:23
000095737 980__ $$aARTICLE