000095784 001__ 95784
000095784 005__ 20211117102005.0
000095784 0247_ $$2doi$$a10.3390/mi11090798
000095784 0248_ $$2sideral$$a120222
000095784 037__ $$aART-2020-120222
000095784 041__ $$aeng
000095784 100__ $$0(orcid)0000-0002-6942-9636$$aTzotzis, A.
000095784 245__ $$aInfluence of the Nose Radius on the Machining Forces Induced during AISI-4140 Hard Turning: A CAD-Based and 3D FEM Approach
000095784 260__ $$c2020
000095784 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095784 5203_ $$aThe present study investigated the performance of three ceramic inserts in terms of the micro-geometry (nose radius and cutting edge type) with the aid of a 3D finite element (FE) model. A set of nine simulation runs was performed according to three levels of cutting speed and feed rate with respect to a predefined depth of cut and tool nose radius. The yielded results were compared to the experimental values that were acquired at identical cutting conditions as the simulated ones for verification purposes. Consequently, two more sets of nine simulations each were carried out so that a total of 27 turning simulation runs would adduce. The two extra sets corresponded to the same cutting conditions, but to different cutting tools (with varied nose radius). Moreover, a prediction model was established based on statistical methodologies such as the response surface methodology (RSM) and the analysis of variance (ANOVA), further investigating the relationship between the critical parameters (cutting speed, feed rate, and nose radius) and their influence on the generated turning force components. The comparison between the experimental values of the cutting force components and the simulated ones demonstrated an increased correlation that exceeded 89%. Similarly, the values derived from the statistical model were in compliance with the equivalent FE model values due to the verified adequacy.
000095784 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095784 590__ $$a2.891$$b2020
000095784 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b23 / 64 = 0.359$$c2020$$dQ2$$eT2
000095784 591__ $$aPHYSICS, APPLIED$$b69 / 160 = 0.431$$c2020$$dQ2$$eT2
000095784 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b76 / 106 = 0.717$$c2020$$dQ3$$eT3
000095784 591__ $$aCHEMISTRY, ANALYTICAL$$b46 / 83 = 0.554$$c2020$$dQ3$$eT2
000095784 592__ $$a0.574$$b2020
000095784 593__ $$aControl and Systems Engineering$$c2020$$dQ2
000095784 593__ $$aMechanical Engineering$$c2020$$dQ2
000095784 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ2
000095784 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095784 700__ $$0(orcid)0000-0002-2729-8957$$aGarcia-Hernandez, C.$$uUniversidad de Zaragoza
000095784 700__ $$0(orcid)0000-0001-8333-5890$$aHuertas-Talon, J.L.$$uUniversidad de Zaragoza
000095784 700__ $$aKyratsis, P.
000095784 7102_ $$15002$$2305$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Expresión Gráfica en Ing.
000095784 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000095784 773__ $$g11, 9 (2020), 798 [16 pp.]$$pMicromachines (Basel)$$tMICROMACHINES$$x2072-666X
000095784 8564_ $$s802163$$uhttps://zaguan.unizar.es/record/95784/files/texto_completo.pdf$$yVersión publicada
000095784 8564_ $$s480331$$uhttps://zaguan.unizar.es/record/95784/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095784 909CO $$ooai:zaguan.unizar.es:95784$$particulos$$pdriver
000095784 951__ $$a2021-11-15-14:35:17
000095784 980__ $$aARTICLE