000095790 001__ 95790
000095790 005__ 20210902121925.0
000095790 0247_ $$2doi$$a10.3390/antiox9090772
000095790 0248_ $$2sideral$$a120225
000095790 037__ $$aART-2020-120225
000095790 041__ $$aeng
000095790 100__ $$0(orcid)0000-0002-6649-9153$$aAnoz-Carbonell, E.$$uUniversidad de Zaragoza
000095790 245__ $$aThe catalytic cycle of the antioxidant and cancer-associated human NQO1 enzyme: Hydride transfer, conformational dynamics and functional cooperativity
000095790 260__ $$c2020
000095790 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095790 5203_ $$aHuman NQO1 [NAD(H):quinone oxidoreductase 1] is a multi-functional and stress-inducible dimeric protein involved in the antioxidant defense, the activation of cancer prodrugs and the stabilization of oncosuppressors. Despite its roles in human diseases, such as cancer and neurological disorders, a detailed characterization of its enzymatic cycle is still lacking. In this work, we provide a comprehensive analysis of the NQO1 catalytic cycle using rapid mixing techniques, including multiwavelength and spectral deconvolution studies, kinetic modeling and temperature-dependent kinetic isotope effects (KIEs). Our results systematically support the existence of two pathways for hydride transfer throughout the NQO1 catalytic cycle, likely reflecting that the two active sites in the dimer catalyze two-electron reduction with different rates, consistent with the cooperative binding of inhibitors such as dicoumarol. This negative cooperativity in NQO1 redox activity represents a sort of half-of-sites activity. Analysis of KIEs and their temperature dependence also show significantly different contributions from quantum tunneling, structural dynamics and reorganizations to catalysis at the two active sites. Our work will improve our understanding of the effects of cancer-associated single amino acid variants and post-translational modifications in this protein of high relevance in cancer progression and treatment.
000095790 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E35-20R$$9info:eu-repo/grantAgreement/ES/MCIU-ERDF/RTI2018-096246-B-I00$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-103901GB-I00
000095790 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095790 590__ $$a6.312$$b2020
000095790 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b60 / 297 = 0.202$$c2020$$dQ1$$eT1
000095790 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b11 / 144 = 0.076$$c2020$$dQ1$$eT1
000095790 591__ $$aCHEMISTRY, MEDICINAL$$b6 / 63 = 0.095$$c2020$$dQ1$$eT1
000095790 592__ $$a1.066$$b2020
000095790 593__ $$aBiochemistry$$c2020$$dQ2
000095790 593__ $$aCell Biology$$c2020$$dQ2
000095790 593__ $$aPhysiology$$c2020$$dQ2
000095790 593__ $$aMolecular Biology$$c2020$$dQ2
000095790 593__ $$aClinical Biochemistry$$c2020$$dQ2
000095790 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095790 700__ $$aTimson, D.J.
000095790 700__ $$aPey, A.L.
000095790 700__ $$0(orcid)0000-0001-8743-0182$$aMedina, M.$$uUniversidad de Zaragoza
000095790 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000095790 773__ $$g9, 9 (2020), 772 [1-22]$$pAntioxidants$$tAntioxidants$$x2076-3921
000095790 8564_ $$s980970$$uhttps://zaguan.unizar.es/record/95790/files/texto_completo.pdf$$yVersión publicada
000095790 8564_ $$s476236$$uhttps://zaguan.unizar.es/record/95790/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095790 909CO $$ooai:zaguan.unizar.es:95790$$particulos$$pdriver
000095790 951__ $$a2021-09-02-10:50:55
000095790 980__ $$aARTICLE