Uncertainty propagation using the full second-order approach for probabilistic fatigue crack growth life
Resumen: Uncertainty propagation of fatigue crack growth life commonly aims to provide the probability distribution of the lifespan needed for probabilistic damage tolerance analysis and for structural integrity assessment. This paper presents a novel methodology for efficiently estimating the parameters of the probability distribution of fatigue lifespan considering the Pearson distribution family. First, the full second-order approach for expected value and variance prediction of probabilistic fatigue crack growth life is extended to predict higher order statistical moments of the underlying distribution. That is, the expected value (first raw moment) and the variance (second central moment) equations are complemented with the probabilistic formulations for the skewness and for the kurtosis (third and fourth central standardized moments, respectively). Then, from these moments, the Pearson distribution type is automatically determined. Finally, the parameters of the particular Pearson distribution type are estimated making the statistical moments of the constructed lifespan distribution match the first four prescribed moments predicted by the probabilistic equations. The validity of the proposed method is verified by a numerical example regarding the fatigue crack growth in a railway axle under random bending loading. It is proven that the probability density function of the lifespan is properly derived by the methodology, without knowing or assuming the output probability distribution beforehand. The methodology presented enables an efficient and an accurate quantification of the lifespan uncertainties via its probabilistic distribution. This probabilistic description of fatigue crack growth life can be subsequently used in reliability studies or in damage tolerance assessment.
Idioma: Inglés
DOI: 10.23967/j.rimni.2020.07.004
Año: 2020
Publicado en: Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria 36, 3 (2020), 1-15
ISSN: 0213-1315

Factor impacto JCR: 0.513 (2020)
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 105 / 108 = 0.972 (2020) - Q4 - T3
Categ. JCR: ENGINEERING, MULTIDISCIPLINARY rank: 87 / 91 = 0.956 (2020) - Q4 - T3

Factor impacto SCIMAGO: 0.212 - Engineering (miscellaneous) (Q3) - Applied Mathematics (Q3)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/RTC-2016-4813-4
Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2021-09-02-10:44:58)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-10-20, última modificación el 2021-09-02


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)