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Abstract

Currently, the patterning of innovative three-dimensional (3D) nano-objects is required for the development of future advanced
electronic components. Helium ion microscopy in combination with a precursor gas can be used for direct writing of three-dimen-
sional nanostructures with a precise control of their geometry, and a significantly higher aspect ratio than other additive manufac-
turing technologies. We report here on the deposition of 3D hollow tungsten carbide nanowires with tailored diameters by tuning
two key growth parameters, namely current and dose of the ion beam. Our results show the control of geometry in 3D hollow nano-
wires, with outer and inner diameters ranging from 36 to 142 nm and from 5 to 28 nm, respectively; and lengths from 0.5 to 8.9 pm.
Transmission electron microscopy experiments indicate that the nanowires have a microstructure of large grains with a crystalline
structure compatible with the face-centered cubic WC/_, phase. In addition, 3D electron tomographic reconstructions show that the

hollow center of the nanowires is present along the whole nanowire length. Moreover, these nanowires become superconducting at
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6.8 K and show high values of critical magnetic field and critical current density. Consequently, these 3D nano-objects could be

implemented as components in the next generation of electronics, such as nano-antennas and sensors, based on 3D supercon-

ducting architectures.

Introduction

Superconductors are dissipationless carriers of electric current
and provide macroscopic, and thus robust, quantum coherence.
This allows for a wide range of applications, particularly at the
nanometer-scale, where they can be easily integrated in circuits
and used as ultrasensitive sensors of magnetic fields, tempera-
ture and as key elements for quantum computation. The behav-
ior of nanosized superconductors as one-dimensional quantum
oscillators [1], Josephson junction arrays [2], electronic trans-
port devices [3-7], very small-scale devices [8,9], micrometer-
scale coolers [10], or thermal and spin sensors [11,12] has been
studied in detail.

Nowadays, research on manufacturing highly energy-efficient
three-dimensional (3D) structures [13] is critical for the devel-
opment of future electronics. However, when approaching the
nanometer-scale, the number of works on real 3D nano-super-
conductors [14-19] decreases dramatically, mostly due to the
complex fabrication and characterization. A technique success-
fully utilized for fabricating 3D nano-objects is direct writing
by a focused beam of positively charged particles, the so-called
focused-ion-beam induced deposition (FIBID) [20]. A very
promising development of FIBID is based on Ga* ions. Func-
tional 3D nanomaterials have been grown by Ga* FIBID in the
last decade [21-26]. In particular, Ga* FIBID in combination
with W(CO)¢ as precursor material yielded 3D supercon-
ducting W-based wires with a critical temperature (7)) below
5 K and a critical magnetic field (upH:2(0)) up to 9.5 T [14-16].
Alternatively, in combination with Nb(NMe;)3(N-7-Bu),
Ga™ FIBID yielded NbC wires with a broadened T range from
4 to 11 K [18]. One significant limitation is that 3D elements
below 100 nm in diameter cannot be obtained with Ga* FIBID,
mainly due to the relatively large Ga* beam diameter
(approx. 5 nm) and a high proximity effect generated by Ga™

ion scattering.

Regarding a higher spatial resolution, the helium ion micro-
scope (HIM) [27], based on a gas field-ionization source, has
emerged as a tool for direct writing of complex 3D nano-objects
taking advantage of its small beam diameter (approx. 0.3 nm)
and low proximity effect [28]. When precursor molecules from
the gas phase are adsorbed on a substrate surface, He* FIB
dissociates them into non-volatile and volatile products. The
non-volatile products attach to the surface, resulting in a

deposit, whereas the volatile products ones are pumped out of

the process chamber. Normally, the final deposit is a mixture of
carbon, metallic elements and oxygen. As clearly described
using analytical modelling [29] and Monte-Carlo simulations
[30], the vertical growth of 3D nano-objects by He* FIBID is
mainly caused by secondary electrons of the first order pro-
duced from the primary ion beam, whereas the lateral growth is
induced by secondary electrons of the second order generated
from scattered ions. Thus, the direct contribution of the primary
He" ion beam and the scattered He* ions is almost negligible
for the growth of these 3D nano-objects. Nevertheless, it is
worth mentioning that its resolution, volume per dose and
throughput are very sensitive to the selected growth conditions
such as ion beam energy, ion beam current, precursor flux, sur-
face interactions with the beam, and precursor molecules
[29,30]. Hence, the He* FIBID technique is highly recom-
mended for direct writing of 3D nano-objects with high resolu-
tion and aspect ratio [17,19,31-35]. A successful example of
tailored 3D nano-objects grown by He™ FIBID has been re-
ported by Kohama and co-workers [35]. The authors deposited
W-based pillars with diameters down to approx. 40 nm and
aspect ratios of approx. 50. The microstructure of the grown
material consisted of fcc WC_, and W,(C,0) grains. More-
over, when the He™ beam was well focused the authors ob-
served columnar voids created at the center of the pillars with a
diameter ranging from 1 to 15 nm, showing the path to build
complex 3D nano-objects beyond standard nanowires (NWs).
Recent breakthroughs in the growth of 3D WC supercon-
ducting nano-objects with extremely large aspect ratios using
He" FIBID have been reported by some of the authors, such as
hollow NW-like nanotubes as small as 32 nm in diameter [17]
and nanohelices with controllable geometries, including the
smallest and most densely packed nanohelix to date with a di-
ameter of 100 nm [19].

In this work, we present the direct writing of 3D WC crys-
talline superconducting hollow NWs with tailored diameters
grown using a HIM. The hollow NW geometry is successfully
controlled by tuning the ion beam current and dose from 0.65 to
7 pA and from 0.1 to 0.4 nC, respectively, resulting in NW's
with outer diameters from 36 to 142 nm and with inner diame-
ters from 5 to 28 nm, and total length from 0.5 to 8.9 um
(aspect ratio = 196). These values are significantly better than
those reported in previous works [17,35]. The NWs microstruc-

ture consists of large grains of fcc WCj_,, in good agreement
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with [17,35]. In addition, the NWs are hollow along the whole
NW length, which could make them nonconventional
nanopipettes, as demonstrated in 3D reconstructions of electron
tomography experiments. Finally, these 3D hollow NWs exhib-
it superconductivity below 6.8 K (T,), as well as high upper
critical magnetic fields ugH., = 14.7 T, and large critical cur-
rent densities J, ~ 0.15 MA/cm?.

Results and Discussion
Growth of 3D hollow nanowires by He* FIBID

We use a HIM in combination with a W(CO)¢ precursor to
grow individual, out-of-plane WC NWs in a single step,
controlling inner and outer diameter and total length. The pre-
cursor gas is delivered to the process chamber and adsorbed
onto the substrate surface, while the He* FIB spot remains fixed
during the deposition favoring continuous vertical growth
along [17].

Dimensional control for nanowires
We investigated the dimensional control for these NWs by opti-
mizing in the deposition the following parameters: the ion beam
current and ion dose. SEM images of typical NWs grown with
ion beam currents ranging from 0.54 to 6.47 pA and doses from
0.1 to 1.4 nC are depicted in Figure 1a—d.

Varying these parameters enables us to fabricate 3D NWs
with diameters ranging from 45 to 125 nm, lengths ranging
from 0.5 to 8.9 um, and with aspect ratios up to 198. Further
details regarding the growth conditions are described in the
Experimental section. We found a linear dependence of the NW
volume (determined as m X (outer diameter/2 — inner
diameter/2)? x height) as a function of the ion dose for the
mentioned ion beam currents (Figure 1e). Moreover, we noted
that the NW volume rapidly decreases as a function of the ion
beam current for the same dose (Figure 2). When using high
currents several effects can play a role in this dependence such
as precursor depletion, local heating, which decreases the pre-
cursor molecule sticking coefficient, and low precursor diffu-
sion from the substrate to the top of the pillar [36,37]. This
shows the need for future systematic experiments varying the
dwell time in pulsed growth or varying the flux of precursor
gas.

(High-resolution) scanning transmission
electron microscopy

Dependence of NW inner diameter on the ion beam
current

To investigate the dependence of the NW inner diameter on the
ion beam current, scanning transmission electron microscopy
(STEM) experiments were performed. We found that inner di-

ameter of the hollow NWs changes from 5 to 28 nm, whereas
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Figure 1: (a—d) SEM images of hollow NWs grown by He* FIBID;

(a) ion beam current: 0.54 pA, dose: 0.1-0.3 nC from right to left;

(b) ion beam current: 1.17 pA, dose: 0.1-0.6 nC from left to right and
upwards; (c) ion beam current: 2.91 pA, dose: 0.1-0.6 nC from left to
right and upwards; (d) ion beam current: 6.47 pA, dose: 0.229, 0.456,
0.696, 0.935, 1.158, and 1.402 nC from left to right and upwards.

(e) NW volume in (a) as a function of the ion beam dose.

the outer diameter changes from 36 to 143 nm upon increasing
the ion beam current from 1.3 to 7 pA. STEM images of these
hollow NWs are shown in Figure 3a. The observed non-uniform
shape of the cavity in the central nanowire could be explained
by several reasons, such as He* FIB instability or irregular sub-
strate surface. We find a linear dependence of the inner diame-
ter on the ion beam current (Figure 3b), which indicates that the
ion beam forms the cavity due to a milling effect. Thus via
tuning the ion beam current and dose we have full control to
tailor the diameters of the hollow 3D NWs. The specific deposi-

tion parameters and NW diameters are listed in Table 1.
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Figure 2: NW volume for a specific dose, as a function of the ion beam
current.

Table 1: Growth parameters and diameters of hollow WC NWs.

hollow nanowire type 1 2 3
ion beam current (pA) 1.3 2.3 7.0
outer diameter (nm) 36 71 142
inner diameter (nm) 5 9 28

Electron tomography

In order to further examine the NW diameters along their
length, electron tomography experiments on two specific NWs
were carried out. Figure 4 shows the tomographic reconstruc-
tion of hollow WC NWs grown at (a) 7 pA and (b) 2 pA. One
can see from the images that the cavities are present up to the
tip of the NW. On the left panel of Figure 4a, a STEM image of
the NW with outer and inner diameter of 142 and 28 nm, re-
spectively, is shown. On the right panel, a snapshot of the
colored 3D tomographic reconstruction is depicted. Figure 4b
shows a STEM image of the NW with outer and inner diameter
of 77 and 8 nm, respectively, on the left panel, and a snapshot
of the colored 3D tomographic reconstruction is displayed on
the right panel. Three movies of the tomographic reconstruc-
tion for each hollow NW are added in Supporting Information
File 1-7, including a transversal (x—y) and a longitudinal (y-z)
section, and a colored three-dimensional reconstruction.

Microstructure

Concerning the microstructure of the NWs, high-resolution
scanning transmission electron microscopy (HRSTEM) images
have been acquired sequentially and processed to extract the
crystallographic structure (Figure 5). We indexed the spots indi-
cated in the fast Fourier transform (Figure 5b) of the image in
Figure 5a with the planes (-11-1), (-200) and (—1-11), and the

Beilstein J. Nanotechnol. 2020, 11, 1198-1206.

Figure 3: (a) STEM images of hollow NWs grown at 1.3, 2.3, and
7 pA, from left to right. (b) NW diameter in (a) as a function of the ion
beam current.

[011] zone axis of the WC_, fcc structure, with a lattice param-
eter of a = 0.4272 nm. A lower magnification STEM image of
the NW grown at 1.3 pA is depicted in Figure 5c. These results
are in good agreement with the previous work reported by some
of the authors [17].

Magneto-electrical-transport study

To determine the critical superconducting parameters in NWs
grown at 0.65, 1.3, and 2.18 pA (Figure 6 and Table 2), a
magneto-electrical transport study using the typical four-point-
probe configuration has been performed. Following the
procedure described in [17], first 3D NWs were placed flat on
the SiO, layer of a Si/SiO; substrate by means of a
nano-manipulator. Then, four Pt FIBID contacts were grown to

connect the NWs to pre-patterned Ti pads. Finally, we made
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Figure 4: (a) Tomography of a hollow WC NW grown at 7 pA, with an outer diameter of 142 nm and an inner diameter of 28 nm; left panel: STEM
image, right panel: snapshot of the 3D tomographic reconstruction. (b) Tomography of a hollow WC NW grown at 2 pA, with an outer diameter of
77 nm and inner diameter of 8 nm; left panel: STEM image, right panel: snapshot of the 3D tomographic reconstruction.

Figure 5: (a) HRSTEM image of a typical hollow WC NW grown at 1.3 pA. (b) Fast Fourier transform of the image in (a), showing the crystalline
nature of the material and indexed as the [011] zone axis of the fcc WC1_ structure. (c) Lower magnification STEM image of the WC NW in (a).

four-point-probe electrical measurements at low temperature
(down to 0.5 K) and under a magnetic field perpendicular to the
substrate plane (up to 9 T).

The NWs change from the normal to the superconducting state
at T, (0.5Ry) values between 5.45 and 6.78 K (Figure 6a and

Table 2). No clear trend was visible in 7 values for NWs

grown using different currents, although the identified T, range
is in good agreement with the previously reported results [17].
Also, it is up to 1.5 times higher than that of Ga™ FIBID nano-
structures of similar dimensions [9]. The inset of Figure 6a
shows the measured resistance as a function of the temperature
in the full temperature range investigated for a NW grown at

0.65 pA. The value of ppH,, as a function of the temperature
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Figure 6: (a) Normalized resistance as a function of the temperature of
hollow NWs grown using ion beam currents indicated in the legend. Ry
is the resistance for the normal state at T = 10 K. The inset shows the
resistance as function of the temperature (full range) for a NW grown
at 0.65 pA, Ipias = 100 nA. (b) Upper critical magnetic field (pgHc2) as a
function of the temperature of NWs grown using ion beam currents in-
dicated in the legend. Data is fitted to a power-law equation. The inset
shows the resistance as a function of the temperature for a NW grown
at 0.65 pA under perpendicular magnetic fields from0to 9 T.

for NWs grown at 0.65 and 1.3 pA is depicted in Figure 6b.
The values of pgH.» (0.9RyN) are extracted from the
resistance-vs-temperature curves under perpendicular magnetic
field (inset of Figure 6b). By fitting ugH(7) to a power-law
equation poHo(T) o< (1 =T/T.)", uoH2(0 K) is estimated to be
approx. 14.5 T for the different NWs. The coherence length, &,
at 0 K is around 4.77 nm and the estimated magnetic field pene-
tration depth, A, [38,39] ranges from 720 to 874 nm. Additional-
ly, J. (0.6 K, 0 T) is approx. 0.15 MA/cm?.

Summarizing, the estimated superconducting parameters (7,
uoHco, Je, € A) for these NWs (Table 2) are mostly compatible
with those reported for He" FIBID out-of-plane WC nanotubes

Beilstein J. Nanotechnol. 2020, 11, 1198-1206.

Table 2: Superconducting parameters of NWs estimated from experi-
mental magneto-transport measurements.

hollow

nanowire type 1 2 3
ion beam 0.65 1.30 2.18
current (pA)

outer diameter 36 4 72
(nm)

RN (Q) 1959 2101 430
T¢ (K) 6.78 6.16 5.45
HoHco (0 K) (T) 14.66 14.48 —
Jo(0T) 0.083 (0.6 K) 0.151 (0.6 K) 0.026 (1 K)
(MA/cm?)

€ (0 K) (nm) 4.74 4.77 —

A (0 K) (nm) 839 720 874

[17], nanohelices [19], and in-plane NWs used in hybrid micro-
wave resonators [40]. They are potential building blocks for
highly packed 3D nano-resonators, superconducting logic gates
[41], quantum switches [42], and single-photon detectors
[43-45].

Conclusion

We report a direct writing methodology to create 3D supercon-
ducting hollow NWs with tailored diameters using W(CO)g pre-
cursor with a highly focused He* beam. The resulting 3D
hollow NWs have inner and outer diameters from 5 to 28 nm
and from 36 to 142 nm, respectively, and aspect ratios above
196, which is unachievable by other additive manufacturing
methods. The electron tomography study proved that the center
hole is present along the whole length of the NWs.

As expected, the microstructure corresponds to the fcc WC/_,
phase. By studying their magnetotransport properties, we found
T.~ 6.8 K, as well as poHep = 14.7 T and J, ~ 0.15 MA/cm?2.
The presented methodology yields an advanced bottom-up ap-
proach for the fabrication of innovative 3D nano-architectures,
in which nano-superconductivity may provide an advantage, for
future electronic components, particularly for sensors, energy-
storage components, and quantum computing.

Experimental

Growth of 3D hollow WC nanowires

He" FIBID hollow WC NWs have been fabricated in a ZEISS
ORION NanoFab instrument equipped with a helium ion beam
column and a single-needle gas injection system (GIS) through
which W(CO)g gas is delivered to the process chamber.

The NWs were deposited on top of the pre-patterned Ti pads

(150 nm in thickness) to prevent charge effects on the insulator
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layer (250 nm thick of SiO,) thermally grown on a silicon wafer
[23]. These chips were fabricated following a routine recipe for
UV optical lithography using a lift-off method. For the electron
tomography and (HR)STEM experiments, NWs were directly
grown on Cu TEM grids. Typical deposition conditions used for
the He* FIBID process were as follows; precursor material:
tungsten hexacarbonyl, W(CO)g; Tprecursor = 35 °C;
GISpeedle diameter ® 500 pm; GIS; = 500 pm; GISyy, ~ 60 um;
Ppase ~ 3 x 1077 mbar; Pprocess = 4 X 107% mbar; acceleration
voltage = 30 kV; pattern shape: spot mode; ion beam current
range of 0.54 to 6.47 pA and dose range of 0.1 to 1.4 nC.

Microstructure and tomography at the
nanometer-scale

Scanning transmission electron microscopy (STEM) imaging
and EDS were carried out in a probe-corrected FEI Titan
60-300 operated at 300 kV and equipped with a high-bright-
ness X-FEG and a CETCOR Cg corrector for the condenser
system to provide sub-angstrom probe size.

STEM high-angle annular dark-field (HAADF) tomography
was performed using a Thermo Fisher Tecnai field-emission
gun operated at 300 kV. The angular range for the tilt series was
+70° with pictures taken every 1°. Image alignment and 3D
reconstruction was carried out with FEI tomography acquisi-
tion software Inspect 3D after the acquisition of 140 images.
The movies of the tomographic reconstruction for each hollow

NW were performed using Amira 3D software.

Magneto-electrical transport study

The magneto-electrical transport measurements on the NWs
were carried out using a "Physical Property Measurement
System" (PPMS), from Quantum Design equipped with a

helium-3 refrigerator insert.

Supporting Information

Movies of 3D tomographic reconstruction.

Supporting Information File 1

Electron tomography_3D reconstruction_hollow NW
grown at 2 pA and 0.6 nC.
[https://www.beilstein-journals.org/bjnano/content/
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Supporting Information File 2

Electron tomography_3D longitudinal_hollow NW grown
at 2 pA and 0.6 nC.
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supplementary/2190-4286-11-104-S2.wmv]
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Supporting Information File 4

Electron tomography_transversal section_hollow NW
grown at 2 pA and 0.6 nC.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-11-104-S4.wmv]

Supporting Information File 5

Electron tomography_3D reconstruction_hollow NW
grown at 7 pA and 1.009 nC.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-11-104-S5.wmv]

Supporting Information File 6

Electron tomography_3D longitudinal_hollow NW grown
at 7 pA and 1.009 nC.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-11-104-S6.wmv]

Supporting Information File 7
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