000009587 001__ 9587
000009587 005__ 20190219123656.0
000009587 037__ $$aTESIS-2012-100
000009587 041__ $$aspa
000009587 080__ $$a681.5:61
000009587 1001_ $$aLlamedo Soria, Mariano
000009587 24500 $$aSignal processing for automatic heartbeat classification and patient adaptation in the electrocardiogram
000009587 260__ $$aZaragoza$$bUniversidad de Zaragoza, Prensas de la Universidad$$c2012
000009587 300__ $$a191
000009587 4900_ $$aTesis de la Universidad de Zaragoza$$v2012-14$$x2254-7606
000009587 500__ $$aPresentado: 19 06 2012
000009587 502__ $$aTesis-Univ. Zaragoza, Instituto de Investigación en Ingeniería de Aragón (I3A), 2012$$bZaragoza, Universidad de Zaragoza$$c2012
000009587 506__ $$aby-nc-nd$$bCreative Commons$$c3.0$$uhttps://creativecommons.org/licenses/by-nc-nd/3.0/
000009587 520__ $$aLas enfermedades cardiovasculares son en la actualidad la mayor causa de muerte individual en los países desarrollados, por lo tanto cualquier avance en las metodologías para el diagnóstico podrían mejorar la salud de muchas personas. Dentro de las enfermedades cardiovasculares, la muerte súbita cardíaca es una de las causas de muerte más importantes, por su número y por el impacto social que provoca. Sin lugar a duda se trata uno de los grandes desafíos de la cardiología moderna. Hay evidencias para relacionar las arritmias con la muerte súbita cardíaca. Por otro lado, la clasificación de latidos en el electrocardiograma (ECG) es un análisis previo para el estudio de las arritmias. El análisis del ECG proporciona una técnica no invasiva para el estudio de la actividad del corazón en sus distintas condiciones. Particularmente los algoritmos automáticos de clasificación se focalizan en el análisis del ritmo y la morfología del ECG, y específicamente en las variaciones respecto a la normalidad. Justamente, las variaciones en el ritmo, regularidad, lugar de origen y forma de conducción de los impulsos cardíacos, se denominan arritmias. Mientras que algunas arritmias representan una amenaza inminente (Ej. fibrilación ventricular), existen otras más sutiles que pueden ser una amenaza a largo plazo sin el tratamiento adecuado. Es en estos últimos casos, que registros ECG de larga duración requieren una inspección cuidadosa, donde los algoritmos automáticos de clasificación representan una ayuda significativa en el diagnóstico. En la última década se han desarrollado algunos algoritmos de clasificación de ECG, pero solo unos pocos tienen metodologías y resultados comparables, a pesar de las recomendaciones de la AAMI para facilitar la resolución de estos problemas. De dichos métodos, algunos funcionan de manera completamente automática, mientras que otros pueden aprovechar la asistencia de un experto para mejorar su desempeño. La base de datos utilizada en todos estos trabajos ha sido la MIT-BIH de arritmias. En cuanto a las características utilizadas, los intervalos RR fueron usados por casi todos los grupos. También se utilizaron muestras del complejo QRS diezmado, o transformado mediante polinomios de Hermite, transformada de Fourier o la descomposición wavelet. Otros grupos usaron características que integran la información presente en ambas derivaciones, como el máximo del vectocardiograma del complejo QRS, o el ángulo formado en dicho punto. El objetivo de esta tesis ha sido estudiar algunas metodologías para la clasificación de latidos en el ECG. En primer lugar se estudiaron metodologías automáticas, con capacidad para contemplar el análisis de un número arbitrario de derivaciones. Luego se estudió la adaptación al paciente y la posibilidad de incorporar la asistencia de un experto para mejorar el rendimiento del clasificador automático. En principio se desarrolló y validó un clasificador de latidos sencillo, que utiliza características seleccionadas en base a una buena capacidad de generalización. Se han considerado características de la serie de intervalos RR (distancia entre dos latidos consecutivos), como también otras calculadas a partir de ambas derivaciones de la señal de ECG, y escalas de su transformada wavelet. Tanto el desempeño en la clasificación como la capacidad de generalización han sido evaluados en bases de datos públicas: la MIT-BIH de arritmias, la MIT-BIH de arritmias supraventriculares y la del Instituto de Técnicas Cardiológicas de San Petersburgo (INCART). Se han seguido las recomendaciones de la Asociación para el Avance de la Instrumentación Médica (AAMI) tanto para el etiquetado de clases como para la presentación de los resultados. Para la búsqueda de características se adoptó un algoritmo de búsqueda secuencial flotante, utilizando diferentes criterios de búsqueda, para luego elegir el modelo con mejor rendimiento y capacidad de generalización en los sets de entrenamiento y validación. El mejor modelo encontrado incluye 8 características y ha sido entrenado y evaluado en particiones disjuntas de la MIT-BIH de arritmias. Todas las carácterísticas del modelo corresponden a mediciones de intervalos temporales. Esto puede explicarse debido a que los registros utilizados en los experimentos no siempre contienen las mismas derivaciones, y por lo tanto la capacidad de clasificación de aquellas características basadas en amplitudes se ve seriamente disminuida. Las primeras 4 características del modelo están claramente relacionadas a la evolución del ritmo cardíaco, mientras que las otras cuatro pueden interpretarse como mediciones alternativas de la anchura del complejo QRS, y por lo tanto morfológicas. Como resultado, el modelo obtenido tiene la ventaja evidente de un menor tamaño, lo que redunda tanto en un ahorro computacional como en una mejor estimación de los parámetros del modelo durante el entrenamiento. Como ventaja adicional, este modelo depende exclusivamente de la detección de cada latido, haciendo este clasificador especialmente útil en aquellos casos donde la delineación de las ondas del ECG no puede realizarse de manera confiable. Los resultados obtenidos en el set de evaluación han sido: exactitud global (A) de 93%; para latidos normales: sensibilidad (S) 95% valor predictivo positivo (P^{+}) 98%; para latidos supraventriculares, S 77%, P^{+} 39%; y para latidos ventriculares S 81%, P^{+} 87%. Para comprobar la capacidad de generalización, se evaluó el rendimiento en la INCART obteniéndose resultados comparables a los del set de evaluación. El modelo de clasificación obtenido utiliza menos características, y adicionalmente presentó mejor rendimiento y capacidad de generalización que otros representativos del estado del arte. Luego se han estudiado dos mejoras para el clasificador desarrollado en el párrafo anterior. La primera fue adaptarlo a registros ECG de un número arbitrario de derivaciones, o extensión multiderivacional. En la segunda mejora se buscó cambiar el clasificador lineal por un perceptrón multicapa no lineal (MLP). Para la extensión multiderivacional se estudió si conlleva alguna mejora incluir información del ECG multiderivacional en el modelo previamente validado. Dicho modelo incluye características calculadas de la serie de intervalos RR y descriptores morfológicos calculados en la transformada wavelet de cada derivación. Los experimentos se han realizado en la INCART, disponible en Physionet, mientras que la generalización se corroboró en otras bases de datos públicas y privadas. En todas las bases de datos se siguieron las recomendaciones de la AAMI para el etiquetado de clases y presentación de resultados. Se estudiaron varias estrategias para incorporar la información adicional presente en registros de 12 derivaciones. La mejor estrategia consistió en realizar el análisis de componentes principales a la transformada wavelet del ECG. El rendimiento obtenido con dicha estrategia fue: para latidos normales: S98%, P^{+}93%; para latidos supraventriculares, S86%, P^{+}91%; y para latidos ventriculares S90%, P^{+}90%. La capacidad de generalización de esta estrategia se comprobó tras evaluarla en otras bases de datos, con diferentes cantidades de derivaciones, obteniendo resultados comparables. En conclusión, se mejoró el rendimiento del clasificador de referencia tras incluir la información disponible en todas las derivaciones disponibles. La mejora del clasificador lineal por medio de un MLP se realizó siguiendo una metodología similar a la descrita más arriba. El rendimiento obtenido fue: A 89%; para latidos normales: S90%, P^{+}99% para latidos supraventriculares, S83%, P^{+}34%; para latidos ventriculares S87%, P^{+}76%. Finalmente estudiamos un algoritmo de clasificación basado en las metodologías descritas en los anteriores párrafos, pero con la capacidad de mejorar su rendimiento mediante la ayuda de un experto. Se presentó un algoritmo de clasificación de latidos en el ECG adaptable al paciente, basado en el clasificador automático previamente desarrollado y un algoritmo de clustering. Tanto el clasificador automático, como el algoritmo de clustering utilizan características calculadas de la serie de intervalos RR y descriptores de morfología calculados de la transformada wavelet. Integrando las decisiones de ambos clasificadores, este algoritmo puede desempeñarse automáticamente o con varios grados de asistencia. El algoritmo ha sido minuciosamente evaluado en varias bases de datos para facilitar la comparación. Aún en el modo completamente automático, el algoritmo mejora el rendimiento del clasificador automático original; y con menos de 2 latidos anotados manualmente (MAHB) por registro, el algoritmo obtuvo una mejora media para todas las bases de datos del 6.9% en A, de 6.5\%S y de 8.9\% en P^{+}. Con una asistencia de solo 12 MAHB por registro resultó en una mejora media de 13.1\%en A, de 13.9\% en S y de 36.1\% en P^{+}. En el modo asistido, el algoritmo obtuvo un rendimiento superior a otros representativos del estado del arte, con menor asistencia por parte del experto. Como conclusiones de la tesis, debemos enfatizar la etapa del diseño y análisis minucioso de las características a utilizar. Esta etapa está íntimamente ligada al conocimiento del problema a resolver. Por otro lado, la selección de un subset de características ha resultado muy ventajosa desde el punto de la eficiencia computacional y la capacidad de generalización del modelo obtenido. En último lugar, la utilización de un clasificador simple o de baja capacidad (por ejemplo funciones discriminantes lineales) asegurará que el modelo de características sea responsable en mayor parte del rendimiento global del sistema. Con respecto a los sets de datos para la realización de los experimentos, es fundamental contar con un elevado numero de sujetos. Es importante incidir en la importancia de contar con muchos sujetos, y no muchos registros de pocos sujetos, dada la gran variabilidad intersujeto observada. De esto se desprende la necesidad de evaluar la capacidad de generalización del sistema a sujetos no contemplados durante el entrenamiento o desarrollo. Por último resaltaremos la complejidad de comparar el rendimiento de clasificadores en problemas mal balanceados, es decir que las clases no se encuentras igualmente representadas. De las alternativas sugeridas en esta tesis probablemente la más recomendable sea la matriz de confusión, ya que brinda una visión completa del rendimiento del clasificador, a expensas de una alta redundancia. Finalmente, luego de realizar comparaciones justas con otros trabajos representativos del estado actual de la técnica, concluimos que los resultados presentados en esta tesis representan una mejora en el campo de la clasificación de latidos automática y adaptada al paciente, en la señal de ECG.
000009587 6531_ $$atratamiento de señales
000009587 6531_ $$acardiología
000009587 6531_ $$aconstrucción de algoritmos
000009587 700__ $$aMartínez Cortés, Juan Pablo$$edir.
000009587 7102_ $$aUniversidad de Zaragoza$$bInstituto de Investigación en Ingeniería de Aragón (I3A)
000009587 8560_ $$fzaguan@unizar.es
000009587 8564_ $$s3742520$$uhttps://zaguan.unizar.es/record/9587/files/TESIS-2012-100.pdf$$zTexto completo (spa)
000009587 909CO $$ooai:zaguan.unizar.es:9587$$pdriver
000009587 909co $$ptesis
000009587 9102_ $$a$$bInstituto de Investigación en Ingeniería de Aragón (I3A)
000009587 980__ $$aTESIS