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Abstract

Cardiovascular diseases are currently the biggest single cause of death in developed coun-
tries, so the development of better diagnostic methodologies could improve the health of
many people. Arrhythmias are related to the sudden cardiac death, one of the challenges
for the modern cardiology. On the other hand, the classification of heartbeats on the
electrocardiogram (ECG) is an important analysis previous to the study of arrhythmias.
The automation of heartbeat classification could improve the diagnostic quality of ar-
rhythmias, specially in Holter or long-term recordings. The objective of this thesis is the
study of the methodologies for the classification of heartbeats on the ECG.

First we developed and validated a simple heartbeat classifier based on features se-
lected with the focus on an improved generalization capability. We considered features
from the RR interval (distance between two consecutive heartbeats) series, as well as
features computed from the ECG samples and from scales of the wavelet transform, at
both available leads. The classification performance and generalization were studied us-
ing publicly available databases: the MIT-BIH Arrhythmia, the MIT-BIH Supraventric-
ular Arrhythmia and the St. Petersburg Institute of Cardiological Technics (INCART)
databases. The Association for the Advancement of Medical Instrumentation (AAMI)
recommendations for class labeling and results presentation were followed. A floating fea-
ture selection algorithm was used to obtain the best performing and generalizing models
in the training and validation sets for different search configurations. The best model
found comprehends 8 features, was trained in a partition of the MIT-BIH Arrhythmia,
and was evaluated in a completely disjoint partition of the same database. The results
obtained were: global accuracy (A) of 93%; for normal beats, sensitivity (S) 95%, positive
predictive value (P+) 98%; for supraventricular beats, S 77%, P+ 39%; for ventricular
beats S 81%, P+ 87%. In order to test the generalization capability, performance was
also evaluated in the INCART, with results comparable to those obtained in the test set.
This classifier model has fewer features and performs better than other state of the art
methods with results suggesting better generalization capability.

With an automatic classifier developed and validated, we evaluated two improvements.
One, to adapt the classifier to ECG recordings of an arbitrary number of leads, or mul-
tilead extension. The second improvement was to improve the classifier with a nonlinear
multilayer perceptron (MLP). For the multilead extension, we studied the improvement
in heartbeat classification achieved by including information from multilead ECG record-
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ings in the previously developed and validated classification model. This model includes
features from the RR interval series and morphology descriptors for each lead calculated
from the wavelet transform. The experiments were carried out in the INCART database,
available in Physionet, and the generalization was corroborated in private and public
databases. In all databases the AAMI recommendations for class labeling and results
presentation were followed. Different strategies to integrate the additional information
available in the 12-leads were studied. The best performing strategy consisted in per-
forming principal components analysis to the wavelet transform of the available ECG
leads. The performance indices obtained for normal beats were: S 98%, P+ 93%; for
supraventricular beats, S 86%, P+ 91%; and for ventricular beats S 90%, P+ 90%. The
generalization capability of the chosen strategy was confirmed by applying the classifier
to other databases with different number of leads with comparable results. In conclusion,
the performance of the reference two-lead classifier was improved by taking into account
additional information from the 12-leads. The improvement of the linear classifier classi-
fier by means of a MLP was developed with a methodology similar to the one presented
above. The results obtained were: A of 89%; for normal beats, S 90%, P+ 99%; for
supraventricular beats, S 83%, P+ 34%; for ventricular beats S 87%, P+ 76%.

Finally we studied an algorithm based on the methodologies previously described, but
able to improve its performance by means of expert assistance. We presented a patient-
adaptable algorithm for ECG heartbeat classification, based on a previously developed
automatic classifier and a clustering algorithm. Both classifier and clustering algorithms
include features from the RR interval series and morphology descriptors calculated from
the wavelet transform. Integrating the decisions of both classifiers, the presented algo-
rithm can work either automatically or with several degrees of assistance. The algorithm
was comprehensively evaluated in several ECG databases for comparison purposes. Even
in the fully automatic mode, the algorithm slightly improved the performance figures
of the original automatic classifier; just with less than 2 manually annotated heartbeats
(MAHB) per recording, the algorithm obtained a mean improvement for all databases of
6.9% in A, of 6.5% in S and of 8.9% in P+. An assistance of just 12 MAHB per recording
resulted in a mean improvement of 13.1% in A, of 13.9% in S and of 36.1% in P+. For
the assisted mode the algorithm outperformed other state-of-the-art classifiers with less
expert annotation effort. The results presented in this thesis represent an improvement
in the field of automatic and patient-adaptable heartbeats classification on the ECG.



Resumen

Las enfermedades cardiovasculares son en la actualidad la mayor causa de muerte indivi-
dual en los países desarrollados, por lo tanto cualquier avance en las metodologías para
el diagnóstico podrían mejorar la salud de muchas personas. Dentro de las enfermedades
cardiovasculares, la muerte súbita cardíaca es una de las causas de muerte más impor-
tantes, por su número y por el impacto social que provoca. Sin lugar a duda se trata
uno de los grandes desafíos de la cardiología moderna. Hay evidencias para relacionar
las arritmias con la muerte súbita cardíaca. Por otro lado, la clasificación de latidos en el
electrocardiograma (ECG) es un análisis previo para el estudio de las arritmias. El análisis
del ECG proporciona una técnica no invasiva para el estudio de la actividad del corazón
en sus distintas condiciones. Particularmente los algoritmos automáticos de clasificación
se focalizan en el análisis del ritmo y la morfología del ECG, y específicamente en las
variaciones respecto a la normalidad. Justamente, las variaciones en el ritmo, regularidad,
lugar de origen y forma de conducción de los impulsos cardíacos, se denominan arrit-
mias. Mientras que algunas arritmias representan una amenaza inminente (Ej. fibrilación
ventricular), existen otras más sutiles que pueden ser una amenaza a largo plazo sin el
tratamiento adecuado. Es en estos últimos casos, que registros ECG de larga duración
requieren una inspección cuidadosa, donde los algoritmos automáticos de clasificación
representan una ayuda significativa en el diagnóstico.

En la última década se han desarrollado algunos algoritmos de clasificación de ECG,
pero solo unos pocos tienen metodologías y resultados comparables, a pesar de las re-
comendaciones de la AAMI para facilitar la resolución de estos problemas. De dichos
métodos, algunos funcionan de manera completamente automática, mientras que otros
pueden aprovechar la asistencia de un experto para mejorar su desempeño. La base de
datos utilizada en todos estos trabajos ha sido la MIT-BIH de arritmias. En cuanto a
las características utilizadas, los intervalos RR fueron usados por casi todos los grupos.
También se utilizaron muestras del complejo QRS diezmado, o transformado mediante
polinomios de Hermite, transformada de Fourier o la descomposición wavelet. Otros gru-
pos usaron características que integran la información presente en ambas derivaciones,
como el máximo del vectocardiograma del complejo QRS, o el ángulo formado en dicho
punto.

El objetivo de esta tesis ha sido estudiar algunas metodologías para la clasificación de
latidos en el ECG. En primer lugar se estudiaron metodologías automáticas, con capacidad
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para contemplar el análisis de un número arbitrario de derivaciones. Luego se estudió la
adaptación al paciente y la posibilidad de incorporar la asistencia de un experto para
mejorar el rendimiento del clasificador automático.

En principio se desarrolló y validó un clasificador de latidos sencillo, que utiliza caracte-
rísticas seleccionadas en base a una buena capacidad de generalización. Se han considerado
características de la serie de intervalos RR (distancia entre dos latidos consecutivos), como
también otras calculadas a partir de ambas derivaciones de la señal de ECG, y escalas
de su transformada wavelet. Tanto el desempeño en la clasificación como la capacidad de
generalización han sido evaluados en bases de datos públicas: la MIT-BIH de arritmias, la
MIT-BIH de arritmias supraventriculares y la del Instituto de Técnicas Cardiológicas de
San Petersburgo (INCART). Se han seguido las recomendaciones de la Asociación para
el Avance de la Instrumentación Médica (AAMI) tanto para el etiquetado de clases co-
mo para la presentación de los resultados. Para la búsqueda de características se adoptó
un algoritmo de búsqueda secuencial flotante, utilizando diferentes criterios de búsqueda,
para luego elegir el modelo con mejor rendimiento y capacidad de generalización en los
sets de entrenamiento y validación. El mejor modelo encontrado incluye 8 característi-
cas y ha sido entrenado y evaluado en particiones disjuntas de la MIT-BIH de arritmias.
Todas las carácterísticas del modelo corresponden a mediciones de intervalos tempora-
les. Esto puede explicarse debido a que los registros utilizados en los experimentos no
siempre contienen las mismas derivaciones, y por lo tanto la capacidad de clasificación de
aquellas características basadas en amplitudes se ve seriamente disminuida. Las primeras
4 características del modelo están claramente relacionadas a la evolución del ritmo car-
díaco, mientras que las otras cuatro pueden interpretarse como mediciones alternativas
de la anchura del complejo QRS, y por lo tanto morfológicas. Como resultado, el mo-
delo obtenido tiene la ventaja evidente de un menor tamaño, lo que redunda tanto en
un ahorro computacional como en una mejor estimación de los parámetros del modelo
durante el entrenamiento. Como ventaja adicional, este modelo depende exclusivamente
de la detección de cada latido, haciendo este clasificador especialmente útil en aquellos
casos donde la delineación de las ondas del ECG no puede realizarse de manera confiable.
Los resultados obtenidos en el set de evaluación han sido: exactitud global (A) de 93%;
para latidos normales, sensibilidad (S) 95%, valor predictivo positivo (P+) 98%; para
latidos supraventriculares, S 77%, P+ 39%; para latidos ventriculares S 81%, P+ 87%.
Para comprobar la capacidad de generalización, se evaluó el rendimiento en la INCART
obteniéndose resultados comparables a los del set de evaluación. El modelo de clasifica-
ción obtenido utiliza menos características, y adicionalmente presentó mejor rendimiento
y capacidad de generalización que otros representativos del estado del arte.

Luego se han estudiado dos mejoras para el clasificador desarrollado en el párrafo
anterior. La primera fue adaptarlo a registros ECG de un número arbitrario de derivacio-
nes, o extensión multiderivacional. En la segunda mejora se buscó cambiar el clasificador
lineal por un perceptrón multicapa no lineal (MLP). Para la extensión multiderivacional
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se estudió si conlleva alguna mejora incluir información del ECG multiderivacional en el
modelo previamente validado. Dicho modelo incluye características calculadas de la serie
de intervalos RR y descriptores morfológicos calculados en la transformada wavelet de ca-
da derivación. Los experimentos se han realizado en la INCART, disponible en Physionet,
mientras que la generalización se corroboró en otras bases de datos públicas y privadas. En
todas las bases de datos se siguieron las recomendaciones de la AAMI para el etiquetado
de clases y presentación de resultados. Se estudiaron varias estrategias para incorporar la
información adicional presente en registros de 12 derivaciones. La mejor estrategia consis-
tió en realizar el análisis de componentes principales a la transformada wavelet del ECG.
El rendimiento obtenido con dicha estrategia fue para latidos normales: S 98%, P+ 93%;
para latidos supraventriculares, S 86%, P+ 91%; y para latidos ventriculares S 90%,
P+ 90%. La capacidad de generalización de esta estrategia se comprobó tras evaluarla
en otras bases de datos, con diferentes cantidades de derivaciones, obteniendo resultados
comparables. En conclusión, se mejoró el rendimiento del clasificador de referencia tras
incluir la información disponible en todas las derivaciones disponibles. La mejora del cla-
sificador lineal por medio de un MLP se realizó siguiendo una metodología similar a la
descrita más arriba. El rendimiento obtenido fue: A 89%; para latidos normales: S 90%,
P+ 99%; para latidos supraventriculares, S 83%, P+ 34%; y para latidos ventriculares
S 87%, P+ 76%.

Finalmente estudiamos un algoritmo de clasificación basado en las metodologías des-
critas en los anteriores párrafos, pero con la capacidad de mejorar su rendimiento mediante
la ayuda de un experto. Se presentó un algoritmo de clasificación de latidos en el ECG
adaptable al paciente, basado en el clasificador automático previamente desarrollado y
un algoritmo de clustering. Tanto el clasificador automático, como el algoritmo de clus-
tering utilizan características calculadas de la serie de intervalos RR y descriptores de
morfología calculados de la transformada wavelet. Integrando las decisiones de ambos cla-
sificadores, este algoritmo puede desempeñarse automáticamente o con varios grados de
asistencia. El algoritmo ha sido minuciosamente evaluado en varias bases de datos para
facilitar la comparación. Aún en el modo completamente automático, el algoritmo mejora
el rendimiento del clasificador automático original; y con menos de 2 latidos anotados
manualmente (MAHB) por registro, el algoritmo obtuvo una mejora media para todas las
bases de datos del 6.9% en A, de 6,5 % S y de 8,9 % en P+. Con una asistencia de solo
12 MAHB por registro resultó en una mejora media de 13,1 % en A , de 13,9 % en S y de
36,1 % en P+. En el modo asistido, el algoritmo obtuvo un rendimiento superior a otros
representativos del estado del arte, con menor asistencia por parte del experto.

Como conclusiones de la tesis, debemos enfatizar la etapa del diseño y análisis minu-
cioso de las características a utilizar. Esta etapa está íntimamente ligada al conocimiento
del problema a resolver. Por otro lado, la selección de un subset de características ha
resultado muy ventajosa desde el punto de la eficiencia computacional y la capacidad
de generalización del modelo obtenido. En último lugar, la utilización de un clasificador
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simple o de baja capacidad (por ejemplo funciones discriminantes lineales) asegurará que
el modelo de características sea responsable en mayor parte del rendimiento global del
sistema.

Con respecto a los sets de datos para la realización de los experimentos, es fundamental
contar con un elevado numero de sujetos. Es importante incidir en la importancia de con-
tar con muchos sujetos, y no muchos registros de pocos sujetos, dada la gran variabilidad
intersujeto observada. De esto se desprende la necesidad de evaluar la capacidad de ge-
neralización del sistema a sujetos no contemplados durante el entrenamiento o desarrollo.
Por último resaltaremos la complejidad de comparar el rendimiento de clasificadores en
problemas mal balanceados, es decir que las clases no se encuentras igualmente represen-
tadas. De las alternativas sugeridas en esta tesis probablemente la más recomendable sea
la matriz de confusión, ya que brinda una visión completa del rendimiento del clasificador,
a expensas de una alta redundancia.

Finalmente, luego de realizar comparaciones justas con otros trabajos representativos
del estado actual de la técnica, concluimos que los resultados presentados en esta tesis
representan una mejora en el campo de la clasificación de latidos automática y adaptada
al paciente, en la señal de ECG.
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Conclusiones

En esta sección se resumen las conclusiones extraídas a lo largo de los capítulos de la tesis.
Comenzaremos enfatizando la importancia del diseño de las características y en conse-
cuencia la comprensión del problema fisiológico. En nuestra experiencia, la comprensión
pormenorizada del problema permitirá desarrollar características valiosas para la clasifi-
cación, y en consecuencia un clasificador con capacidad de generalización. En el momento
de la escritura de esta tesis, estamos estudiando la aplicación de los clasificadores de-
nominados deep belief networks (DBN) [Hinton et al., 2006], estando aún pendiente su
implementación. Este tipo de clasificadores no solo han mejorado el estado de la técnica
en otras áreas del reconocimiento de patrones, como el reconocimiento de la escritura
y el habla, sino que lo han hecho utilizando directamente las muestras digitalizadas de
una señal o los píxeles de una imagen. Simplemente han evitado la etapa del diseño del
modelo de características. A pesar de que esto último se contrapone con nuestra primer
conclusión, la utilidad de los DBN necesita aún ser corroborada en el campo de la cla-
sificación de latidos. También es probable que otros modelos de características puedan
desempeñarse mejor que sólo las muestras digitalizadas del ECG. De cualquier manera,
nosotros creemos que los clasificadores del estilo caja negra (o cualquier otro no lineal o
no paramétrico) no debería ser considerado como primer alternativa a la resolución de
un problema de clasificación, sino hacerlo cuando se haya alcanzado un rendimiento de
partida con un clasificador más simple.

La importancia de contar con un set de datos grande es determinante. En aplicaciones
de clasificación de latidos, donde existe una gran variabilidad intersujeto, la definición de
grande puede ser engañosa. En nuestra experiencia, es más importante contar con sets de
datos de muchos sujetos, aunque de corta duración, que registros de larga duración de
pocos sujetos, tal vez repetidos. Es necesario aclarar que la aplicación de clasificadores a
registros de larga duración no ha sido estudiado minuciosamente en esta tesis, quedando
pendiente para mejoras futuras. Este último aspecto refuerza la idea de evaluar un clasi-
ficador en tantos sets de datos como sea posible, para tener una mejor estimación de su
rendimiento en un contexto real.

En los experimentos de selección de características hemos encontrado dos modelos,
tras perseguir diversos criterios de optimización. En la Tabla 3.4 se muestra un modelo
con buen rendimiento intersujeto. Como puede verse las características que incluye el
modelo son íntegramente mediciones de intervalos. Esto puede explicarse debido a que las
bases de datos usadas no incluyen siempre el mismo par de derivaciones de ECG en cada
registro. Por lo tanto aquellas características que miden amplitudes se ven muy afectadas
por esto. Las características direccionales (como el V CGφ) probablemente también se vean
afectadas, a pesar de su conocida utilidad para los cardiólogos [Taylor, 2002]. A diferencia
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de estas, los intervalos parecen retener la capacidad de clasificación independientemente
de las derivaciones donde se midan. Las primeras cuatro características del modelo están
claramente relacionadas a la evolución del ritmo cardíaco, mientras que las otras cuatro
podrían interpretarse como mediciones alternativas de la anchura del QRS, y por lo tanto
una descripción morfológica del complejo. Estas características no necesitan una detección
muy precisa del punto fiducial del complejo QRS, siendo muy adecuadas para registros
ECG de mala calidad donde la detección y delineación automática de las ondas del ECG
no es confiable o incluso no es posible.

Por otro lado en la Tabla 5.2, se muestra un modelo con buen rendimiento intrasujeto.
El modelo incluye también características de ritmo y morfología. Respecto a las caracte-
rísticas de ritmo, el EMC utiliza adicionalmente PRR y dRRL, ambas relacionadas con la
variación local del intervalo RR. Con respecto a la descripción morfológica, las caracte-
rísticas S1

QRS y k1
M podrían interpretarse como una medición alternativa y robusta de la

anchura del intervalo QRS; mientras que rQRST(kM) describe la similaridad del complejo
QRST entre las derivaciones PCA en la escala 3 de la DWT. Esta última medida puede
relacionarse con cambios morfológicos y del eje de depolarización del complejo QRST.

Las funciones discriminantes lineales determinadas por el LDC-C han demostrado
su utilidad para desarrollar un clasificador con capacidad de generalización. Esto puede
explicarse debido a que una función de decisión conservativa, como un hiperplano, es
más apropiado para problemas de clasificación complicados o con una gran variabilidad
intersujeto. En este tipo de problemas, casi ninguna de las hipótesis impuestas por nuestras
decisiones de diseño se cumplen completamente. Sólo para clarificar esto último, según el
enfoque propuesto de clasificación automática, nuestro set de entrenamiento debería ser
una muestra representativa del universo completo de latidos. Esto no sólo no es factible,
sino que podemos afirmar que nuestro set de entrenamiento es distinto a nuestro set
de evaluación, tan solo comparando las diferencias de rendimiento entre las tablas 3.2
y 3.3. Con esta evidente limitación, es probable que el clasificador con más capacidad
para modelar la información de entrenamiento, en nuestro caso el QDC, es más propenso
a fallar más seguido en el set de evaluación. Esta razón probablemente haga que una
decisión más conservativa, como el LDC, sea la mejor opción. En la Figura 2.12, las
funciones discriminantes producidas por un LDC y un QDC pueden ser comparadas.

Cuando limitamos el problema a un sujeto a la vez, y perseguimos el mejor rendi-
miento intrasujeto, podemos permitir que el clasificador produzca funciones de decisión
no lineales. En nuestro caso hemos usado un clasificador basado en mezcla de Gaussianas,
que utiliza el mismo algoritmo EM utilizado para el clustering.

El esquema de selección de características usado resultó una metodología muy con-
veniente para la reducción de la complejidad del problema de clasificación, y al mismo
tiempo para mejorar la capacidad de generalización del modelo obtenido. El algoritmo
SFFS fue especialmente útil cuando se utilizaron clasificadores simples y determinísticos,
como QDC o LDC, pero para el caso de los no determinísticos, como MLP o mezcla de
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Gaussianas, se adoptaron algunas soluciones de compromiso dado que debíamos asegurar
(o al menos limitar) la repetibilidad. Esto último debido a que el SFFS necesita reevaluar
continuamente búsquedas previas, obteniendo diferentes resultados en el caso que no se
asegure la repetibilidad.

La capacidad de generalización de un clasificador es en nuestra opinión, su caracterís-
tica más importante. En el Capítulo 5 mostramos que es posible realizar una evaluación
minuciosa del rendimiento y capacidad de generalización de un clasificador exclusivamente
en bases de datos públicas y de libre disponibilidad.

La estimación del rendimiento en problemas desbalanceados, como el estudiado en es-
ta tesis, puede ser complicado especialmente cuando se comparan clasificadores. En esta
tesis hemos explorado algunas metodologías para tratar con el problema del desbalance.
Sin embargo, ninguna de las soluciones sugeridas en los Capítulos 3 y 4, como el cálculo
balanceado del rendimiento, asegura la solución del problema. Por este motivo sugerimos
siempre que fuera posible la incorporación de la matriz de confusión, ya que clarifica el
rendimiento obtenido por un clasificador y asegura la comparabilidad de los resultados.
Otro problema referido a la estimación del rendimiento, es cuando se comparan los resulta-
dos obtenidos en bases de datos con desbalances diferentes. Para facilitar la interpretación
en estos casos, sugerimos una estimación optimísticamente sesgada del rendimiento que
representa una cota superior de rendimiento en cada base de datos. De esta manera, se
puede utilizar dicha cota como referencia.

Las comparaciones realizadas en los capítulos previos fueron hechas de manera justa
de acuerdo a nuestro conocimiento. Los trabajos incluidos en nuestras comparaciones
tienen metodologías comparables y son representativos del estado actual de la técnica.
En general, como ya fue detallado en los capítulos anteriores, nuestros clasificadores se
desempeñaron mejor. En todas las comparaciones realizadas, siempre hemos incluido una
descripción detallada de nuestros resultados con la finalidad de facilitar futuras mejoras.

En resumen, los resultados presentados en esta tesis constituyen una mejora en el
rendimiento con respecto a otros trabajos publicados y representativos del estado actual
de la técnica en el campo de la clasificación automática y adaptada al paciente de latidos.
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Chapter 1

Introduction

1.1 Motivation

The World Health Organization places cardiovascular diseases (CVD) as the first single
cause of death globally in the present, and forecasts the same ranking up to 2030 [World
Health Organization, 2012]. These diseases affect in a higher degree to low- and middle-
income countries, but in the same proportion to women and men. Specifically in Argentina
and Spain, more than 30% of the deaths are caused by CVD and is by far, the first single
cause of death according to the official agencies [Dirección de Estadísticas e Información
en Salud, 2012, Instituto Nacional de Estadística, 2012]. A great part of the deaths caused
by CVD occur suddenly, starting with a ventricular fibrillation which leads to a cardiac
arrest [Bayés de Luna, 2010]. This situation is known as sudden cardiac death (SCD)
and is probably the most important challenge of the modern cardiology. This disease is
unusual up to the age of 35, but from there the risk of SCD increases specially during the
chronic and acute phases of myocardial infarction, or other cardiopathy related to heart
failure. The identification or prediction of SCD has been studied more thoroughly for
those risk groups with a previous cardiac condition (cardiac arrest, genetic defects, heart
failure, heart attack) than for the people in which SCD is the first manifestation. The
importance of the last group is that it represents more than the 50% of people who suffer
SCD. However, up to the moment, an exhaustive screening of the population is unfeasible
from the technical and economical point of view.

The improvement of cost-effective methodologies for the prediction of SCD received lot
of attention from the scientific community in the last decades. It was studied in several
works that arrhythmias are responsible of most of the cases of SCD [Bayés de Luna,
2010]. One important advance in the study of arrhythmias was the use of long-term (or
Holter) recordings and the software to aid the cardiologist in the detection and diagnostic
of abnormalities in the electrocardiogram (ECG). The study of arrhythmias by means of
the computerized analysis of the ECG signal, is in the present a cost-effective and well
established tool to analyze the heart function. The improvement of the methodologies used
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in the study of arrhythmias is likely to aid cardiologists in the diagnostic and screening
of SCD. In this thesis we developed and analyzed new algorithms for the classification of
ECG heartbeats, which is an important analysis previous to the study of arrhythmias.

1.2 Background

As this thesis is entirely focused on the analysis of the ECG signal, a brief description
of its origin is included, as well as the basic concepts of cardiac electrophysiology. We
will start with a selection of anatomy and physiology concepts, to subsequently inspect
some mechanisms at the cellular level and their manifestation on the ECG. Our objective
in the following chapters will be the design of a computer algorithm capable of classi-
fying the concepts explained in this section. This section is based on the books [Bayés
de Luna, 2010, Natale and Wazni, 2007, Guyton and Hall, 2006, Sörnmo and Laguna,
2005, Malmivuo and Plonsey, 1995], where the reader is referred for further details and
references.

1.2.1 The heart

The heart is an electromechanical pulsatile pump. From the anatomic point of view, as
can be seen in Figure 1.1, there are two separate pumps: one at the right that pumps blood
through the lungs, and one at the left that pumps blood through the peripheral organs.
Each half includes a two-chamber pump composed of an atrium and a ventricle. The
atrium pumps blood for the ventricle, and then the ventricles supply the main pumping
force either through the pulmonary circulation, by the right ventricle, or through the
peripheral circulation by the left ventricle. There are four valves to force the direction
of the blood, as is shown in Figure 1.2, two located between the atria and the ventricles,
and two between the ventricles and the arteries.

As a periodic electromechanical pump, an electrical impulse is responsible of the me-
chanical activation of the muscle. Each cycle is initiated by spontaneous generation of an
action potential (AP) in the sinus (or sinoatrial in Figure 1.2) node. This node is located
in the superior lateral wall of the right atrium near the opening of the superior vena
cava. The impulse, or AP, travels through both atria reaching the atrio-ventricular (A-V)
bundle, where is delayed about 0.1 seconds. This delay allows the atria to pump blood
into the ventricles. After this, the ventricles are filled and ready to be activated. This is
done by a special conduction system (SCS), the right and left bundle branches of Purkinje
fibers. This system propagates the impulse from the A-V node to the whole ventricular
muscle very fast, allowing a synchronized activation and consequently an effective pump
of the blood. This cycle is repeated up to the death of the heart.

Now we will try to relate the electrical and mechanical behavior of the heart described
above. The activation of the cardiac muscle composed of two phases, contraction and re-
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Figure 1.3: Wiggers diagram. Events of the cardiac cycle for left ventricular function,
showing changes in left atrial pressure, left ventricular pressure, aortic pressure, ventric-
ular volume, and the electrocardiogram.

laxation, or in electrical terms as depolarization and repolarization. As the heart function
produces an electrical field, the voltage generated can be recorded by the electrocardio-
graph from the surface of the body. The first wave, called with the letter P, is caused
by spread of depolarization through the atria. After the electrical activation, follows the
atrial contraction which causes a slight rise in the atrial pressure. About 0.16 seconds
after the onset of the P wave, the QRS waves appear as a result of electrical depolarization
of the ventricles. This initiates the contraction of the ventricles and causes the ventric-
ular pressure to begin rising. Finally, the ventricular T wave in the electrocardiogram
represents the stage of repolarization of the ventricles when the ventricular muscle fibers
begin to relax. As can be noted in Figure 1.3, the electrical depolarization is preceded by
the corresponding mechanical contraction.

1.2.2 From the action potentials to the electrocardiogram

In general heart cells can be grouped in two types: the ones from the SCS and the contrac-
tile cells. The first are responsible of the generation of the electrical impulse (rhythmicity)
and its conduction to the contractile cells, while the contractile cells are responsible of the
pumping or mechanical function. Both cell types are responsible of the electromechanical
link. In Figure 1.4 it is showed the waveforms of the voltage, or action potential, and
currents measured in the cellular membrane of a contractile cell. Following the depolar-
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ization phases in the same Figure, note that when a cell receives depolarizing current,
Na channels are activated resulting in a net inward current manifested as phase 0 of the
AP. Phase 1 starts with the opening of a rapid outward potassium current. Phase 2 or
the plateau phase of the AP is the result of an L-type Ca current that counteracts the
outward K currents. With time, L-type Ca channels are inactivated and the plateau sub-
sides. At the same time, the increase in calcium concentration acts as a trigger for release
of more Ca stored in the sarcoplasmic reticulum, which in turn provides a contraction
signal to the myocyte contractile elements, producing the contraction of the cell. Phase
3 is due to ‘delayed rectifier’ outward K currents. Phase 4 constitutes a steady, stable,
polarized membrane due to voltage-regulated inward rectifiers. Compared to atrial action
potential, ventricular AP has a longer duration, a higher phase 2, a shorter phase 3, and
more negative phase 4.

On the other hand, the SCS cells have the ability to generate a spontaneous action
potential using T-type Ca and K rectifier currents. These currents confer the unstable
electrical property of phase 4, causing these cells to develop rhythmic spontaneous slow
diastolic depolarization. Once AP reaches –40 mV, L-type Ca channels are activated,
generating the slow upstroke of the action potential in these types of cells (phase 0).

There are three types of SCS cells:

1. P cells, found mostly in the sinus node are responsible of automaticity.

2. The Purkinje cells, are found in the His bundle branches and are responsible of the
fast transmission of electrical impulses through the ventricles.

3. The transitional cells, with slow conduction velocity, are typically found between
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Figure 1.5: Based on Figure 2.20 from [Bayés de Luna, 2010]. Refractory period of ven-
tricular cells. During absolute refractory period (ARP) depolarization is not possible.
During the relative refractory period (RRP), an increased activation is necessary to de-
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the P, Purkinje and contractile cells.

Once any cell is depolarized it takes certain time until it can be normally depolarized
again. This time is known as total refractory period (TRP). Also there is a period of time
where the cell can not be depolarized, and is known as absolute refractory period (ARP).
If the time of arrival of a new activation is greater than ARP, the cell can produce an
aberrated AP if the stimulus is big enough. This is known as relative refractory period
(RRP). There is a small time window, between RRP and ARP in Figure 1.5, where the
cell reacts to an increased activation, but the activation can not be propagated.

Automaticity is an intrinsic property of all myocardial cells. In addition to the sinus
node, cells with pacemaking capability in the normal heart are located in some parts of
the atria and ventricles. However, the occurrence of spontaneous activity is prevented by
the natural hierarchy of pacemaker function, causing these sites to be latent or subsidiary
pacemakers. The spontaneous discharge rate of the sinus node normally exceeds that of
all other subsidiary pacemakers. Therefore, the impulse initiated by the sinus node de-
polarizes and keeps the activity of subsidiary pacemaker sites depressed before they can
spontaneously reach threshold. However, slowly depolarizing and previously suppressed
pacemakers in the atrium, A-V node, or ventricle can become active and assume pace-
maker control of the cardiac rhythm if the sinus node pacemaker becomes slow or unable
to generate an impulse (e.g., secondary to depressed sinus node automaticity) or if im-
pulses generated by the sinus node are unable to activate the subsidiary pacemaker sites
(e.g., sinoatrial exit block, or A-V block). The emergence of subsidiary or latent pace-
makers under such circumstances is an appropriate fail-safe mechanism, which ensures
that ventricular activation is maintained.

Once introduced the types of AP of the heart cells, it is possible to imagine that the
electrical field which produces the ECG in the body surface, results from the integration
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of the AP of all cells in the heart during a heart cycle. As can be seen in Figure 1.6,
the integration of all AP in the atria results in the formation of the P wave of the ECG.
The same happens with the ventricles, but in this case the greater amount of mass, and
therefore of cells and energy involved, results in a larger ECG amplitude. The tails or
terminal parts of the AP, phases 2, 3 and 4 of Figure 1.4, are the responsible of the
repolarization waves. Note that in the ECG only the repolarization of the ventricles is
visible, and is known as T wave. However, the repolarization of the atria exists, but it is
buried by the depolarization of the ventricles. The heart cycle repeats again, thanks to
the rhythmic property of the sinus node cells.

Now we will add some details to the cyclic activation mechanism. The cells that con-
stitute the ventricular myocardium are coupled together by gap junctions which, for the
normal healthy heart, have a very low resistance. As a consequence, activity in one cell is
readily propagated to neighboring cells. It is said that the heart behaves as a syncytium;
a propagating wave once initiated continues to propagate uniformly into the region that
is still at rest. The activation wavefronts proceed relatively uniformly, from endocardium
to epicardium and from apex to base. One way of describing cardiac activation is to
plot the sequence of instantaneous depolarization wavefronts. Since these surfaces con-
nect all points in the same temporal phase, the wavefront surfaces are also referred to as
isochrones. Such a description is contained in Figure 1.7. After the electric activation of
the heart has begun at the sinus node, it spreads along the atrial walls. The resultant
vector of the atrial electric activity is illustrated with a thick arrow. After the depolar-
ization has propagated over the atrial walls, it reaches the AV node. The propagation

http://commons.wikimedia.org/wiki/File:ConductionsystemoftheheartwithoutHeart.svg
http://creativecommons.org/licenses/by-sa/3.0/deed.en


8 CHAPTER 1. INTRODUCTION

Atrial

Depolarization

Delay at 

A-V Node

Septal

Depolarization

Apical

Depolarization

Left Ventricular

Depolarization

Late Left Ventricular

Depolarization

Ventricles

Depolarized

Ventricular

Repolarization

Ventricles

Repolarized

S-A Node

A-V Node

P P

P

P

P
P P

T
P

T

Figure 1.7: The normal sequence of ventricular depolarization. The instantaneous heart
vector is shown at four times during the process: 10, 20, 40, and 60 milliseconds. From
Massie and Walsh, 1960.

through the AV junction is very slow and involves negligible amount of tissue; it results in
a delay in the progress of activation and allows the completion of ventricular filling. Once
activation has reached the ventricles, propagation proceeds along the Purkinje fibers to
the inner walls of the ventricles. The ventricular depolarization starts first from the left
side of the interventricular septum, and therefore, the resultant dipole from this septal
activation points to the right. In the next phase, depolarization waves occur on both sides
of the septum, and their electric forces cancel. However, early apical activation is also
occurring, so the resultant vector points to the apex.

After a while the depolarization front has propagated through the wall of the right
ventricle; when it first arrives at the epicardial surface of the right-ventricular free wall,
the event is called breakthrough. Because the left ventricular wall is thicker, activation of
the left ventricular free wall continues even after depolarization of a large part of the right
ventricle. Because there are no compensating electric forces on the right, the resultant
vector reaches its maximum in this phase, and it points leftward. The depolarization front
continues propagation along the left ventricular wall toward the back. Because its surface
area now continuously decreases, the magnitude of the resultant vector also decreases
until the whole ventricular muscle is depolarized. The last to depolarize are basal regions
of both left and right ventricles. Because there is no longer a propagating activation
front, there is no signal either. Ventricular repolarization begins from the outer side of
the ventricles and the repolarization front propagates inward. This seems paradoxical,
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but even though the epicardium is the last to depolarize, its action potential durations
are relatively short, and it is the first to recover. Although recovery of one cell does
not propagate to neighboring cells, one notices that recovery generally does move from
the epicardium toward the endocardium. The inward spread of the repolarization front
generates a signal with the same sign as the outward depolarization front, as pointed out
in Figure 1.7 (recall that both direction of repolarization and orientation of dipole sources
are opposite). Because of the diffuse form of the repolarization, the amplitude of the
signal is much smaller than that of the depolarization wave and it lasts longer.

In the previous paragraph we described in detail the electrical activity inside the tho-
rax, now we will focus on how this activity is recorded in the body surface. Augustus
Désiré Waller measured the human electrocardiogram in 1887 using Lippmann’s capillary
electrometer [Waller, 1887]. He selected five electrode locations: the four extremities and
the mouth. In this way, it became possible to achieve a sufficiently low contact impedance
and thus to maximize the ECG signal. Furthermore, the electrode location is unmistak-
ably defined and the attachment of electrodes facilitated at the limb positions. The five
measurement points produce altogether 10 different leads. From these 10 possibilities
he selected five designated cardinal leads. Two of these are identical to the Einthoven
leads I and III described below. In 1908 Willem Einthoven published a description of the
first clinically important ECG measuring system [Einthoven, 1908]. He used the capillary
electrometer in his first ECG recordings. His essential contribution to ECG recording
technology was the development and application of the string galvanometer, invented by
Clément Ader. Its sensitivity greatly exceeded the previously used capillary electrometer.
The Einthoven lead system is illustrated in Figure 1.8.

The Einthoven limb leads (standard leads) are defined in the following way:

VI = FL − FR

VII = FF − FR

VIII = FF − FL,

where VI,II,III are the voltages of leads I, II and III and FL,R,F are potentials at the left and
right arms and the left foot respectively. According to Kirchhoff’s law these lead voltages
have the following relationship:

VI + VIII = VII,

hence only two of these three leads are independent. The lead vectors associated with
Einthoven’s lead system are conventionally found based on the assumption that the heart
is located in an infinite, homogeneous volume conductor (or at the center of a homogeneous
sphere representing the torso). One can show that if the position of the right arm, left
arm, and left leg are at the vertices of an equilateral triangle, having the heart located at
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its center, then the lead vectors also form an equilateral triangle. A simple model results
from assuming that the cardiac sources are represented by a dipole located at the center
of a sphere representing the torso, hence at the center of the equilateral triangle. With
these assumptions, the voltages measured by the three limb leads are proportional to the
projections of the electric heart vector on the sides of the lead vector triangle, as described
in Figure 1.8.

Frank Norman Wilson (1890-1952) investigated how electrocardiographic unipolar po-
tentials could be defined. Ideally, those are measured with respect to a remote reference
(infinity). But how is one to achieve this in the volume conductor of the size of the human
body with electrodes already placed at the extremities? In several articles on the subject,
Wilson and colleagues suggested the use of the central terminal as this reference [Wilson
et al., 1931]. This was formed by connecting a 5 kW resistor from each terminal of the
limb leads to a common point called the central terminal, as shown in Figure 1.9. Wil-
son suggested that unipolar potentials should be measured with respect to this terminal
which approximates the potential at infinity. Actually, the Wilson central terminal is not
independent of, but rather, is the average of the limb potentials. In clinical practice good
reproducibility of the measurement system is vital. Results appear to be quite consistent
in clinical applications. Wilson advocated 5 kW resistances; these are still widely used,
though at present the high-input impedance of the ECG amplifiers would allow much
higher resistances.

http://commons.wikimedia.org/wiki/File:Human_anatomy_planes.svg
http://creativecommons.org/licenses/by-sa/3.0/deed.en
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Figure 1.9: Wilson central terminal and precordial leads position on the torso. Diagrams
based on image http://commons.wikimedia ... planes.svg under license CS-BY-SA.

Three additional limb leads are obtained by measuring the potential between each limb
electrode and the Wilson central terminal. In 1942 E. Goldberger observed that these
signals can be augmented by omitting that resistance from the Wilson central terminal,
which is connected to the measurement electrode. In this way, the aforementioned three
leads may be replaced with a new set of leads that are called augmented leads because of
the augmentation of the signal. For measuring the potentials close to the heart, Wilson
introduced the precordial leads (chest leads) in 1944. These leads, V1-V6 are located
over the left chest as described in Figure 1.9. The points V1 and V2 are located at the
fourth intercostal space on the right and left side of the sternum; V4 is located in the
fifth intercostal space at the mid-clavicular line; V3 is located between the points V2 and
V4; V5 is at the same horizontal level as V4 but on the anterior axillary line; V6 is at
the same horizontal level as V4 but at the mid-line. The location of the precordial leads
is illustrated in Figure 1.9.

The 12-lead system as described here is the one with the greatest clinical use. There
are also some other modifications of the 12-lead system for particular applications. In ex-
ercise ECG, the signal is distorted because of muscular activity, respiration, and electrode
artifacts due to perspiration and electrode movements. The distortion due to muscular
activation can be minimized by placing the electrodes on the shoulders and on the hip
instead of the arms and the leg, as suggested by R. E. Mason and I. Likar [Mason and
Likar, 1966]. The Mason-Likar modification is the most important modification of the
12-lead system used in exercise ECG. The accurate location for the right arm electrode in

http://commons.wikimedia.org/wiki/File:Human_anatomy_planes.svg
http://creativecommons.org/licenses/by-sa/3.0/deed.en
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the Mason-Likar modification is a point in the infraclavicular fossa medial to the border of
the deltoid muscle and 2 cm below the lower border of the clavicle. The left arm electrode
is located similarly on the left side. The left leg electrode is placed at the left iliac crest.
The right leg electrode is placed in the region of the right iliac fossa. The precordial leads
are located in the Mason-Likar modification in the standard places of the 12-lead system.
In ambulatory monitoring of the ECG, as in the Holter recording, the electrodes are also
placed on the surface of the thorax instead of the extremities.

Of these 12 leads, the first six are derived from the same three measurement points.
Therefore, any two of these six leads include exactly the same information as the other
four. However, the precordial leads detect also nondipolar components, which have diag-
nostic significance because they are located close to the frontal part of the heart. There-
fore, the 12-lead ECG system has eight truly independent and four redundant leads. The
main reason for recording all 12 leads is that it enhances pattern recognition. This com-
bination of leads gives the clinician an opportunity to compare the projections of the
resultant vectors in two orthogonal planes and at different angles.

1.2.3 Arrhythmias

Arrhythmias are defined as any cardiac rhythm other than the normal sinus rhythm.
Sinus rhythm originates in the sinus node and subsequently is conducted at appropriate
rates through the atria, A-V junction, and the intraventricular specific conduction system.
At rest the sinus node discharge cadence tends to be regular, although it presents gen-

http://commons.wikimedia.org/wiki/File:Human_anatomy_planes.svg
http://commons.wikimedia.org/wiki/File:Human_anatomy_planes.svg
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Figure 1.11: Normal Vectocardiogram and the projection to the 12-lead ECG.

erally slight variations. However, under normal conditions and particularly in children,
it may present slight to moderate changes dependent on the phases of respiration, with
the heart rate increasing with inspiration. In adults at rest the rate of the normal sinus
rhythm ranges from 60 to 100 beats per minute (bpm). Thus, sinus rhythms over 100
bpm (sinus tachycardia) and those under 60 bpm (sinus bradycardia) may be considered
arrhythmias. However, it should be taken into account that sinus rhythm varies through-
out a 24-h period and sinus tachycardia and sinus bradycardia usually are a physiologic
response to certain sympathetic (exercise, stress) or vagal (rest, sleep) stimuli. Under
such circumstances, the presence of these heart rates should be considered normal. The
term arrhythmia does not mean rhythm irregularity, as regular arrhythmias can occur
often with absolute stability (flutter, paroxysmal tachycardia, etc.), sometimes presenting
heart rates in the normal range. On the other hand, some irregular rhythms should not
be considered arrhythmias (mild to moderate irregularity in the sinus discharge, particu-
larly when linked to respiration). Moreover, a diagnosis of arrhythmia in itself does not
mean evident pathology. In fact, in healthy subjects, the sporadic presence of certain
arrhythmias both active (premature complexes) and passive (escape complexes, certain
degree of A-V block, evident sinus arrhythmia, etc.) is frequently observed. There are
different ways to classify cardiac arrhythmias:

• According to the site of origin: arrhythmias are divided into supraventricular (in-
cluding those having their origin in the sinus node, the atria, and the AV junction)
and ventricular arrhythmias.

• According to the underlying mechanism: arrhythmias may be explained by: 1)
abnormal formation of impulses, which includes increased heart automaticity (extra
systolic or parasystolic mechanism) and triggered electrical activity, 2) reentry of
different types, and 3) decreased automaticity and/or disturbances of conduction.
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• From the clinical point of view: arrhythmias may be paroxysmal, incessant or per-
manent. In reference to tachyarrhythmias (an example of an active arrhythmia),
paroxysmal tachyarrhythmias occur suddenly and usually disappear spontaneously
(i.e. A-V junctional reentrant paroxysmal tachycardia). Permanent tachyarrhyth-
mias are always present (i.e. chronic atrial fibrillation), and incessant tachyarrhyth-
mias are characterized by short and repetitive runs of supraventricular or ventricular
tachycardia.

• Finally, from an electrocardiographic point of view, arrhythmias may be divided
into two different types: active and passive.

– Active arrhythmias, due to increased automaticity, reentry, or triggered elec-
trical activity (these mechanisms are explained below), generate isolated or
repetitive premature complexes on the ECG, which occur before the cadence of
the regular sinus rhythm. The isolated premature complexes may be originated
in a parasystolic or extrasystolic ectopic focus. The extra systolic mechanism
presents a fixed coupling interval, whereas the para systolic presents a varied
coupling interval.
Premature complexes of supraventricular origin are generally followed by a nar-
row QRS complex, although they may be wide if conducted with aberrancy.
The ectopic P wave is often not easily seen as it may be hidden in the preceding
T wave. In other cases the premature atrial impulse remains blocked in the
AV junction, initiating a pause instead of a premature QRS complex.
The premature complexes of ventricular origin are not preceded by an ectopic
P wave, and the QRS complex is always wide (> 120 ms), unless they originate
in the upper part of the intraventricular SCS (ISCS). Premature and repetitive
complexes include all types of supraventricular or ventricular tachyarrhyth-
mias (tachycardias, fibrillation, flutter). In active cardiac arrhythmias due to
reentrant mechanisms, a unidirectional block exists in some part of the circuit.

– Passive arrhythmias occur when cardiac stimuli formation and/or conduction
are below the range of normality due to a depression of the automatism and/or
a stimulus conduction block in the atria, the AV junction, or the ISCS. From an
electrocardiographic point of view, many passive cardiac arrhythmias present
isolated late complexes (escape complexes) and, if repetitive, slower than ex-
pected heart rate (bradyarrhythmia). Even in the absence of bradyarrhythmia,
some type of conduction delay or block in some place of the SCS may exist, for
example, first-degree or some second-degree sinoatrial or A-V blocks, or atrial
or ventricular (bundle branch) blocks. The latter encompasses the aberrant
conduction phenomenon. Thus, the electrocardiographic diagnosis of passive
cardiac arrhythmia can be made because it may be demonstrated that the ECG
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changes are due to a depression of automatism and/or conduction in some part
of the SCS, without this manifesting in the ECG as a premature complex, as
it does in reentry (see Figure 1.12).

The mechanisms of cardiac arrhythmias are often the results of many factors including
fluctuation in intracellular concentration of Ca, after depolarization currents, refractory
period shortening or lengthening, autonomic nervous system innervation, repolarization
dispersion, and changes in excitability and conduction. For example, bradyarrhythmia
is often caused by abnormalities in excitability. This could be caused by dysfunction
in the Na channels or by ischemia-induced elevation in extracellular K concentration.
Furthermore, inherent or metabolically induced abnormalities in Na channels, Ca chan-
nels, or connexin have been shown to play a role in conduction diseases. Mechanisms of
tachyarrhythmias can be grouped into three categories: re-entry, triggered activity and
automaticity.

• Re-entry is a depolarizing wave traveling through a closed path. There are three pre-
requisites for re-entry: 1) At least two pathways: slow and fast AV nodal pathways,
accessory pathway or the presence of barrier (anatomic: tricuspid valve; pathologic:
incisional scars, myocardial infarction, and functional scar). 2) Unidirectional block:
This block can be physiologic: caused by a premature complex, or increased heart
rate; or pathologic: caused by changes in repolarization gradients. 3) Slow con-
duction to prevent collision of the head and the tail of the depolarizing wave. In
functional re-entry, unidirectional block can be due to dispersion of refractoriness
(repolarization) or dispersion of conduction velocity (anisotropic re-entry). See Fig-
ure 1.12 for an example of this concept.

• Triggered activities are caused by after depolarization currents. They are classified
as early (EAD occurring inside AP: phases 2 and 3) or delayed (DAD: phase 4).
These currents can in turn be responsible for both focal and reentrant arrhythmias.
The former is caused by eliciting an excitatory response exceeding the activation
threshold and the latter can be developed when these currents cause prolongation
in action potential which facilitates the development of a unidirectional block due
to dispersion of refractoriness.

• Automaticity is driven by spontaneous phase 4 depolarization. Automatic depolar-
izations in the atria and ventricles are not manifested normally due to overdrive
suppression by the faster depolarization caused by the sinus node. However, during
excess catecholaminergic states, phase 4 depolarization may exceed sinus node depo-
larization, causing depolarization to be driven by the abnormal tissue. Ventricular
tachycardias during the acute ischemic and reperfusion phases are good examples of
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Figure 1.14: Several examples of sinus rhythms.

automaticity. They are often originated from the border zone between normal and
ischemic cells.

As described above, the mechanisms that originates arrhythmias are diverse, and therefore
the manifestation in the ECG. In the following section we will show the most important
mechanisms as they appear in the ECG.

1.2.4 Manifestation of arrhythmias on the ECG

In this subsection several examples of the mechanisms enumerated above are shown in the
ECG. Normal sinus rhythm is characterized by a regular cardiac rate with normal QRS
complexes whose duration must be less than 120 milliseconds, as can be seen in Figure
1.14. The P-waves are normal in shape, and are synchronized with the QRS complexes.
The PR interval must be less than 0.2 seconds. Heart rates may range from 60-100
bpm. There are a number of variant types of sinus rhythm, sinus arrhythmia is a normal
rhythm in which heart rate varies periodically, usually with the respiratory cycle. There
is an acceleration of rate during inspiration, and a slowing of rate during expiration.

Escape beats arise from lower (normally latent) pacemakers outside of the sinus node
that fire because of either depressed sinus node function or blocked conduction of sinus
impulses. Escape beats may originate at any pacemaker site below the sinus node. If the
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Figure 1.15: Example of an atrial escape beat.

sinus node slows sufficiently (perhaps due to vagal tone), other latent pacemaker sites in
the atrium may emerge to establish heart rate. The P-wave resulting from these beats is
usually different in shape from the normal, and in many cases is inverted in polarity. This
reflects the fact that the beats originate low in the atrium. Such beats are sometimes
referred to as low atrial or coronary sinus beats.

A-V nodal escape beats often terminate prolonged sinus pauses. The QRS complex is
normal because the impulse is conducted normally to the ventricles. The P-wave is either
not visible at all, or may be found just prior to or immediately following the QRS. In
general the P wave is abnormal in shape since it is retrogradely conducted. If the P-wave
immediately precedes the QRS complex, the beat is referred to as a fast conducted beat.
Conversely, if the P-wave follows the QRS, the beat is called a slow conducted beat.

Ventricular escape beats protect the heart against asystole in the event of AV block
(either fixed or transitory). They are characterized by a wide and usually bizarre QRS
complex. The cardiac impulse originates in the ventricular Purkinje system. It is generally
conducted with a slow propagation speed (0.5 meter/second) through the myocardium,
thus leading to a wide QRS complex (usually greater than 120 ms). Ventricular escape
rhythms (idioventricular rhythms) are common in cases of complete heart block, and have
rates of about 40 per minute. Ectopic beats could arise from pacemakers outside the sinus
node as a result of an abnormal increase in rhythmicity in the ventricular Purkinje system.

Atrial premature beats (APB) are seen frequently in normal individuals and have little
clinical significance. They are also seen in heart disease, and when frequent, may be an
early sign of atrial irritability which may progress to more serious atrial dysrhythmias.
In APBs the QRS complexes are normal since they propagate normally through the
ventricles via the conduction system. The P-waves are generally slightly abnormal since
they originate from an abnormal focus, and propagate in an abnormal pattern. The
impulse generally invades the area of the SA node and resets the sinus pacemaker. APBs
occurring quite early following the previous beat may be aberrantly conducted, frequently
with a right bundle branch block configuration. Aberrant conduction is particularly likely
when the APB follows a long RR interval (the Ashman phenomenon). If an APB is
extremely early it may run into refractory tissue in the AV node and be non-conducted.

Ventricular ectopic beats (VPB) originate from somewhere in the ventricles. The QRS
complex is wide (greater than 0.12 seconds) and bizarre. VPBs may exhibit fixed coupling
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to previous normal beats. They may occur early or late in the cycle. The mechanism for
PVCs may be reentry or triggered activity as discussed previously. Some VPBs appear to
show no fixed coupling to preceding normal beats. If they show a regular rhythm of their
own, they may result from a parasystolic focus. Note that some parasystolic depolar-
izations experience “exit block” and do not result in ventricular excitation. Parasystolic
ventricular ectopic beats are usually considered relatively benign. Most VPBs are followed
by a pause. The pause is usually compensatory, meaning that the coupling interval to the
preceding normal beat plus the pause following the VPB comprise an interval equal to
twice the normal R-R interval. An interpolated VPB is one which is sandwiched between
two normal QRS complexes which arrive on time with the sinus normal activation.

VPBs are often found in otherwise normal individuals and probably have little signif-
icance if they are infrequent. In heart disease, VPBs may be a risk factor for increased
incidence of more serious ventricular arrhythmias and sudden death. VPBs may occur
singly or in groups and the following ordering of increasing severity of ventricular ectopic
activity has been proposed:

1. Occasional: less than 30 per hour VPBs of the same morphology.

2. Frequent: greater than 30 per hour uniform VPBs or bigeminy where every other
beat is a VPB

3. Multiform PVCs: different QRS morphologies

4. Couplets: pairs of consecutive VPBs

5. Ventricular Tachycardia: runs of three or more VPBs

6. Ventricular Flutter: rapid ventricular tachycardia with a sinusoidal configuration
caused by merging of QRSs and Ts

7. Ventricular Fibrillation chaotic electrical activity without definite QRS complexes

VPBs which occur very early in the cardiac cycle such that they fall on the T-wave of the
previous beat are considered particularly dangerous. At the time corresponding to the
peak of the T wave, the ventricular myocardium is just beginning to repolarize. Some cells
may be in the relatively refractory period, while others may be more fully recovered, and
still others quite refractory. The electrical properties of the myocardium are thus quite
varied, and conditions favoring reentrant loops are likely. Thus, an extra stimulus in
the form of an isolated VPB which is very early-cycle may trigger a repetitive ventricular
ectopic rhythm such as ventricular tachycardia or ventricular fibrillation. (The period near
the T-wave peak is often referred to as the vulnerable period). Proper characterization of
ventricular ectopic activity requires long-term (24-hour) ECG monitoring.

The classification of heartbeats on the ECG as can be seen, is an important task for
the automatic analysis of arrhythmias. This is the first task performed by a cardiologist
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when inspecting a recording, and as shown above, it is a very demanding task. In the next
section we will review the state of the art regarding heartbeat classification algorithms.

1.3 Previous works

Many algorithms for ECG heartbeats classification were developed in the last decades.
Some of the most relevant before the beginning of this thesis are [Hu et al., 1997, Lager-
holm et al., 2000, de Chazal et al., 2004, Inan et al., 2006, Christov et al., 2006, de Chazal
and Reilly, 2006], while others were published in the last few years [Llamedo and Martínez,
2007, Jiang and Kong, 2007, Park et al., 2008, Ince et al., 2009]. However, due to the
lack of standardization in the development and evaluation criteria, comparison of results
across most of these works could not be performed fairly or is impossible. In order to
overcome this problem, some methodological aspects in the development and evaluation of
heartbeat classifiers were followed in recent works [de Chazal et al., 2004, Jiang and Kong,
2007, Ince et al., 2009, Llamedo and Martínez, 2011a]. The most relevant key-points are:

• Use of public and standard databases, as the ones available in Physionet [Goldberger
et al., 2000].

• Fulfillment of AAMI recommendations for class labeling and results presentation
[AAMI-EC57, 1998–2008].

• Patient-oriented data division into training and testing sets, as described in [de Chazal
et al., 2004].

Another aspect suggested in recent works is the analysis of the capability of the classifier to
retain its performance in other databases not considered during the development [Llamedo
and Martínez, 2011a]. We refer to this property of a classifier as generalization capability,
and its analysis provides a broader idea of the performance achieved. Up to the writing
of this thesis, only few of the reviewed works used more than one database either for
the development [Watrous and Towell, 1995, Kiranyaz et al., 2011] or for a generalization
assessment [Chudácek et al., 2009, Krasteva and Jekova, 2007, Syed et al., 2007].

The AAMI EC57 recommendations [AAMI-EC57, 1998–2008] for class labeling and
results presentation are at the present time broadly accepted [de Chazal et al., 2004,
Inan et al., 2006, Llamedo and Martínez, 2007, Jiang and Kong, 2007, Park et al., 2008,
Ince et al., 2009]. As any classification problem, the goal is to learn a function that
divides in C regions (or classes) a (hyper) space defined by the features, extracted from
the ECG, and then make predictions with this function. In other words, this means
assigning a label to an unknown heartbeat as a function of the value of some features. It
is not difficult to realize that the lesser the amount of classes (small C), the simpler the
partition function. Since cardiologists can group heartbeats into a number of classes that
is easily higher than 10, the AAMI EC57 recommendations simplifies the problem into
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5 classes. Specifically, the EC57 recommendation [AAMI-EC57, 1998–2008] suggest the
supraventricular (S) and ventricular (V) ectopic beats, fusion of normal and ventricular
beats (F), a paced beat, a fusion of paced and normal beats or a beat that cannot be
classified (Q) and finally a normal or bundle branch block beat (N). It is remarkable that
all previous works were interested in discriminating between N and V classes, but only
few of these works studied the multiclass classification problem [Lagerholm et al., 2000,
de Chazal et al., 2004, Llamedo and Martínez, 2007, Park et al., 2008].

In terms of the data division in some works performed a beat-oriented division, no
matter to which subject the heartbeats belongs to, with the inconvenience that sometimes
heartbeats from some subjects were included in both the training and testing datasets
[Inan et al., 2006, Jiang and Kong, 2007, Ince et al., 2009]. It was shown in [de Chazal
et al., 2004] that this approach leads to an optimistic bias of the results, being more
advisable a patient-oriented division, which is based on the application scenario where
this kind of algorithm would be used.

Regarding to the features used (the classification model), the surrounding RR inter-
vals were used in almost all published works. Other typical choices were the decimated
ECG samples (mostly from the QRS complex or T wave) [de Chazal et al., 2004], or
transformed by Hermite polynomials [Lagerholm et al., 2000] or wavelet decomposition
(WT) [Llamedo and Martínez, 2007]. In [de Chazal et al., 2004], features derived from the
delineation of the ECG like the QRS complex and T wave duration, resulted useful for
classification. In some works where the dimensionality of the feature-space was an issue,
feature transformations like PCA were used to keep the dimension of the model as low as
possible [Ince et al., 2009]. The study of the relative importance of each feature within a
model to perform a feature selection was not performed in any of the reviewed articles.
Some works use features that integrate information present in both leads, like the vec-
tocardiogram (VCG) maximum value (V CGmax) and VCG angle (V CGangle) [Christov
et al., 2006]. Another multilead strategy can be seen in [de Chazal et al., 2004], where a
final decision from several posterior probabilities is calculated from single-lead features.
This last approach is not practical for multilead classification because of the need of a
different model designed for each set of leads, and the consequent growth in features di-
mensionality. The room for improvement in the field of heartbeat classification, together
with the availability of 3- and 12-lead Holter devices makes necessary the development of
algorithms capable of exploiting the increase of recorded information. Recently, moreover,
the St. Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database (IN-
CART) became freely available on Physionet [Goldberger et al., 2000], making possible
the evaluation of multilead heartbeat classifiers in a comparable way. The generalization
of a two-lead classifier to an arbitrary number of leads is one of the contributions of this
thesis.

Several classifiers were adopted in the reviewed articles, from simple linear discriminant
functions based on the Gaussian assumption of the data [de Chazal et al., 2004, Llamedo
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and Martínez, 2007] to others more elaborated, as artificial neural networks (ANN’s), self
organizing maps (SOM) and learning vector quantization (LVQ) among others [Hu et al.,
1997, Lagerholm et al., 2000, Inan et al., 2006, Christov et al., 2006, Jiang and Kong,
2007, Park et al., 2008, Ince et al., 2009].

The database used without exception by all groups was the MIT-BIH arrhythmia
database [Moody and Mark, 2001] for training and testing purposes. Up to the mo-
ment none of the reviewed articles reported the generalization properties of the proposed
algorithms outside the MIT-BIH database.

In the current state-of-the-art, it seems that the automatic classification approach has
approximated to a performance upper bound, probably because the train and test datasets
do not always have the same probability distribution in the feature space. The patient
adaptation technique by means of expert assistance (i.e. manual beat annotation) was
reported to be useful in two works to overcome this problem [Hu et al., 1997, de Chazal and
Reilly, 2006], at the expense of sacrificing automaticity. Other works also reported better
performances than the ones obtained by automatic classifiers, always taking advantage
of the expert assistance [Lagerholm et al., 2000, Jiang and Kong, 2007, Ince et al., 2009,
Kiranyaz et al., 2011]. One aspect to study when adopting this technique is the efficient
use of the assistance, in order to keep the classifier as much automatic as possible. It is
interesting to note that some classifiers require from 2 to 5 minutes of manual annotations,
which is equivalent to several hundred of expert labeled heartbeats [Hu et al., 1997,
de Chazal and Reilly, 2006, Ince et al., 2009, Jiang and Kong, 2007], while [Kiranyaz
et al., 2011] requires the annotation of several heartbeats, depending on the number of
arrhythmias present. One drawback of several patient-adaptable approaches is that they
can not operate without assistance [Lagerholm et al., 2000, Ince et al., 2009, Jiang and
Kong, 2007, Kiranyaz et al., 2011]. This is not the case of those developed as an evolution
of a previous automatic classifier [Hu et al., 1997, de Chazal and Reilly, 2006].

1.4 Objective

The objective of this thesis is the study of methodologies to improve the classification
of heartbeats on the ECG. As a first task we pursued the development of a two-lead
automatic classifier. For this, we developed and evaluated a methodology for selecting
the most discriminating features, with the best performance and generalization properties,
in a multidatabase context according to the following premises:

• Perform fully automatic ECG classification

• Follow AAMI recommendations for class labeling and results presentation

• Use a simple classifier (as linear or quadratic discriminant functions)
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• Features should have a physiological meaning, being simple to compute and robust
to the typical kind of noise present in the ECG

Then, in a second task, we studied an effective way of accounting for morphologic in-
formation present in multilead ECG signals. For that purpose, we compare several mul-
tilead classification strategies against the reference two-lead classifier that we developed
in [Llamedo and Martínez, 2011a]. We assess the improvement in classification perfor-
mance as well as the generalization capability to other databases not considered during
the development.

Finally, we studied how the classification performance of the previously developed
automatic algorithms [Llamedo and Martínez, 2011a, 2012a] can be improved, by im-
plementing a patient-adaptation technique. For that purpose, first we compare several
integration strategies in a development dataset, and finally we assess the final perfor-
mance and generalization capability to other databases not considered during the devel-
opment. The performance was compared with other state-of-the-art classifiers [de Chazal
and Reilly, 2006, Jiang and Kong, 2007, Ince et al., 2009, Kiranyaz et al., 2011, Mar et al.,
2011].

1.5 Outline of the Thesis

The thesis is organized as follows:

• In Chapter 2 we introduce several pattern recognition, signal processing and statis-
tics methodologies used in the development of the thesis. As well as the ECG
databases and computing resources used.

• Chapter 3 includes the development of an automatic ECG heartbeat classifier. In
this chapter we give special importance to the generalization achieved by the algo-
rithm. For this purpose we adopt a feature selection algorithm, with an optimization
criterion modified to select those features with larger generalization capability. The
results of this chapter were the following publications:

– M. Llamedo and J. P. Martínez. Heartbeat classification using feature selection
driven by database generalization criteria. IEEE Transactions on Biomedical
Engineering, 58:616– 625, 2011.

– M. Llamedo and J.P. Martínez. Evaluation of an ECG heartbeat classifier
designed by generalization-driven feature selection. In Engineering in Medicine
and Biology Society. EMBC 2010. Annual International Conference of the
IEEE, 2010.

– M. Llamedo and J.P. Martínez. Analysis of multidomain features for ECG
classification. In Computers in Cardiology 2009, volume 36, pages 561 – 564.
IEEE Computer Society Press, 2009.
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– M. Llamedo and J.P. Martínez. Clasificación de ECG basada en características
de escala, dirección y ritmo. In XXVI Congreso Anual de la Sociedad Española
de Ingeniería Biomédica (CASEIB 09)., 2009.

– M. Llamedo and J.P. Martínez. An ECG classification model based on multi-
lead wavelet transform features. In Computers in Cardiology 2007, volume 34,
pages 105–108. IEEE Computer Society Press, 2007.

– M. Llamedo and J.P. Martínez. An ECG classification model based on multi-
lead wavelet transform features. In XVI Congreso Argentino de Bioingeniería.
San Juan. ISBN 978- 950-605-505-9, pages 531–534, 2007.

– M. Llamedo, J.P. Martínez, and P Laguna. Un delineador de ECG multide-
rivacional basado en la transformada wavelet de la señal RMS. In XVI Con-
greso Argentino de Bioingeniería. San Juan. ISBN 978-950-605-505-9, pages
535–538, 2007.

• Chapter 4 covers two improvements performed to the automatic classifier devel-
oped in the previous chapter. Between them, the adaptation of the algorithm to
ECG recordings with an arbitrary amount of leads, and the use of a non-linear clas-
sifier, as the multilayer perceptron. The results of this chapter were the following
publications:

– M. Llamedo and J. P. Martínez. Cross-database evaluation of a multilead
heartbeat classifier. IEEE Transactions on Information Technology in Biomedicine,
Currently under review, with minor revision:–, 2012 expected.

– T. Mar, S. Zaunseder, J. P. Martínez, M. Llamedo, and R. Poll. Optimization
of ECG classification by means of feature selection. Biomedical Engineering,
IEEE Transactions on, 58(8):2168 –2177, aug. 2011.

– M. Llamedo and J.P. Martínez. Analysis of 12-lead classification models for
ECG classification. In Computers in Cardiology 2010, volume 37. IEEE Com-
puter Society Press, 2010.

• In Chapter 5 we used the algorithms developed in the previous chapters to develop
a heartbeat classifier with patient-adaptation capability. For this purpose we used
a clustering algorithm, with features specially selected to maximize the intrapatient
class separation. The resulting algorithm is capable of being used in a fully auto-
matic mode, or with several degrees of expert-assistance. The results of this chapter
were the following publications:

– M. Llamedo and J. P. Martínez. An automatic patient-adapted ECG heart-
beat classifier allowing expert assistance. IEEE Transactions on Biomedical
Engineering, Currently under review:–, 2012 expected.
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– M. Llamedo and J.P. Martínez. Analysis of a semiautomatic algorithm for
ECG heartbeat classification. In Computers in Cardiology 2011, volume 38.
IEEE Computer Society Press, 2011.

– M. Llamedo and J.P. Martínez. Análisis de un algoritmo para la clasificación
semiautomática de latidos en ECG. In XXIX Congreso Anual de la Sociedad
Española de Ingeniería Biomédica (CASEIB 11)., 2011.

• Finally, Chapter 6 presents the most important conclusions drawn in the thesis.



Chapter 2

Materials and Methods

In this chapter we describe the materials and methods used in the following chapters.
The materials are mainly two, ECG databases and computing resources. The methods
used are many more, but can be grouped in signal processing and classification. The
first group contains the methods to calculate the feature vectors from the ECG signal,
while the second group contains the methods to classify the feature vectors into heartbeat
classes.

2.1 ECG Databases

All experiments performed in this thesis were carried out in several public databases freely
available on Physionet [Goldberger et al., 2000], the well known American Heart Associa-
tion database [American Heart Association], and a database developed at Biosigna GmbH
[Fischer et al., 2008]; their relevant details are summarized in Table 2.3. For all databases
the AAMI recommendations for class-labeling were adopted. In the next subsection this
recommendation is explained. The AAMI Q class (unclassified and paced heartbeats) was
discarded since it is marginally represented in all databases. This limitation occurs to a
lesser extent with the fusion (F) AAMI class, but instead of discarding the heartbeats
of this class, we adopted an alternative labeling scheme already used in [Llamedo and
Martínez, 2011a]. It consists in merging the fusion (of normal and ventricular beats) and
ventricular classes, as the same ventricular class (V’ in Table 2.3). We will refer to this
modification as AAMI2 labeling. This labeling does not compromise the comparability
with other AAMI compliant works, since according to AAMI recommendation [AAMI-
EC57, 1998–2008], errors involving F and Q classes either should not be accounted for
the required performance measurements, or are already accounted by considering the V’
class. The databases used include different types of ECG recordings: some of them were
recorded during routine ambulatory practice, but others were selected to include less
common ventricular, junctional or supraventricular arrhythmias, or baseline ST segment
displacement or other ECG abnormalities. As a result, we use in this work a dataset

29
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with a broad range of normal and pathological ECG recordings to evaluate the algorithm
performance. Further details of each database can be found on Physionet1 [Goldberger
et al., 2000].

We will refer as the development dataset to the union of the MITBIH-SUP database
and the 22 recordings included in the DS1 subset of MITBIH-AR defined in [de Chazal
et al., 2004], while the evaluation dataset includes the rest of databases described in Table
2.3. The reason of this division was, first for ensuring a fair comparison with de Chazal et
al. [de Chazal et al., 2004] results, and second because MIT Arrhythmia databases have
heartbeat annotations thoroughly reviewed by several experts, and are therefore more
reliable than the rest of databases.

2.1.1 AAMI class labeling recommendations

According to Section 4.2 of [AAMI-EC57, 1998–2008], within annotation files beat labels
are defined as follows:

N any beat that does not fall into the S, V, F, or Q categories described below (a normal
beat or a bundle branch block beat)

S a supraventricular ectopic beat (SVEB): an atrial or nodal (junctional) premature or
escape beat, or an aberrated atrial premature beat

V a ventricular ectopic beat (VEB): a ventricular premature beat, an R-on-T ventricular
premature beat, or a ventricular escape beat

F a fusion of a ventricular and a normal beat

Q a paced beat, a fusion of a paced and a normal beat, or a beat that cannot be classified

The description and conversion matrices for the formats used in the databases described
below are presented in tables 2.1 and 2.2.

2.1.2 MIT-BIH Arrhythmia Database (MITBIH-AR)

The MIT-BIH Arrhythmia Database contains 48 half-hour excerpts of two-channel am-
bulatory ECG recordings, obtained from 47 subjects studied by the BIH Arrhythmia
Laboratory between 1975 and 1979 [Moody and Mark, 2001].

The source of the ECGs included in the MIT-BIH Arrhythmia Database is a set of
over 4000 long-term Holter recordings that were obtained by the Beth Israel Hospital
Arrhythmia Laboratory between 1975 and 1979. Approximately 60% of these recordings
were obtained from inpatients. The first group is intended to serve as a representative
sample of the variety of waveforms and artifact that an arrhythmia detector might en-
counter in routine clinical use. A table of random numbers was used to select tapes, and

1www.physionet.org
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Table 2.1: Original annotation format used in the databases.

MIT format AHA format
Sym Description Sym Description
N Normal beat E Ventricular Escape
· Normal beat F Fusion Beat
L Left bundle branch block beat N Beat of Non-Ventricular Origin
R Right bundle branch block beat P Paced Beat
A Atrial premature beat Q Questionable Beat -

Indeterminate Origin
a Aberrated atrial premature beat R R-on-T Beat
J Nodal (junctional) premature

beat
U Unreadable

S Supraventricular premature beat V Premature Ventricular
Contraction

V Premature ventricular
contraction

[ Beginning of Ventricular
Fibrillation or Flutter

F Fusion of ventricular and normal
beat

] End of Ventricular Fibrillation or
Flutter

[ Start of ventricular
flutter/fibrillation

! Ventricular flutter wave
] End of ventricular

flutter/fibrillation
e Atrial escape beat
j Nodal (junctional) escape beat
E Ventricular escape beat
/ Paced beat
f Fusion of paced and normal beat
x Non-conducted P-wave (blocked

APB)
p Non-conducted P-wave (blocked

APB)
Q Unclassifiable beat
| Isolated QRS-like artifact
? Beat not classified during

learning
+ Rhythm change
r R-on-T premature ventricular

contraction
s ST segment change
B Bundle branch block beat

(unspecified)
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Table 2.2: AAMI class conversion matrices for the formats used.

MIT format AHA format
Original AAMI AAMI2 Original AAMI AAMI2

N N N E V V
· N N F F V
L N N N N N
R N N Q Q Q
A S S R V V
a S S V V V
J S S
S S S
V V V
F V V HES format
[ Q Q Original AAMI AAMI2
! Q Q Q Q Q
] Q Q N N N
e N N N N N
j N N S S S
E V V Q Q Q
/ F V V V V
f F V S S S
x Q Q
p Q Q
Q F V
| Q Q
? Q Q AAMI labels
+ Q Q N Normal
r V V S Supraventricular
s Q Q V Ventricular
B N N F Fusion
n N N Q Unknown
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then to select half-hour segments of them. Segments selected in this way were excluded
only if neither of the two ECG signals was of adequate quality for analysis by human
experts. Records in the second group were chosen to include complex ventricular, junc-
tional, and supraventricular arrhythmias and conduction abnormalities. Several of these
records were selected because features of the rhythm, QRS morphology variation, or signal
quality may be expected to present significant difficulty to arrhythmia detectors; these
records have gained considerable notoriety among database users. The subjects were 25
men aged 32 to 89 years, and 22 women aged 23 to 89 years. (Records 201 and 202 came
from the same male subject.)

In most records, one signal is a modified limb lead II (MLII), obtained by placing the
electrodes on the chest. While the other is usually a modified lead V1 (occasionally V2 or
V5, and in one instance V4); as for the first signal, the electrodes are also placed on the
chest. Normal QRS complexes are usually prominent in the first signal. The lead axis for
the second signal may be nearly orthogonal to the mean cardiac electrical axis, however
(i.e., normal beats are usually biphasic and may be nearly isoelectric). Thus normal
beats are frequently difficult to discern in the second signal, although ectopic beats will
often be more prominent. A notable exception is record 114, for which the signals were
reversed. Since this happens occasionally in clinical practice, arrhythmia detectors should
be equipped to deal with this situation. In records 102 and 104, it was not possible to
use modified lead II because of surgical dressings on the patients; modified lead V5 was
used for the first signal in these records.

The recordings were digitized at 360 samples per second per channel with 11-bit res-
olution over a 10 mV range. An initial set of beat labels was produced by a simple
slope-sensitive QRS detector, which marked each detected event as a normal beat. Two
identical 150-foot chart recordings were printed for each 30-minute record, with these
initial beat labels in the margin. For each record, the two charts were given to two car-
diologists, who worked on them independently. The cardiologists added additional beat
labels where the detector missed beats, deleted false detections as necessary, and changed
the labels for all abnormal beats. They also added rhythm labels, signal quality labels,
and comments.

The annotations were transcribed from the paper chart recordings. Once both sets
of cardiologists’ annotations for a given record had been transcribed and verified, they
were automatically compared beat-by-beat, and another chart recording was printed.
This chart showed the cardiologists’ annotations in the margin, with all discrepancies
highlighted. Each discrepancy was reviewed and resolved by consensus. The corrections
were transcribed, and the annotations were then analyzed by an auditing program, which
checked them for consistency and which located the ten longest and shortest R-R intervals
in each record (to identify possible missing or falsely detected beats).

The annotations provided with the database were used for training and testing pur-
poses, following the recommendations and class-labeling of AAMI (See tables 2.1 and 2.2).
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We adopted the training (DS1) and test (DS2) set division scheme used in [de Chazal
et al., 2004] for comparative purposes of the results. The division scheme is summarized
in Table 2.3.

2.1.3 MIT-BIH Supraventricular Arrhythmia Database (MITBIH-
SUP)

The database consists of 78 two-lead recordings of approximately 30 minutes and sampled
at 128 Hz. The recordings were chosen to supplement the examples of supraventricular
arrhythmias in the MIT-BIH Arrhythmia Database. The annotations of the recordings
were performed automatically first, by the Marquette Electronics 8000 Holter scanner and
later reviewed and corrected by a medical student [Greenwald, 1990]. These reference an-
notations are considered a “silver standard” because the granularity of the beat labels only
discriminates among normal, ventricular, supraventricular and fusion beats. The original
labeling was also adapted to the AAMI recommendations and to the AAMI2 modification.
This database will be considered for validation and model selection purposes. The class
distribution is shown in Table 2.3.

2.1.4 St. Petersburg Institute of Cardiological Technics (IN-
CART) 12-lead Arrhythmia Database

This database consists of 75 annotated recordings extracted from 32 Holter records. Each
record is 30 minutes long and contains 12 standard leads, each sampled at 257 Hz. The
reference annotation files contain over 175000 beat annotations in all. The original records
were collected from patients undergoing tests for coronary artery disease (17 men and 15
women, aged 18-80; mean age: 58). None of the patients had pacemakers; most had ven-
tricular ectopic beats. In selecting records to be included in the database, preference was
given to subjects with ECG’s consistent with ischemia, coronary artery disease, conduc-
tion abnormalities, and arrhythmias. These diagnoses were confirmed by enzyme assays,
coronary angiography, electrophysiological study, and pressure monitoring where neces-
sary. For each record it was included the patient’s age, sex, diagnoses, and a summary of
features of the ECG.

The annotations were produced by an automatic algorithm and then corrected man-
ually, following the standard PhysioBank beat annotation definitions. The algorithm
generally places beat annotations in the middle of the QRS complex (as determined from
all 12 leads); the locations have not been manually corrected, however, there may be
occasional misaligned annotations as a result. This database will be considered only for
testing purposes. More details about the database are shown in Table 2.3.
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2.1.5 European ST-T Database (ESTTDB)

This database consists of 90 annotated excerpts of ambulatory ECG recordings from 79
subjects. Myocardial ischemia was diagnosed or suspected for each subject, additional
selection criteria were established in order to obtain a representative selection of ECG
abnormalities in the database, including baseline ST segment displacement resulting from
conditions such as hypertension, ventricular dyskinesia, and effects of medication. Each
record is two hours in duration and contains two signals, each sampled at 250 Hz with
12-bit resolution over a nominal 20 millivolt input range.

The European ST-T Database is intended to be used for evaluation of algorithms for
analysis of ST and T-wave changes. This database consists of 90 annotated excerpts of
ambulatory ECG recordings from 79 subjects. The subjects were 70 men aged 30 to 84,
and 8 women aged 55 to 71. Myocardial ischemia was diagnosed or suspected for each
subject; additional selection criteria were established in order to obtain a representative
selection of ECG abnormalities in the database, including baseline ST segment displace-
ment resulting from conditions such as hypertension, ventricular dyskinesia, and effects of
medication. The database includes 367 episodes of ST segment change, and 401 episodes
of T-wave change, with durations ranging from 30 seconds to several minutes, and peak
displacements ranging from 100 microvolts to more than one millivolt. In addition, 11
episodes of axis shift resulting in apparent ST change, and 10 episodes of axis shift result-
ing in apparent T-wave change, have been marked. Compact clinical reports document
each record. These reports summarize pathology, medications, electrolyte imbalance, and
technical information about each recording. Each record is two hours in duration and
contains two signals, each sampled at 250 samples per second with 12-bit resolution over
a nominal 20 millivolt input range. The sample values were rescaled after digitization
with reference to calibration signals in the original analog recordings, in order to obtain
a uniform scale of 200 ADC units per millivolt for all signals. The header files include
information about the leads used, the patient’s age, sex, and medications, the clinical
findings, and the recording equipment. A complete description of the database can be
found in [Taddei et al., 1992].

2.1.6 The MIT-BIH ST Change Database (MITBIH-ST)

This database includes 28 ECG recordings of varying lengths, most of which were recorded
during exercise stress tests and which exhibit transient ST depression. We selected the
two-lead recordings, resulting in 18 useful recordings. The recordings were sampled at
360 Hz and 12-bit resolution.



36 CHAPTER 2. MATERIALS AND METHODS

2.1.7 The Long-Term ST Database (LTSTDB)

The Long-Term ST Database contains 86 lengthy ECG recordings of 80 human sub-
jects, chosen to exhibit a variety of events of ST segment changes, including ischemic
ST episodes, axis-related non-ischemic ST episodes, episodes of slow ST level drift, and
episodes containing mixtures of these phenomena. The database was created to support
development and evaluation of algorithms capable of accurate differentiation of ischemic
and non-ischemic ST events, as well as basic research into mechanisms and dynamics of
myocardial ischemia. Detailed clinical notes and ST deviation trend plots are provided
for all 86 records. The entire Long-Term ST Database is also available from its original
home page at the Laboratory for Biomedical Computer Systems and Imaging at the Uni-
versity of Ljubljana, Slovenia The individual recordings of the Long-Term ST Database
are between 21 and 24 hours in duration, and contain two or three ECG signals. Each
ECG signal has been digitized at 250 samples per second with 12-bit resolution over a
range of ±10 millivolts. Each record includes a set of meticulously verified ST episode
and signal quality annotations, together with additional beat-by-beat QRS annotations
and ST level measurements.

Several sources contributed recordings to the Long-Term ST Database:

• Eleven of the recordings included in the Long-Term ST Database are from the initial
Long-Term ST Database developed under a joint U.S.-Slovenian research project
between 1995 and 1998.

• Ten additional recordings of the Long-Term ST Database are from the collection
originally gathered by the Pisa group for the European ST-T Database, which con-
tains two-hour excerpts of some of these same recordings. The original analog
recordings were redigitized for the Long-Term ST Database; since the signals have
been rescaled as a result, direct comparison of the annotations in the European
ST-T Database records with those for the corresponding portions of the Long-Term
ST Database records is not possible. The inclusion of these recordings in the Long-
Term ST Database allows study of the dynamics of ischemic ST changes over a
much longer period in these previously well-studied subjects. Among the samples
available here, record s20021 includes the two-hour segment that was previously
digitized to produce record e0113 of the European ST-T Database.

• Another 18 of the LTSTDB recordings, those containing recordings with three ECG
signals, were contributed to the project by Zymed, Inc.

The annotation of the Long-Term ST Database was performed using SEMIA, a program
written by the group in Ljubljana for this purpose. Each recording was reviewed indepen-
dently by expert annotators using SEMIA at each of the three sites (Ljubljana, Pisa, and
Cambridge). Participants met several times annually to obtain the consensus reference
annotations. For further details, see [Jager et al., 2003].
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2.1.8 American Heart Association (AHA) ECG Database

The American Heart Association (AHA) sponsored the development of the AHA Database
for Evaluation of Ventricular Arrhythmia Detectors during the late 1970s and early 1980s
at Washington University (St. Louis). The first portions of the AHA Database were
released in 1982, and it was completed in 1985. Until recently, the only available por-
tion of the AHA database consisted of 80 two-channel excerpts of analog ambulatory
ECG recordings, digitized at 250 Hz per channel with 12-bit resolution over a 10 mV
range [American Heart Association]. These recordings, designated as the development
set, are divided into eight classes of ten recordings each, according to the highest level of
ventricular ectopy present:

• no ventricular ectopy (records 1001 through 1010)

• isolated unifocal PVCs (records 2001 through 2010)

• isolated multifocal PVCs (records 3001 through 3010)

• ventricular bi- and trigeminy (records 4001 through 4010)

• R-on-T PVCs (records 5001 through 5010)

• ventricular couplets (records 6001 through 6010)

• ventricular tachycardia (records 7001 through 7010)

• ventricular flutter/fibrillation (records 8001 through 8010)

The final thirty minutes of each recording are annotated beat-by-beat, although supraven-
tricular ectopic beats are not distinguished from normal sinus beats. At the time the AHA
Database was created, a second set of 75 recordings (designated as the test set) was con-
structed according to the same criteria as the development set (only 5 recordings in the
R-on-T PVC class were included in the test set). The test set was intended for evaluations
without any possibility that the detectors might have been tuned (optimized) for the test
data; for this reason, the test set was unavailable until recently.

2.2 Supercomputing Resources

The development and evaluation of the algorithms presented in this thesis involves a
lot of computation. This kind of tasks are unfeasible in ordinary computers, since the
time required for an adequate evaluation can easily reach several days. All the results
presented in this thesis were calculated using the resources of the Instituto de Investigación
en Ingeniería de Aragón (I3A). HERMES is the I3A’s high throughput computing cluster,
and this is a brief overview of its main features:
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• 200 computing nodes.

• 1534 computing cores (Intel & AMD).

• 3.5Tb RAM available as a whole.

• 150Tb high performance storage (based on Lustre).

• Network facilities:

– 10Gb trunk network

– 1Gb access network

– 1 QDR Infiniband Island (16 nodes)

• Operating System: Scientific Linux 5.5

• Queue distribution system: Condor 7.6 [Condor, 2010]

2.3 Signal Processing

2.3.1 ECG preprocessing

The ECG recordings of all databases were first resampled to 360 Hz when necessary,
which is the sampling frequency of the MITBIH-AR, and an adequate sampling rate
for heartbeat classification. This was performed with a tenth order lowpass FIR filter
without observing any notorious distortion (resample function, Signal Processing Toolbox
of Matlab, The Mathworks Inc., MA). The next task is to remove the contamination that
the ECG may contain, in order to improve as much as possible the signal to noise ratio
(SNR). We are interested in removing three types of noise: the baseline wander, the
power-line frequency and the out of band high frequency. The baseline wander is an
external, low-frequency activity in the ECG which may interfere with the signal analysis,
and may result from a variety of noise sources including respiration, body movements,
and poor electrode contact. In the following chapters, this kind of noise will be removed
with two cancellation methods. One method is based on the estimation of the baseline
wander noise by median filtering the ECG, for the subsequent subtraction. The median
filter is defined for each sample of a signal x as

y[n] =
n+w
med
i=n−w

x[i], (2.1)

that is, the median of the samples included in a window of 2w + 1 samples centered at
the current sample n; and the med operation is defined as

medx[i] = arg min
µ

N∑
i=1
|x[i]− µ| , (2.2)
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Original ECG

Baseline est.

Filtered ECG

Figure 2.1: Baseline wander removal procedure with median filters.

being µ the median of x[i], a robust estimation of the center location of a group of samples.
As can be noted, it is a simple smoothing nonlinear filter, similar to an averaging filter,
with only one parameter, which is the window size N . One important difference with the
mean filter, is the nonlinear behavior inherited from the med operation (abrupt changes
can be noted in Figure 2.1). Each signal was processed with a median filter of 200 ms width
to remove QRS complexes and P-waves. The resulting signal was then processed with a
median filter of 600 ms width to remove T-waves. The signal resulting from the second
filter operation contained the baseline of the ECG signal, which was then subtracted from
the original signal to produce the baseline corrected ECG signal. This method for baseline
wander removal is simple, but is very demanding in terms of computational cost, and the
estimated noise signal can have abrupt changes.

The other method used in this thesis is based on cubic-splines interpolation. In this
case, the baseline wander estimation is obtained by fitting a polynomial to several rep-
resentative samples of the ECG, which are chosen at the PQ interval of successive beats
[Sörnmo and Laguna, 2005]. The PQ interval happens when the heartbeat impulse is
being delayed at the A-V node (see Figure 1.6), therefore is considered free of electrical
activity from the heart. This method is faster (given that the QRS locations were already
computed) and avoids the bumps in the estimated signal caused by the median filter.
As a disadvantage, the PQ location could be difficult at high heart rates or low SNR
recordings.
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Unwanted power-line and high-frequency noise was removed from the baseline cor-
rected ECG with low-pass filter, following the same methodology used in [de Chazal
et al., 2004]. The filter was a finite impulse response filter with equal ripple in the pass
and stop bands. The 3-dB point of the filter was 35 Hz, and the attenuation at the
stop-band was 80 dB. The transfer function of this filter is shown in Figure 2.2.

The filtered ECG signals were used in all subsequent processing. No energy or ampli-
tude normalization was done, as we were interested in some amplitude-related features.

2.3.2 Wavelet Transform

Many of the considered features (explained in following sections) were based on the wavelet
transform (WT) of the ECG signal. This transformation maps the ECG signal into a time-
scale plane (understanding scale as a surrogate of frequency). Therefore, the WT allows
the location in time of certain frequency contents. This aspect is of much importance
when analyzing ECG signals, since each wave have a particular frequency content.

A wavelet ψ(t) is a small wave in the sense of having limited duration, as it is an oscil-
lating function that goes quickly to zero. It has zero mean and finite energy concentrated
around a point. A wavelet family is defined from a prototype wavelet ψ(t) by means of
dilations (a) and translations (b)

ψa,b(t) = 1√
a
ψ

(
t− b
a

)
, a > 0. (2.3)

The continuous wavelet transform Wa
y(b) (CWT) decomposes a signal y(t) as a combina-

tion of functions ψa,b, i. e.

W s
a (b) = 1√

a

∫ +∞

−∞
y(t)ψ∗a,b(t)dt = 1√

a

∫ +∞

−∞
y(t)ψ∗

(
t− b
a

)
dt, (2.4)

where ψ∗(t) denotes the complex conjugate of ψ(t).
If a real ψ(t) ∈ L2 is such that its Fourier Transform Ψ(ω) fulfills the admissibility

condition ∫ +∞

0

|Ψ(ω)|2

ω
dω <∞, (2.5)

then the CWT satisfies energy conservation [Mallat, 1999]. The CWT presents clear ad-
vantages over the short time Fourier transform (STFT) for ECG characterization. As a
matter of fact, in the case of STFT a sliding time window is applied, obtaining covering
units with finite energy, what allows to add some time/frequency location to the Fourier
transform [Sörnmo and Laguna, 2005]. Each window corresponds to a time/frequency
resolution that stands for the entire analysis. Nevertheless, in the case of non stationary
signals a fixed resolution is hardly appropriated for the whole signal. The wavelet trans-
form is specially adequate for describing non stationary signals, as is the case of the ECG.
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Figure 2.2: Transfer function of the low-pass filter used for ECG preprocessing. Note
the adequate attenuation at powerline frequencies and the low distortion introduced in a
normal heartbeat.
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In fact, with the CWT the lower frequency components of the signal are characterized
by the coefficients corresponding to wider ψa,b(t) resulting from the higher scale factor a,
and vice versa. This provides a time/scale domain description of s(t) with higher tem-
poral resolution at high frequencies and higher frequency resolution at low frequencies.
For the purpose of automatic computer analysis, a digitized signal s(k) is considered and
its discrete wavelet transform (DWT) is usually obtained following a dyadic grid on the
time-scale plane (a = 2m and b = 2ml, m ∈ N, l ∈ Z), denoted as Wds2m(2ml). With the
dyadic grid the DWT is equivalent to an octave filter bank and can be implemented as
a cascade of identical cells of low-pass and high-pass FIR filters, with a downsampling
operation after each filter, as schematized in Figure 2.3. That is,

Wds2m(2ml) = cm−1(2m−1l) ∗ ḡ(2ml),
cm(2ml) = cm−1(2m−1l) ∗ h̄(2ml), (Mallat’s algorithm)
ḡ(k) = g(−k); h̄(k) = h(−k),

(2.6)

where g(k) and h(k) are the impulse response functions of the associated low-pass and
high-pass filters, respectively [Mallat, 1989].

The description in equation (2.6) is time-variant, with more reduced temporal reso-
lution for increasing scales. This drawback can be overcome using the algorithm à trous
[Cohen and Kovačević, 1996], in which each decimation stage is replaced by an interpo-
lation of the filter impulse responses of the previous scale, as represented in Figure 2.3.
In this way a redundant representation of y(k) is obtained, but the temporal resolution
is maintained at different scales, that is

W s
2m(k) = cm−1(k) ∗ ḡm(k),

cm(k) = cm−1(k) ∗ h̄m(k), (algorithm à trous)
ḡm(k) = gm(−k); h̄m(k) = hm(−k).

(2.7)

for gm(k) and hm(k) denoting the impulse response obtained by inserting 2m − 1 zeros
between every sample in the impulse response function g(k) and h(k), respectively. Using
this algorithm, the equivalent frequency response for scale a = 2m is

Qm

(
ejω
)

=
 G (ejω) m = 1
G
(
ej2

m−1ω
) ∏m−2

l=0 H
(
ej2

lω
)

m ≥ 2.
(2.8)

2.3.3 Prototype Wavelet

The frequency response of each scale derives from the prototype wavelet function used,
thus it is of extreme importance that its choice attends to the specific frequency content
of the signal of interest. It can be shown [Mallat and Zhong, 1992, Sahambi et al., 1998]
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Figure 2.3: Discrete wavelet transform implementation schemes (dyadic grid).

that taking as prototype wavelet ψ(t), the derivative of a smoothing function θ(t), the
CWT of a signal y(t) at scale a is given by

W s
a (b) = −a

(
d

db

) ∫ +∞

−∞
s(t)θa(t− b)dt, (2.9)

where θa(t) = 1√
a
θ
(
t
a

)
is the scaled version of the smoothing function.

Therefore, the wavelet transform at scale a is proportional to the derivative of the
filtered version of the signal with a smoothing impulse response at scale a.

This property is very convenient for the purpose of modeling ECG waves, which are
composed of slopes and local maxima (or minima), as illustrated in Figure 2.9,

• wave peaks in the ECG correspond to zero crossings in the WT,

• slopes in ECG correspond to maxima and minima of the WT.

It was proposed as an example in [Mallat and Zhong, 1992], a wavelet prototype with
this property, a quadratic spline that matches the derivative of the convolution of four
rectangular pulses. Its Fourier transform is given by

Ψ (ω) = jω

(
sin(ω/4)
ω/4

)4

, (2.10)
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Figure 2.4: Wavelet prototype used in this thesis. A quadratic spline that matches the
derivative of the convolution of four rectangular pulses.

and the low-pass and high-pass FIR filters have transfer functions [Li et al., 1995]

H
(
ejω
)

= ejω/2
(

cos ω2

)3
,

G
(
ejω
)

= 4 j ejω/2
(

sin ω2

)
,

(2.11)

with associated impulse responses

h[k] = 1/8 · {δ[k + 2]+3δ[k + 1]+3δ[k]+δ[k−1]} ,
g[k] = 2 · {δ[k + 1]−δ[k]} .

(2.12)

This prototype wavelet has been applied to detection and delineation of ECG signals with
good results [Li et al., 1995, Martínez et al., 2004]. As the analysis filters in equation
(2.12) have linear phase [Li et al., 1995], the outputs of the filters can be realigned in
order to present the same delay with respect to the original signal s(t). The equivalent
frequency responses Qm (ejω) for this prototype wavelet using the algorithme à trous can
be calculated from equations (2.8) and (2.11). The frequency responses are plotted in
Figure 2.5 for the first five scales a = 2m|m=1,2,...,5, considering a sampling frequency Fs
of 250 Hz. In the rest of the thesis, the wavelet scale a = 2m will be referred as the m-th
scale.

For a value of Fs different from 250 Hz the bands in Figure 2.5 would appear scaled in
frequency. It is important to keep the scale fitting to the ECG features on the algorithms
independent of Fs: for that purpose a new set of filters, having equivalent frequency
responses as close as possible to the ones of Figure 2.5 are constructed for each Fs. The
new filters are obtained by resampling adequately the equivalent filter impulse responses
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Figure 2.5: Transfer functions of the filter-bank used to calculate the DWT up to the 5th
scale.

at 250 Hz. Such a procedure is required to construct a system able to handle equivalently
ECG signals with different sampling frequencies. As a final precision of Figure 2.5, the
DWT filter-bank response is 250 Hz, but the Fs for this implementation is 360 Hz, which
is the sampling rate of the recordings included in the MITBIH-AR.

Following the conclusions of [Martínez et al., 2004], the resulting DWT framework
allows an analysis robust to the typical interferences present in routine ECG recordings,
so the features derived from the DWT are expected to inherit this desirable property.

2.4 Heartbeat classification

This section includes much of the work carried out in this thesis. In the first two sub-
sections are described the features and classifiers used, which ultimately are the method-
ologies that will be used for the classification of heartbeats. The other subsections are
important during the development of the classification algorithm.

2.4.1 Classification Features

In this subsection all the features that were used in this thesis are defined. However, only
a small subset of them are selected to be implemented in the final classification model, as
will be described below in section 2.4.6. Many of these features were initially designed to
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Figure 2.6: Transfer function of the low-pass filter used for ECG preprocessing.

be used in two-lead recordings, as those included in the MITBIH-AR and MITBIH-SUP
databases. Later in chapter 4 we present a strategy to adapt these features to recordings
with an arbitrary amount of leads.

Following the conclusions of previous works [Hu et al., 1997, de Chazal et al., 2004],
we included in our model both rhythm and morphological features. The rhythm features
are designed to model the manner in which the heartbeats succeed each other. They are
responsible of modeling the sinus node activity, an increased automaticity in any part of
the heart or a complete A-V block. As rhythm features we used features from the RR
interval (RR) sequence, being

RR[i] = Q[i]−Q[i− 1] (2.13)

the current RR interval the difference between the current (Q[i]) and previous (Q[i− 1])
QRS fiducial points (FP). Then we used RR[i− 1], RR[i] and RR[i + 1] to describe the
local time evolution of the heart rhythm. In order to assess the local variation of the
heart rhythm, the feature

RRV [i] =
1∑

j=−1
|dRR[i− j]| , (2.14)

being
dRR[i] = RR[i]−RR[i− 1],

characterizes the amount of RR variation in the surrounding heartbeats. The prematurity
of a heartbeat, defined as

PRR[i] = RR[i]∑i+1
k=i−1 RR[k]

, (2.15)

measures how anticipated is a heartbeat respect to the previous and next RR interval.
We also included estimates of the local and global rhythm by the mean RR interval in
the last 1, 5, 10 and 20 minutes (RRP being P ∈ {1, 5, 10, 20}, the interval in minutes of
aggregation). Examples of the rhythm features used are shown in Figure 2.6.

The morphological features are designed to model the manner in which heartbeats are
conducted through the heart. The features that we used can be grouped in three cate-
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Figure 2.7: QRS width measured for a normal and a ventricular heartbeat.

gories depending on whether they were calculated in the ECG signal, the two-dimensional
vectocardiogram (VCG) loop formed by both available leads or in the DWT of the ECG
signal.

1) The QRS width is obtained from the delineation of the ECG, as a simple difference

QRSW = QRSoff −QRSon

of the offset and offset of the QRS complex. The QRS location is assumed to be known,
for this purpose we used the annotations included in the databases. Following the QRS
complex detection positions, the delineation of each heartbeat was performed with the
delineator described in [Martínez et al., 2004].

It is well known that not properly conducted heartbeats, as the ventricular class, have
widened QRS complexes as is shown in Figure 2.7. From the clinical point of view, a
QRSW > 120 ms is considered to be widened.

2) From the 2-D VCG loop constructed with the two available leads (see Figure 2.8)
we calculated two features: the maximal vector of the QRS loop (V CGM) and the angle
of this vector (V CGφ). As any problem in the conduction of the impulse through the
heart should change the loop morphology, and therefore this two features, as shown in
Figure 2.8 for a normal and a ventricular heartbeat.

3) Regarding the features calculated from the DWT of the ECG, four types can be
defined:

3.a) The first type includes 7 features (per lead) that were calculated from peak ampli-
tudes and positions from the fourth scale of the DWT (W s

4 (k)), since this scale (between
12.25–22.5 Hz) has good projection of the ECG information. These 7 features are the
2 greatest absolute values of the QRS complex, the 2 greatest absolute values of the T



2.4. HEARTBEAT CLASSIFICATION 49

MIT-BIH Rec. 202

Normal Ventricular

MLII

V1

V1

MLII

VC
G ¿

VCG
¿

VCG
M

VCG
M

Normal

Ventricular

Figure 2.8: Illustration of the features calculated from the VCG loop computed with the
two available leads, for a normal (continuous line) and ventricular (dotted line) beats.
The maximum value of the loop and the angle at this point are shown.



50 CHAPTER 2. MATERIALS AND METHODS

Normal Ventricular

Scale 3

Scale 4

Scale 5

Scale 6

MLII

MIT-BIH Rec. 202

S    =3.9
QRS

S    =4.8
QRS

d1

d3

d2

d1

d3

d2

Figure 2.9: Illustration of the features calculated from the wavelet transform for the same
normal and ventricular beat in Fig. 2.8. The two most important peaks from the QRS
complex and T wave are indicated with an asterisk, and the relative distances (di) to
the most important peak in the fourth scale. Also the scale where the QRS complex is
centered (SLQRS) is shown for both types of heartbeats used for its calculation (only for
one lead).

wave, and their 3 relative positions (to the position of the greatest peak in the heartbeat,
see Fig. 2.9).

3.b) The second type is also calculated from the fourth scale of the DWT, but from
the autocorrelation sequence

r(4)
x (k) =

N∑
i=0

W x
4 (i)·W x

4 (i− k) (2.16)

of the x lead in a window of N samples. This sequence of 2N − 1 samples is symmetric,
as can be seen in Figure 2.10. The cross-correlation is very similar

r(4)
xy (k) =

N∑
i=0

W x
4 (i)·W y

4 (i− k) (2.17)

but involves the two available leads, x and y. In contrast, the cross-correlation sequence
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is not symmetric as shown in the bottom of Figure 2.10.
The autocorrelation sequence for both leads (r(4)

x (k) and r(4)
y (k)) and the inter-lead

cross-correlation sequence (r(4)
xy (k)) were calculated within a time window which starts

130 ms before the FP and ends 200 ms after. One remarkable aspect is that features
calculated from the correlation signals will essentially be synchronized in time, even if the
FP is not accurately determined. We calculated for the 3 signals the location and value
of the absolute maximum, and for r(4)

x and r(4)
y the location of the first zero-crossing, as

shown in Fig. 2.10.
3.c) The third type of feature is the wavelet scale where the QRS complex is centered

for each lead. It is known that fast evolving signals (like a normal beat) tend to have
their energy located in lower wavelet scales (higher frequency content). The QRS center
scale for each lead (SLeadQRS) is calculated as the weighted sum

SLQRS =
∑6
s=1 A

L
s .s∑6

s=1 A
L
s

(2.18)

where ALs is the mean absolute amplitude of the QRS peaks at scale s of the DWT, and
lead L

ALs = 1
D

D∑
d=1

∣∣∣WL
s s(ld)

∣∣∣ , s = 1, 2, . . . 6 (2.19)

being D the number of detected peaks (1 or 2) and ld the positions of the peaks. In
Figure 2.9 the peaks are marked with asterisks, and an arrow points the SQRS feature for
a normal and ventricular heartbeats.

3.d) The last type of features computed in the DWT were energies measured at several
scales and locations of the heartbeat. Specifically during the occurrence of the P wave, and
the QRS complex. For that purpose we defined a window of length 400 ms ending at the
QRSon. This window was divided in 4 sections of 100 ms, and the energy of theWRMS

s (k)
signal was computed in each section in scales 3 to 5. This amounts 12 features per beat (4
sections × 3 scales). The same concept was used to study the QRS complex morphology
with a window starting at 100 ms before the FP, or the QRS complex location, and ending
120 ms after, for scales 2 to 5, as can be seen in Figure 2.11. In total 16 features per beat.

2.4.2 Discriminant Functions

In this thesis we focused our efforts in developing a classification model which includes
features that provide most of the classification power. To encourage this property we used
in our experiments very simple classifiers as linear and quadratic discriminant classifiers
(or functions). All these classifiers assume that the data is distributed following a Gaussian
distribution, which is rarely true. In spite of this evident limitation, these classifiers obtain
an acceptable trade-off between the sub-optimal performance achieved, and the simplicity
to understand them during operation, and to interpret the effect of their features in the
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Figure 2.10: Illustration of the features calculated from the wavelet correlation signals for
the same normal and ventricular beats. The autocorrelation signal of the QRS complex
at scale 4 is shown for both leads (rx and ry) as well as the cross-correlation signal (rxy)
at the bottom. The zero-crossings and peaks of interest are indicated with an asterisk.
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WRMS
s (k) signal are also shown.
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discriminant functions. This later property is not feasible in other classifiers as support
vector machines and neural networks for example.

Under the assumption of normally distributed data, the maximum a posteriori clas-
sification criterion (MAP) leads to quadratic discriminant functions, broadly used for
classification purposes [van der Heijden et al., 2005]. In the general case, the quadratic
discriminant function of the i-th class and feature vector x, can be written as

gi(x) = −1
2xTΣ−1

i x + µT
i Σ−1

i x− 1
2µ

T
i Σ−1

i µi −
1
2 log(|Σi|) + log(P (ωi)), (2.20)

being µi, Σi and P (ωi) the mean vector, covariance matrix and prior probability of the
i-th class. The classification rule assigns x to the class i which results in the maximum
posterior probability

P (i|x) = egi(x)∑C
j=1 e

gj(x) . (2.21)

As can be seen in (2.21), the denominator is equal for all classes and finding the maximum
posterior probability is equivalent to find the maximum gi(x). The values of µi and Σi

were computed from the training data with the sample mean and covariance matrix
expressions

µi = 1
Mi

Mi∑
m=1

xm (2.22)

Σi = 1
Mi − 1

Mi∑
m=1

(xm − µi)·(xm − µi)T (2.23)

beingMi the number of examples (xm) of the i-th class. The values for the prior probabil-
ities P (ωi) were considered the same for all classes. In the case that the covariance matrix
Σ is considered to be the same for all classes (Σi = Σj = Σ,∀i 6= j), the quadratic dis-
criminant classifier (QDC) becomes linear in x leading to the linear discriminant classifier
(LDC)

g,i(x) = µT
i Σ−1x− 1

2µ
T
i Σ−1µi + log(P (ωi)), (2.24)

where Σ can be estimated as the weighted sample covariance

Σ = 1∑C
i=1 wi

C∑
i=1

wi
∑Mi
m=1(xm − µi) · (xm − µi)T

Mi

, (2.25)

being C the total amount of classes and wi the class-weighting coefficients. This class-
weighting possibility is of much interest due to the heavy imbalance of the class-sizes
inherent to this application, where the normal class is in general one order of magnitude
(at least) more represented than other classes. We refer as LDC to the linear classifier
where wi = wj, ∀i 6= j, any other weight scheme will be referred as compensated linear
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classifier (LDC-C). The weights used in the following chapters were wS = 10; wV=10 and
wN = 1. In this thesis, all classification tasks were performed using and modifying the
PRtools toolbox [Duin et al., 2008] for Matlab (The Mathworks Inc., MA).

For the classifiers described above, the procedure of estimating the parameters µi, Σi

or Σ is known as training. Then the process of using these parameters in equations (2.20)
or (2.24) for every unseen or unlabeled feature vector x, is known as testing. The results
of equations (2.20) and (2.24) are related to a posteriori probabilities, and as said above,
the classification rule assign the class i which results in the maximum gi(x).

In Figure 2.12 the discriminant functions for three classifiers trained in the same data
are shown. In the top panels, the difference between the LDC and LDC-C is shown. For
the LDC-C the two less-represented classes (S and V classes) has wi = 10. Note the
different orientation of the covariance matrices, represented as ellipses, estimated in both
cases. In the lower panels the QDC is shown with equal priors and with a prior weights
scheme similar to the LDC-C explained before, the two less-represented classes (S and V
classes) has P (ωS,V ) = 10·P (ωN). Note in this last case how the red area decrease as
the normal class is less probable a priori.

2.4.3 Domain Handling for some Features

As the features to include in our model belong to diverse domains, like R, R+and S2

(angular or directional domain) we have to transform or deal with them in order to perform
classification tasks. In our case, we assume that each feature is normally distributed and
therefore valid in the R domain. According to this, all rhythm and morphological features
defined in R+ are first being transformed to the R domain by a (natural) logarithm
operation. In contrast, circular (or S2) features require an special treatment that will be
briefly described, the interested reader is referred to [Bahlmann, 2006] for details. First
considering the directional feature ϑ as the argument of a complex number of unitary
module ejϑ (being j2 = −1), the expectation of this modified feature defines the mean
direction and directional variance [Bahlmann, 2006], counterparts of the regular mean
and variance.

E[ejϑ] = ρϑe
jµc

ϑ (2.26)

µcϑ = arg(E[ejϑ]) (2.27)

V c
ϑ = 1−

∥∥∥E[ejϑ]
∥∥∥ = 1− ρϑ (2.28)

Where ρϑ is also known as the resultant length. Then for a multivariate model, where
F is the set of indexes of the directional features, the maximum likelihood estimates are
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Figure 2.12: The three classifiers, and their discriminant functions, for a three imbalanced-
classes problem. Note the different regions caused by the classifiers trained over the same
data. The imbalance is evidenced in the difference between the LDC and the LDC-C. See
in the lower panels the effect of the class priors.
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(µ̂x)f =


1
M

∑M
m=1 xf (m) if f /∈ F

arg
(

1
M

∑M
m=1 e

(jxf (m))
)

else
(2.29)

Σ̂x = 1
M − 1

M∑
m=1

x′(m).x′(m)T (2.30)

being

x′(m) =
[
x
′

1(m) . . . x′F (m)
]T

(2.31)

x
′

f (m) =
 xf (m)− (µ̂x)f if f /∈ F

(xf (m)− (µ̂x)f )mod 2π else
(2.32)

As it can be noted from equation (2.29), Σ̂x can be easily calculated from the direc-
tional mean (µ̂x)f and the raw data. Some examples illustrate the use of the equations
described in the last two subsections. For this purpose we will use two Gaussian bivariate
datasets, both with 2 classes which can be easily separated by a linear function. The first
dataset has its two features directionals, and will be referred as the wrapped dataset. We
will talk about the other dataset later in this subsection. The wrapped dataset is shown
in Figure 2.13 and has the following design parameters:

µ1 =
(
−3

5π
3
5π

)

µ2 =
(

3
5π −3

5π
)

Σ1 = Σ2 =
 −2

3π 2
2 −2

3π


This is a simple 2-class example, very illustrative of two features that linearly sep-

arates the classes, but not alone in their own. The typical example of good (in a class
separation sense) correlation between features. In the top panel the dataset is plotted as if
both features were linear, but showing a dashed box evidencing where the data should be
confined in case of directional features. Also the underlying linear distribution is showed
by equiprobabilistic contours. In the lower panel, the same dataset is showed, but con-
sidering both features as directional. Note that in this case the tails of the Gaussian that
fall outside the domain of the feature, in this case(−π : π], are translated ±2π to fall into
the directional domain again. The resulting distribution, from a linear point of view, is
clearly not Gaussian in the wrapped space, as it can be seen by the two evident modes
present for both classes.



58 CHAPTER 2. MATERIALS AND METHODS

Feature 1

F
ea

tu
re

 2

Original dataset A

0

Þ

Þ

2
-

Þ

2

Þ-

0 ÞÞ

2
- Þ

2
Þ-

Feature 1
F
ea

tu
re

 2

Observed Dataset A (wrapped)

0

Þ

Þ

2
-

Þ

2

Þ-

0 ÞÞ

2
- Þ

2
Þ-

Figure 2.13: Example of wrapped dataset A showing the original dataset before and after
considering feature 1 and 2 as directional in the (−π : π], domain.

The other dataset has the first feature directional, and the second linear, and is defined
as the semi-wrapped or mixed dataset. This dataset has also two classes with the following
parameters:

µ1 =
(
−3

5π 0
)

µ2 =
(

3
5π 0

)

Σ1 = Σ2 =
 −2

3π 2
2 −2

3π


The same observations described above are valid on the first feature, as can be seen

in Figure 2.14.
At this point should be clear that the equations (2.22) and (2.23) are not valid in

the context of directional features. Finally in Figures 2.15 and 2.16, equations (2.29)
and (2.29) are used with our example datasets to evidence the parameterization results
considering both features directionals (directional model), one directional and the other
linear (semi-wrapped or mixed) and both linear features (linear model).

2.4.4 Outlier Removal

The classification performance proposed strongly depends on the parameter estimation
of the multidimensional Gaussians in the training datasets. The parameter estimation
(or training) process can be disrupted mainly by the lack of Gaussianity of the data,
and in second degree by the presence of outliers. The presence of outliers in the training
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Figure 2.14: Example of semi-wrapped dataset A showing the original dataset before and
after considering feature 1 as directional in the (−π : π], domain.

data can be addressed by the removal of these atypical examples prior to the parameter
estimation process. In this work the outliers removal is performed by the algorithm
suggested in [Filzmoser et al., 2008], which is a projection pursuit method based on the
robust estimation of the translation, scale and kurtosis of the distribution. The translation
is estimated by the median, defined for K dimensional data as

med
i

xi = arg min
µ∈RK

N∑
i=1
‖xi − µ‖ (2.33)

while the scale is estimated by the median absolute deviation (MAD) calculated as

MAD(X) = 1.4826 ·med
j

∣∣∣∣xj −med
i

xi
∣∣∣∣ (2.34)

finally the kurtosis estimation is performed with the expression

KUR(X) =
∣∣∣∣∣∣ 1
N

N∑
j=1

(xj −medi xi)
MAD(X)4

4

− 3
∣∣∣∣∣∣ . (2.35)

The presence of a small number of outliers will make the tails of a distribution heav-
ier, increasing the kurtosis coefficient; while a large number of outliers give raise to other
modes in the distribution, decreasing the kurtosis coefficient. In a first phase, the algo-
rithm search for outliers in the directions where the kurtosis of the data is large or small
to find location outliers. Then, in a second phase, the directions of large variance are
explored to address scatter outliers. For both phases each example in the distribution
gets one weight, which are finally combined in a final decision weight. Based on the final
weight, the data is sorted and the 5% of the most outlying examples are discarded as
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Figure 2.15: In the top panels, wrapped dataset using the approximated wrapped Gaussian
distribution and the linear Gaussian distribution respectively. In the bottom panels the
decision region for both classes and both distributions is showed. Region filled with
red color is for Class 1, corresponding to the blue crosses. Note the huge difference on
classification performance.
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Figure 2.16: In the top panels, semi-wrapped dataset using the approximated wrapped
Gaussian distribution and the linear Gaussian distribution respectively. In the bottom
panels the decision region for both classes and both distributions is showed. Region filled
with red color is for Class 1, corresponding to the blue crosses. Note the huge difference
on classification performance.
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Figure 2.17: Example of the outliers removal when estimating the parameters for both
types of classifiers used. In both examples the features used are RR[i − 1] and RR[i].
Note the different shape of the classification regions as a consequence of the the outliers
removal in the lower panels.

outliers. With this assumption of slightly contaminated data, we set an operating point
for the trade-off between discarding useful data and allowing the presence of outliers in
the parameter estimation process. In Figure 2.17 the use of the algorithm for outliers
removal is evidenced in the classification regions, as can be further seen for the QDC
classifier.

2.4.5 Performance evaluation

We use three approaches to evaluate the performance of a classification experiment. The
first consists in estimating the parameters of the classifier in a training dataset, then
with these parameters, evaluate their predictive performance in a disjoint test dataset.
The data division should be performed by subject, which means that feature-vectors (or
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Figure 2.18: Scheme showing the three data division methods used.

heartbeats) of the same subject can not be included in both the training and testing sets.
In [de Chazal et al., 2004] it was shown that the heartbeat oriented data division leads to
an optimistic bias in the performance estimation calculated in the test dataset.

The second approach used is known as cross-validation, and is adopted when there are
not many examples to build the train and test datasets. It consists in dividing a dataset
into k disjoint folds (we used 10 folds), and use them as test sets, obtaining therefore k
performance measures, one for each fold. The division is again performed by patients, to
avoid the presence of heartbeats of the same patient in both training and test datasets.
Note that each cross-validation fold implies training in k−1/k of the database patients, and
testing in the remaining 1/k. The resulting performance is the mean of the k performances.

In the last approach, although training and testing in the same dataset leads to an
optimistically biased performance estimation, this measure could be useful to have an idea
of how good can perform a given classifier in the most favorable situation. This optimisti-
cally biased performance serves as an upper bound, and represents the performance of the
classifier if the probability distributions of examples in both training and test datasets
were identical. In Figure 2.18 a scheme shows the data division methods used.

Now we focus in how the performance is evaluated for any of the approaches described
above. According to Section 4.3 of [AAMI-EC57, 1998–2008], the end product of a beat-
by-beat comparison between the algorithm and reference labels is a matrix in which each
element is a count of the number of beat label pairs of the appropriate type:
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Moreover, from Subsection 2.4.2, we showed that the outcome of the LDC, LDC-C or
QDC classifiers (eq. 2.20 and 2.24), were the posterior probabilities of the classes for each
of the heartbeats presented to a trained classifier (see also Figure 2.18). As said before, for
each heartbeat the classification rule selects the class with greater posterior. Therefore,
given the ground truth or true classes for each example, the number of possible outcomes
for a multiclass classification problem are C × C. The amount of events for each of the
possible outcomes are represented in a square matrix of dimension C, known as confusion
matrix. This is the same matrix with AAMI classes, but for any multiclass problem.

Estimated classes
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1
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i
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C



nT11 . . . nF1i . . . nF1C
... . . . ...
nFi1 . . . nTii . . . nFiC
... ... . . .
nFC1 . . . nFCi . . . nTCC



N1
...
Ni

...
NC

P1 . . . Pi . . . PC NT .

For the i-th class nTii is the number of correctly classified examples and nFij is the
number of examples of class i classified as class j; Ni is the total number of examples for
class i, Pi is the number of examples classified as class i and NT is the total number of
examples in the dataset.

Ni = nTii +
∑
m6=i

nFim

Pi = nTii +
∑
m 6=i

nFmi

NT =
C∑
i=1

Ni =
C∑
i=1

Pi

The performance is calculated from this matrix, for each class, in terms of the class
sensitivity (Si) and class positive predictive value (P+

i )

Si = nTii
Ni

(2.36)
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P+
i = nTii

Pi
, (2.37)

or globally, with the global accuracy (A), sensitivity (S) and positive predictive value
(P+)

A = 1
NT

C∑
i=1

nTii =
C∑
i=1

Ni

NT

Si (2.38)

S = 1
C

C∑
i=1

Si (2.39)

P+ = 1
C

C∑
i=1

P+
i (2.40)

as suggested in [AAMI-EC57, 1998–2008]. From these equations it is clear that any
imbalance in the class representation affects P+, P+

i and A calculation, but not S and
Si. Although the AAMI recommendation does not suggest any measure to deal with the
strong class size imbalance (see Table 2.3), we considered weighting the classes previous to
the calculation of P+

i and A in order not to neglect the performance of the less represented
classes. The balancing approach used in this work consists in multiplying each row of the
confusion matrix by a constant such that the sum of each row Ni is equal for all classes,
or Ni = Nj,∀i 6= j . This is equivalent to repeat examples of the less represented classes,
in order to balance the class presence.

2.4.6 Model Selection and Dimensionality Reduction

The amount of features included in a classification model should be limited, mainly,
because the training set is rarely able to fully describe the class distributions. Then, one of
the greatest challenges during the training of a classifier is to avoid overfitting. Overfitting
happens when the trained classifier is adapted in excess to the training examples. It is
somehow the opposite of generalization in classification. In section 2.4.2 we presented
our first strategy to limit the complexity of our classifier, by using linear or quadratic
discriminant functions. In this section we present our approach to control the complexity
of the features model. It is well known that low dimensional models generalize better to
examples not presented during the training phase, resulting in a more robust and realistic
classifier. There are two approaches typically used to achieve this, feature transformation
(FT) or feature selection (FS). As can be anticipated, both have pros and cons. FT can
be defined as a mapping

y = W(z) (2.41)

of the input space of dimension N into another of dimension D, given that D � N .
One of the advantages of FT is that take into account all the features in the input
space, which can also be thought as a disadvantage in case that some features are useless
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for classification. There are many criteria to the design of the mapping function W ,
which imposes assumptions over the data [van der Heijden et al., 2005]. The same design
requirements in term of training data, overfitting and generalization should be taken
into account for the correct development of W . This means that the design of W is as
important as the training process itself.

On the other hand, the wrapper approach consists in reducing the feature space by
selecting the D most important features given a criterion function J(·). We can comment
similar pros and cons of FT for FS. However, a property of FS is that the feature model
selected is tailored for a specific classifier. If the classifier changes, there is no guarantee
that the same feature model maximizes the criterion J(·). In general, the FS problem
consists in evaluating J(·) across several feature models. The exhaustive and optimal
evaluation across all model combinations requires N ! evaluations, which is unfeasible even
for moderate N. However, many algorithms exist to overcome this, obtaining a suboptimal
model. In this thesis a sequential floating feature selection algorithm (SFFS) was used
[Pudil et al., 1994] to obtain the smallest and best performing model.

The SFFS algorithm can be briefly explained as the combination of two simpler steps, a
sequential forward selection (SFS) algorithm followed by a sequential backwards selection
(SBS) algorithm. Following Figure 2.19, the SFFS iterates for all model sizes, starting
from a model of one feature, and registering all the best performances found for each
model size. Each iteration starts with an SFS step, and from a model size greater than
two features after each SFS step, an SBS step is repeated until the performance of the
model found is not greater than the registered for this smaller model size. This way the
algorithms goes forward and backwards (like floating) searching at each step for the path
of maximum performance. The algorithm ends when the specified greater model size is
reached. The result of the algorithm is the model found with maximum performance.
The interested reader is referred to [Pudil et al., 1994] for a detailed description and to
[Duin et al., 2008] for an implementation of the SFFS algorithm. Two examples of the
results obtained from this algorithm are shown in Figure 3.2.

The performance metrics used by the FS algorithm were a weighted class Se and PP,
calculated as

JS =
∑C
i=1 πi.Si∑C
i=1 πi

(2.42)

JP+ =
∑C
i=1 πi.P

+
i∑C

i=1 πi
(2.43)

with C classes and being Si and P+
i the class sensitivities and positive predictive defined

in the previous subsection. The class weights πi allows the possibility of directing the
search to specific class performances, specially in the case of the P+ which is directly
influenced by the class size unbalance. Then, as a result of using the JS criterion, the
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Figure 2.19: Flow diagram of the sequential floating feature selection (SFFS) algorithm
used for the feature selection among d features.

SFFS is likely to find sensitive feature models, in the other hand, the JP+criterion will
yield specific feature models.
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Chapter 3

Automatic ECG Heartbeat
Classification

3.1 Introduction

In this chapter we describe the development of a simple heartbeat classifier, based on the
methodologies described in the previous chapter, that will be enhanced in the following
chapters. In section 1.3 we described other approaches published by other groups, but in
our opinion the work of de Chazal et al. [de Chazal et al., 2004] is the most representative
of the state of the art, and will be used as a reference. The main novelties with respect
to [de Chazal et al., 2004] are: 1) the morphological features used are based on the
wavelet transform (Section 2.4.1), 2) the use of a feature selection algorithm to select
those features with generalization capability (Section 2.4.6) and finally 3) the evaluation
of the generalization of the classifier outside the MITBIH Arrhythmia database (MITBIH-
AR). The results of this chapter were published in [Llamedo and Martínez, 2011a].

In summary, the objective pursued in this chapter is to develop and evaluate a heart-
beat classification algorithm according to the following conditions:

• Perform automatic ECG classification.

• Follow AAMI [AAMI-EC57, 1998–2008] recommendations for class labeling and
results presentation.

• Use a simple classifier (as linear or quadratic discriminant functions) to ensure that
the classification performance is due to the features selected.

• The features used should have a physiological interpretation, being simple to com-
pute and robust to the typical kind of noise present in the ECG.

• Preference for features that can be used for ECG delineation, as those from the
discrete wavelet transform (DWT), since the heartbeat classifier is intended to be
used after a DWT based ECG delineator [Martínez et al., 2004].

69
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Table 3.1: Class distribution of the databases used and division of the MITBIH-AR
database into training (DS1) and testing (DS2) sets. Recordings with paced beats were
excluded.

MITBIH-AR
Dataset Purpose N S V F Q #Rec
DS1 train 45784 940 3783 413 8 22
DS2 test 44188 1835 3218 388 7 22
Totals 89972 2775 7001 801 15 44
Heartbeat classes are N: normal, S: supraventricular, V: ventricular and F: fusion

Dataset MITBIH-AR recordings
DS1 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201,

203, 205, 207, 208, 209, 215, 220, 223, 230
DS2 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213,

214, 219, 221, 222, 228, 231, 232, 233, 234

Other Databases
Database Purpose N S V F Q #Rec

MITBIH-SUP validation 161902 12083 9897 193 78 78
INCART test 153517 1958 19991 219 5 75

Heartbeat classes are N: normal, S: supraventricular, V: ventricular and F: fusion

• Use a multidatabase validation approach for feature selection to ensure better gen-
eralization properties of the selected feature set.

3.2 Methodology

3.2.1 ECG Databases

In this chapter we used the well-known MITBIH-AR [Moody and Mark, 2001] for training
and testing purposes. Additionally, the MITBIH Supraventricular Arrhythmia database
(MITBIH-SUP) [Mark et al., 1990] and the St. Petersburg Institute of Cardiological
Technics (INCART) database were used for evaluation and testing purposes, in order to
assess the generalization achieved by the classification models developed in the MITBIH-
AR. All databases are freely available on Physionet [Goldberger et al., 2000] and their
details were summarized in Table 3.1 and Section 2.1.

3.2.2 ECG preprocessing

The ECG recordings of the MITBIH-SUP and INCART databases were first resampled
to 360 Hz, which is the sampling frequency of the MITBIH-AR. This was performed with
a tenth order lowpass FIR filter without observing any notorious distortion (resample
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function, Signal Processing Toolbox of Matlab, The Mathworks Inc., MA). All recordings
in all databases were first preprocessed to remove artifacts as described in [de Chazal
et al., 2004] and Section 2.3.1. No energy or amplitude normalization was done, as we
were interested in some amplitude-related features to describe morphology.

As our objective is the evaluation of a heartbeat classifier, the QRS location is assumed
to be known and we use the annotations included in the databases. Following the QRS
complex detection positions, the delineation of each heartbeat was performed with the
delineator described in [Martínez et al., 2004]. The result of delineation as well as the
discrete wavelet transform (DWT) of the ECG signals (which are intermediate signals
for the delineator) were used to calculate most of the features used in the following
subsections.

3.2.3 Features and Classifiers

Following the conclusions of previous works [Hu et al., 1997, de Chazal et al., 2004], we
included in our model both rhythm and morphological features. As rhythm features we
used features from the RR interval sequence, including local and global estimations of
the heart-rate and its variations. Remember that the RR interval is the distance between
two consecutive heartbeats. Regarding to the morphologic features, we included several
types depending where the features were calculated. In general, these features intended
to model the waveforms of the ECG in several domains. In total we used 39 features for
the experiments of feature selection. The details of the features used can be found in
Section 2.4.1.

Since some of the features belong to different domains, a special treatment must be
taken for these features. The methods described in Section 2.4.3 were used for features
representing angles, and a natural logarithm transformation for those features that belong
to R+, as intervals. This is shown in Table 3.4.

It is well known that low dimensional models generalize better to examples not pre-
sented during the training phase, resulting in a more robust and realistic classifier [van der
Heijden et al., 2005]. Other problems of high dimensional feature models are the increased
risk of overfitting to the training dataset, and the higher computational cost. The over-
fitting appears when there are not enough training examples to estimate the classifier
parameters. The higher computational cost is the result of calculating more features to
perform the same classification task. In order to obtain a small and well performing model,
a sequential floating feature selection algorithm (SFFS) was used [Pudil et al., 1994] (Sec-
tion 2.4.6). This feature was repeated for the three classifiers described in Section 2.4.2,
the linear discriminant classifier (LDC), the LDC with class compensation (LDC-C) and
the quadratic discriminant classifier (QDC).



72 CHAPTER 3. AUTOMATIC ECG HEARTBEAT CLASSIFICATION

3.2.4 Experiment Setup

The experiment can be described as a sequence of three steps:
1) In the first step we search for the best performing model, from the 60 available

features, in the training (DS1 of MITBIH-AR) and validation (MITBIH-SUP) sets (Fig.
3.1a). For each iteration of the SFFS algorithm, the current model was trained in DS1 of
MITBIH-AR and its performance was evaluated in the MITBIH-SUP database. As the
data divisions in both databases do not share any recording, the features selected should
retain the generalization properties. Several parameter configurations were studied for
the SFFS algorithm, like the effect of the type of classifier (LDC, LDC-C and QDC) and
the optimization criterion (JS or JP+) for the search. The weight compensation used in
the experiments for the LDC classifier is wN = 1, wS = 10 and wV = 10. The same
weights were also studied for the JP+ and JS criterion, πN = 1, πS = 10 and πV = 10.
At the end of this step we have an optimal feature set for each parameter configuration.
In Figure 3.2 the evolution of the SFFS algorithm for a particular set of parameters is
shown.

2) The second step (Fig. 3.1b) is the selection of the best performing model, among
the best models obtained in the previous step for each parameter configurations. For
that purpose, we compare the global results (A, S, P+) obtained in the union set of DS1
of MITBIH-AR dataset and the MITBIH-SUP database, using a recording-based k-fold
cross validation with k = 10 recordings.

3) Finally the performance of the selected model is evaluated in DS2 for comparison
with [de Chazal et al., 2004], as shown in Fig. 3.1c. Additionally the performance in the
INCART database is compared to that obtained in DS2 to assess how the model behaves
in completely different databases.

The results presented in this chapter are compared to the classifier developed in
[de Chazal et al., 2004] (reference classifier in the rest of this chapter), being this, to our
knowledge, the best performing fully automatic multiclass classifier (AAMI compliant)
reviewed in the literature. In order to perform a fair comparison, some methodologi-
cal aspects were maintained as similar as possible. The implementation of the classifier
suggested in [de Chazal et al., 2004] was contrasted with the reported results obtaining
comparable results. With this implementation, we could evaluate the generalization ca-
pability of the reference classifier in the MITBIH-SUP database, since this experiment
was not performed in [de Chazal et al., 2004]. In those situations where the experiments
were already performed in [de Chazal et al., 2004], the reported results were used.

All experiments described in this chapter will focus to achieve automatic classification
between the three AAMI2 classes (N, S and V’), since the fusion class is poorly represented
in the databases used. The restrictions imposed by the recording-oriented division of the
data, and the fact that only a few recordings concentrate the majority of the examples of
the fusion heartbeats, makes unfeasible to perform the feature selection using the original



3.3. RESULTS 73

DS1 
MIT-BIH-AR

Feature selection algorithm (SFFS)

Model
Selected

Criterion

Maximization

Final
Results

MIT-BIH-SUP

Train

Final Model

Selection

DS1 MIT-BIH-AR
+

MIT-BIH-SUP

Final performance evaluation

Configuration 1
Parameters:

  Classifier

  Maximization criterion

Validate

Model 1

Model selection 

Configuration M
Model M

Model 1

Model M
DS2

MIT-BIH-AR

INCART

a)

b) c)

Figure 3.1: Block diagram describing the experiments performed in this chapter. In
panel a) the feature selection algorithm is summarized, indicating the train and vali-
dation dataset division, as well as the different parameters of the algorithm. In panel
b) is shown the methodology to obtain the best performing model among the different
searches performed. Finally in panel c), the best performing model is selected for the final
performance evaluation in the test datasets.

AAMI labeling. Despite this limitation for the model selection, the model obtained for the
three AAMI2 classes was also retrained and evaluated classifying the four AAMI classes
to show its utility.

3.3 Results

The main results for the experiments described in the previous section are summarized in
tables 3.2 and 3.3. Table 3.2 shows the results of the best models obtained for the different
parameter configurations during the model selection. The best performing of these models
was an 8 feature model trained in the DS1 of the MITBIH-AR. The 8 features that the
model comprehends are listed in Table 3.4. The classifier used was an LDC-C, using equal
prior probabilities P (ωi). The optimization criterion used in the SFFS was JP+ with equal
weights πi.

In Figure 3.2 one of the feature selections performed, and the floating evolution of the
search algorithm are shown. In this example, the best model is found at the beginning.
It can be seen in Table 3.2 that most of the best performing models only included around
10 features.

The performance of the selected model in the test set (DS2) is compared with the
reported by de Chazal et al. [de Chazal et al., 2004] in Table 3.3. The model found
in this chapter achieves better performance for the three classes. Table 3.7 presents the
performance by recording in the test set, following the recommendations of the AAMI
[AAMI-EC57, 1998–2008] for results presentation.
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Table 3.2: Summary of the best performing models found with the SFFS algorithm sep-
arating all AAMI2 classes.

Model Evaluation
Opt. Normal Suprav. Ventr. Total

Classifier Crit. # Features S P+ S P+ S P+ A S P+

LDC-C JP+ 8 93 98 78 40 68 70 91 80 70
LDC JP+ 10 92 98 57 38 77 50 89 75 62
QDC JP+ 7 80 98 7 12 89 22 77 59 44
LDC-C JS 10 90 98 77 33 68 74 88 79 68
LDC JS 10 92 98 74 37 70 67 89 78 67
QDC JS 9 87 98 43 32 80 33 84 70 55

[de Chazal et al., 2004] 48 87 98 57 30 63 36 84 69 55
In the left the parameters used for the SFFS to find the model, and in the right the
performance estimated for the dataset composed by DS1 of the MITBIH-AR and the whole
MITBIH-SUP database (with cross-validation of k=10 recordings). The best performing model
(in bold) is selected for the final performance evaluation. The results are expressed in
percentages.

The performance of the selected model with the four AAMI classes (N, S, V, F) is
reported in Table 3.5. The model found achieves a performance slightly lower than the
reference, but it must be noted that the selected model was optimized for the three AAMI2
classes (N, S, V’).

Finally the performance of the model found in the INCART database is presented in
Table 3.6. The performance obtained in this database is comparable with that obtained
in DS2 for all classes.

3.4 Discussion and Conclusions

In this chapter we have presented a methodology to develop a simple and robust heartbeat
classification system. We evaluated it focusing in the generalization capability. In order
to do this, we take into consideration the MITBIH-SUP [Mark et al., 1990] and the
INCART databases in addition to the widely-used MITBIH-AR, all freely available in
Physionet [Goldberger et al., 2000]. Although these databases are bigger than the original
MITBIH-AR, the fusion class defined in the AAMI standard [AAMI-EC57, 1998–2008]
is not so well represented as the other classes. This limitation is overcome by adopting
the alternative labeling AAMI2 proposed in this chapter. The AAMI2 labeling make
sense from a physiological point of view, since the AAMI fusion class comprehends those
heartbeats which results from the simultaneous occurrence of normal and ventricular
heartbeats.

From the results obtained for the model selection presented in Table 3.2, several models
that outperform the reference classifier [de Chazal et al., 2004] were achieved. The best
model found consists of 8 features: ln(RR[i]), ln(RR[i + 1]), ln(RR1), ln(RR20), kxZ , k

y
Z ,
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Table 3.3: Performance comparison between the model selected in Table 3.2 and the refer-
ence classifier [de Chazal et al., 2004] separating all AAMI2 classes inDS2 of MITBIH-AR.

Tr
ut
h

[de Chazal et al., 2004]
Algorithm

n s v’ Total
N 40718 1863 1677 44258
S 307 1361 169 1837
V’ 235 845 2529 3609

Total 41260 4069 4375 49704

Tr
ut
h

Model selected in Table 3.2
Algorithm

n s v’ Total
N 41950 2002 236 44188
S 216 1422 197 1835
V’ 473 222 2911 3606

Total 42639 3646 3344 49629

Performance Normal Suprav. Ventr. Total
calculation mode Classifier Automatic # Features S P+ S P+ S P+ A S P+

Imbalanced
1 yes 8 95 98 77 39 81 87 93 84 75
2 yes 48 92 99 74 33 70 58 90 79 63
3 no 48 94 99 88 47 95 82 94 92 76

Balanced 1 yes 8 95 79 77 88 81 88 84 84 85
2 yes 48 92 80 74 73 70 84 79 79 79

1: [Llamedo and Martínez, 2011a] 2: [de Chazal et al., 2004] 3: [de Chazal and Reilly, 2006]

Both models were trained in DS1 of the same database. First the confusion matrices for
both models are shown, and below the class and total performances are summarized. The
performances are expressed in percentages for both, balanced and imbalanced class
presence in the dataset.

Table 3.4: Features used in the model selected in Table 3.2 for the final performance
evaluation.

Feature Description
ln(RR[i]) Current RR interval1

ln(RR[i+ 1]) Next RR interval1
ln(RR1) Average RR interval in the last minute1

ln(RR20) Average RR interval in the last 20 minutes1

kxZ Zero-cross position of the WT autocorrelation signal in lead 12

kyZ Zero-cross position of the WT autocorrelation signal in lead 22

kxM Maximum position of the WT autocorrelation signal in lead 12

kyM Maximum position of the WT autocorrelation signal in lead 22

1 See Figure 2.6 2 See Figure 2.10
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Table 3.5: Performance comparison between the model selected in Table 3.2 and the
reference classifier [de Chazal et al., 2004] separating all AAMI classes inDS2 of MITBIH-
AR.

Tr
ut
h

de Chazal et al. [de Chazal et al., 2004]
Algorithm

f n s v Total
F 347 33 1 7 388
N 3509 38444 1904 303 44160
S 16 173 1395 252 1836
V 176 117 321 2504 3118

Total 4048 38767 3621 3066 49502

Tr
ut
h

Model selected in Table 3.2
Algorithm

f n s v Total
F 370 11 2 5 388
N 8031 34270 1807 80 44188
S 28 124 1403 280 1835
V 321 46 182 2669 3218

Total 8750 34451 3394 3034 49629

Performance Fusion Normal Suprav. Ventr. Total
calculation mode Classifier S P+ S P+ S P+ S P+ A S P+

Imbalanced 1 95 4 78 99 76 41 83 88 78 83 58
2 89 9 87 99 75 39 80 81 86 83 57

Balanced 1 95 76 78 88 76 88 83 83 83 83 84
2 89 86 87 80 76 84 80 83 83 83 83

1: [Llamedo and Martínez, 2011a] 2: [de Chazal et al., 2004]

Both models were trained in DS1 of the same database. First the confusion matrices for
both models are shown, and below the classes and total performances are summarized.
The performances are expressed in percentages for both, balanced and imbalanced class
presence in the dataset.
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Table 3.6: Confusion matrix as a result of separating all AAMI2 classes in the INCART
database.

Tr
ut
h

Algorithm
n s v’ Total

N 140983 10576 1958 153517
S 84 1660 214 1958
V’ 644 3007 16559 20210

Total 141711 15243 18731 175685

Performance Normal Suprav. Ventr. Total
calculation mode Dataset S P+ S P+ S P+ A S P+

Imbalanced DS2 MITBIH-AR 95 98 77 39 81 87 93 84 75
INCART 92 99 85 11 82 88 91 86 66

Balanced DS2 MITBIH-AR 95 79 77 88 81 88 84 84 85
INCART 92 92 85 80 82 87 86 86 86

By recording DS2 MITBIH-AR 95 83 61 73 75 86 94 80 82
INCART 93 90 64 66 71 86 91 79 85

The model used is the selected from Table 3.2, trained in DS1 of the MITBIH-AR
database. The performances are expressed in percentages, and grouped by performance
calculation mode for easy comparison with the results obtained from DS2 of MITBIH-AR
(Table 3.3).

kxM and kyM ; which are described in Table 3.4. As it can be noted, the selected features are
computed without exception from time interval measurements. This could be explained
given that the used databases do not always include the same pair of ECG leads in each
recording. Therefore the classification performances of features which are calculated from
amplitudes are heavily degraded. The directional features (like the V CGφ) were also
probably affected by this fact, even if the clinical importance of this kind of features
is well-known by cardiologists [Taylor, 2002]. In contrast, intervals seem to retain the
classification ability with independence of the pair of leads chosen. The first four features
in the model are clearly connected to the evolution of heart rhythm, while the other four
can be understood as surrogate measurements of the QRS width, and therefore the QRS
morphology. As a result, the model found has the evident advantage of a lower size, which
results in a computational saving and lower error in the parameter estimation during the
training phase. In addition, it only relies on the QRS fiducial point detection, making the
classifier model robust to degraded signals where the delineation of the ECG waves is not
reliable.

It is worth noting that the performance achieved by the reference classifier [de Chazal
et al., 2004] in the union of training and validation dataset (Table 3.2) is lower for all
classes than the obtained in the final performance reported in Table 3.3. The same phe-
nomenon happens with the suggested model in a smaller degree, with the exception of the
supraventricular performance. This phenomenon was also reported in [de Chazal et al.,
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2004], obtaining better performance in the test set than in the training set. These results
suggest that DS2 dataset may not be a good data sample to measure the actual perfor-
mance of a classifier. To avoid this bias in the actual performance, it may be convenient in
future works that the final performance estimation is computed applying other method-
ologies or redefining the test dataset. One reason that could be biasing the results in DS2
is the different amount of examples by recording for the supraventricular class. As can be
seen in Table 3.7, recordings 232 and 222 concentrate the majority of the examples for the
supraventricular class, which means that failing in these recordings impacts considerably
to the S class performance. For this reason, the average performances presented in Table
3.7 could also be of importance since each recording or subject is equally weighted in the
average.

The results presented in [de Chazal and Reilly, 2006], where the automatic classifier
of [de Chazal et al., 2004] is assisted by a local expert to improve its performance, are also
compared in Table 3.3. This suggests that a similar approach of combining the knowledge
of a local expert with our model, could also lead to a comparable improvement in the
baseline performance.

An additional assessment of the suggested model classifying the four AAMI (N, S,
V and F) classes is presented in Table 3.5. The results verify the validity of the model
achieving slightly lower performance than the results presented in [de Chazal et al., 2004].
It must be noted that the model presented in this work was optimized for the AAMI2
labeling (N, S and V’), and the classifier is mainly misclassifying normal heartbeats as
fusion, as shown in Table 3.5.

The results in Table 3.6 suggest that the selected features have good generalization
capability when evaluating the performance in heartbeats not considered during the de-
velopment phase, as the ones from the INCART database. The imbalanced performance
is comparable for all classes except the supraventricular where a decrease in the P+ oc-
curred. This could be explained by an increased class imbalance in the INCART database
which is about 75-to-1, while in MITBIH-AR is 22-to-1 approximately. This is confirmed
by the balanced results (equivalent to a class balance of 1-to-1) in the same table, where
the performance figures are very similar. The validity of the generalization capability of
the proposed model, is somehow restricted to the available data, and should be corrobo-
rated in future works by including new databases in the analysis or other methodologies.
Despite this limitation, the degree of generalization of the suggested model is expected to
be better than models obtained considering only the MITBIH-AR database.

One limitation of the presented approach is the Gaussian assumption of the data
imposed by the classifier, since many features were observed not to fulfill this requirement.
Despite this evident limitation, the linear decision regions in the feature space defined by
the LDC-C allowed us to select those features which inherently provide better classification
performance. Considering the proposed classifier and feature model as a reference for
future improvements, the effect of the lack of Gaussianity can be mitigated using more
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Table 3.7: Detailed results grouping by recording (or subject).

Number of beats Normal Supraventr. Ventricular Totals
Rec N S V’ S P+ S P+ S P+ A S P+

100 2235 33 1 100% 77% 70% 100% 100% 100% 100% 90% 92%
103 2079 2 0 99% 50% 0% 0% – – 99% 50% 25%
105 2524 0 41 97% 100% – – 51% 94% 96% 74% 97%
111 2120 0 1 99% 100% – – 100% 99% 99% 100% 100%
113 1785 6 0 99% 100% 100% 99% – – 99% 100% 100%
117 1531 1 0 100% 100% 100% 100% – – 100% 100% 100%
121 1858 1 1 99% 100% 100% 99% 100% 100% 99% 100% 100%
123 1512 0 3 100% 100% – – 0% 0% 100% 50% 50%
200 1733 30 826 96% 58% 27% 81% 92% 91% 94% 72% 77%
202 2059 55 20 67% 87% 93% 56% 50% 87% 68% 70% 77%
210 2419 22 205 94% 86% 91% 81% 69% 87% 92% 85% 85%
212 2745 0 0 100% 100% – – – – 100% 100% 100%
213 2637 28 582 100% 63% 46% 100% 44% 47% 89% 63% 70%
214 2000 0 257 97% 100% – – 94% 98% 97% 96% 99%
219 2080 7 65 86% 46% 0% 0% 82% 100% 86% 56% 49%
221 2029 0 396 93% 99% – – 99% 100% 94% 96% 100%
222 2271 208 0 72% 92% 89% 76% – – 73% 81% 84%
228 1685 3 362 100% 60% 33% 84% 93% 100% 99% 75% 81%
231 1565 1 2 98% 49% 0% 0% 50% 100% 97% 49% 50%
232 397 1381 0 100% 90% 78% 100% – – 83% 89% 95%
233 2227 7 841 100% 92% 71% 90% 83% 74% 95% 85% 85%
234 2697 50 3 100% 78% 72% 100% 100% 100% 99% 91% 93%

Average 44188 1835 3606 95% 83% 61% 73% 75% 86% 94% 80% 82%
Gross 95% 98% 77% 39% 81% 87% 93% 84% 75%

For the model selected in Table 3.2 separating all AAMI2 classes in DS2 of MITBIH-AR,
following AAMI recommended performance measures. Average statistics gives each
subject equal weight. Gross statistics weight each heartbeat equal.

complex classifiers, like ANN’s or mixture of Gaussians. These classifiers allow more
complex decision regions in the feature space, retaining details of the training data which
may improve the classification performance.

Despite the improved results presented in this work, there is still room for improvement
in the field since the S and P+ for the supraventricular class are of 77% and 39%, and
for the ventricular class (though better) are of 81% and 87%. These results suggest that
other features, classifiers or meta-classifier strategies (like local expert assistance) should
be developed in order to improve the performance, specially in the supraventricular class.

3.A Detailed Results

In this section we present the performances by recording that the AAMI EC57 standard
suggests for performance comparison.
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Table 3.8: Detailed results grouped by recordings in the INCART database

Number of beats Normal Supraventr. Ventricular Totals
Rec N S V S P+ S P+ S P+ A S P+

I01 2410 0 344 95% 100% – – 100% 95% 95% 98% 98%
I02 2442 0 229 94% 100% – – 44% 96% 90% 69% 98%
I03 2322 2 125 80% 61% 0% 0% 99% 59% 81% 60% 40%
I04 2267 16 138 64% 55% 56% 55% 62% 77% 64% 61% 62%
I05 1517 0 256 70% 74% – – 27% 48% 64% 49% 61%
I06 2434 48 9 100% 84% 81% 100% 100% 100% 99% 94% 95%
I07 2637 65 1 100% 94% 94% 100% 100% 100% 100% 98% 98%
I08 1775 2 350 94% 100% 100% 65% 53% 100% 87% 82% 88%
I09 2953 0 41 80% 97% – – 88% 100% 81% 84% 99%
I10 3596 0 83 95% 96% – – 96% 96% 95% 96% 96%
I11 2099 0 4 95% 100% – – 75% 100% 95% 85% 100%
I12 2797 1 8 76% 100% 100% 50% 25% 100% 76% 67% 83%
I13 1791 0 230 87% 100% – – 3% 100% 77% 45% 100%
I14 1799 0 64 94% 100% – – 0% 0% 91% 47% 50%
I15 2629 0 3 96% 100% – – 100% 100% 96% 98% 100%
I16 1518 0 2 100% 100% – – 0% 0% 100% 50% 50%
I17 1643 0 27 98% 100% – – 0% 0% 96% 49% 50%
I18 2660 0 422 76% 90% – – 89% 100% 77% 83% 95%
I19 1212 0 849 95% 100% – – 97% 100% 95% 96% 100%
I20 2358 179 111 86% 94% 99% 70% 67% 100% 86% 84% 88%
I21 2070 104 8 95% 98% 98% 77% 75% 100% 95% 89% 92%
I22 2814 124 186 76% 93% 98% 69% 76% 100% 77% 83% 87%
I23 2190 0 13 100% 100% – – 46% 100% 99% 73% 100%
I24 2562 0 6 99% 100% – – 83% 100% 99% 91% 100%
I25 1702 2 5 94% 100% 100% 49% 0% 0% 94% 65% 50%
I26 1496 7 4 99% 57% 100% 99% 25% 100% 99% 75% 85%
I27 1883 0 719 99% 100% – – 100% 100% 99% 100% 100%
I28 1710 0 4 96% 100% – – 50% 100% 96% 73% 100%
I29 1833 0 783 82% 100% – – 57% 99% 75% 70% 100%
I30 1703 0 755 95% 100% – – 51% 100% 82% 73% 100%
I31 1843 0 1363 92% 100% – – 79% 98% 86% 86% 99%
I32 1559 0 57 97% 100% – – 0% 0% 94% 49% 50%
I33 1244 589 1 98% 97% 87% 98% 100% 92% 95% 95% 96%
I34 1426 536 0 97% 97% 96% 97% – – 97% 97% 97%
I35 3198 0 475 72% 86% – – 79% 100% 73% 76% 93%
I36 3445 0 462 81% 86% – – 87% 99% 81% 84% 93%
I37 2007 0 452 98% 99% – – 99% 100% 98% 99% 100%
I38 2153 0 542 100% 99% – – 90% 100% 98% 95% 100%
I39 1459 0 313 100% 100% – – 96% 100% 99% 98% 100%
I40 2566 6 92 82% 83% 67% 95% 98% 75% 83% 82% 84%
I41 1622 5 1 99% 62% 40% 28% 0% 0% 99% 46% 30%
I42 1544 0 1561 94% 100% – – 85% 100% 90% 90% 100%
I43 1084 0 1121 98% 100% – – 94% 100% 96% 96% 100%
I44 1801 8 683 100% 89% 88% 99% 99% 100% 100% 96% 96%

continues on the next page
For the model selected in Table 3.2 separating all AAMI2 classes, following AAMI
recommended performance measures.
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concluded from previous page

Number of beats Normal Supraventr. Ventricular Totals
Rec N S V S P+ S P+ S P+ A S P+

I45 1434 0 491 99% 100% – – 99% 100% 99% 99% 100%
I46 2230 1 425 86% 97% 100% 87% 96% 100% 88% 94% 95%
I47 1857 1 92 93% 48% 0% 0% 47% 100% 91% 47% 49%
I48 2117 2 236 99% 100% 100% 99% 100% 100% 99% 100% 100%
I49 2117 0 27 89% 100% – – 100% 100% 89% 95% 100%
I50 2992 0 4 95% 100% – – 100% 100% 95% 98% 100%
I51 1968 3 802 73% 52% 33% 55% 100% 100% 81% 69% 69%
I52 1608 0 137 100% 100% – – 100% 100% 100% 100% 100%
I53 1149 0 1109 99% 100% – – 100% 100% 100% 100% 100%
I54 2338 1 22 95% 91% 0% 0% 77% 43% 94% 57% 45%
I55 2145 1 17 100% 100% 0% 0% 94% 48% 100% 65% 49%
I56 1669 26 7 97% 93% 31% 64% 86% 58% 96% 71% 72%
I57 2839 3 24 91% 69% 67% 89% 92% 100% 91% 83% 86%
I58 2310 0 12 99% 92% – – 75% 100% 99% 87% 96%
I59 2064 0 81 77% 100% – – 5% 99% 75% 41% 100%
I60 2472 0 0 87% 100% – – – – 87% 87% 100%
I61 1450 1 0 100% 100% 100% 100% – – 100% 100% 100%
I62 1451 9 807 96% 71% 67% 60% 43% 80% 77% 69% 70%
I63 1844 1 146 100% 74% 100% 86% 49% 100% 96% 83% 87%
I64 1883 0 26 100% 72% – – 31% 100% 99% 66% 86%
I65 2271 5 386 86% 59% 40% 61% 89% 100% 86% 72% 73%
I66 2136 1 200 95% 49% 0% 0% 56% 100% 92% 50% 50%
I67 2435 5 532 93% 54% 20% 73% 99% 100% 94% 71% 76%
I68 2479 2 161 100% 67% 50% 100% 100% 100% 100% 83% 89%
I69 1997 1 168 100% 99% 0% 0% 99% 50% 100% 66% 50%
I70 1537 126 0 100% 100% 1% 100% – – 92% 51% 100%
I71 1631 35 0 90% 97% 94% 91% – – 90% 92% 94%
I72 1872 8 386 99% 86% 88% 94% 92% 100% 98% 93% 93%
I73 1888 32 70 100% 96% 97% 72% 61% 100% 98% 86% 89%
I74 2079 0 322 100% 79% – – 73% 100% 96% 87% 90%
I75 1482 0 618 100% 95% – – 95% 100% 98% 98% 98%

Average 153517 1958 20210 93% 90% 64% 66% 71% 86% 91% 79% 85%
Gross 92% 99% 85% 11% 82% 88% 91% 86% 66%

For the model selected in Table 3.2 separating all AAMI2 classes, following AAMI
recommended performance measures. Average statistics gives each subject equal weight.
Gross statistics weight each heartbeat equal.



Chapter 4

Extensions to the Automatic
Classifier

4.1 Introduction

In this chapter we study two improvements to the original classifier developed in the
previous chapter. The first one allows the classification of recordings of an arbitrary
number of leads, while the second one explores the utility of more complex classifiers, as
neural networks.

4.2 Multilead classification

The room for improvement in the field of heartbeat classification, together with the avail-
ability of 3- and 12-lead Holter devices makes necessary the development of algorithms
capable of exploiting the increase of recorded information. Moreover, the St. Petersburg
Institute of Cardiological Technics 12-lead Arrhythmia Database (INCART) has become
recently freely available on Physionet [Goldberger et al., 2000], making possible the eval-
uation of multilead heartbeat classifiers in a comparable way.

The objective of this study is to find an effective way to include morphologic infor-
mation present in multilead ECG signals. For that purpose, we compare several multi-
lead classification strategies against the reference two-lead classifier that we developed in
[Llamedo and Martínez, 2011a]. We assess the improvement in classification performance
as well as the generalization capability to other databases not considered during the de-
velopment. The main novelty presented in this work is the generalization of the model
developed in [Llamedo and Martínez, 2011a] to an arbitrary number of leads.

4.2.1 Material and methods

In this study we used the well-known MITBIH Arrhythmia database (MITBIH-AR)
[Moody and Mark, 2001] and other public databases already described in Section 2.1.
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Table 4.1: Databases used in this work. Heart beats classes are N: normal, S: supraven-
tricular, V: ventricular, F: fusion, and Q: unknown.

Database N S V F Q #Rec
INCART 153651 1959 20005 219 6 75
Biosigna 286246 1326 2541 0 0 56

MITBIH-AR 90089 2779 7007 802 15 44
MITBIH-SUP 162271 12195 9940 23 79 78

Totals 692257 18259 39493 1044 100 253

All public databases are available on Physionet [Goldberger et al., 2000] and their de-
tails were summarized in Table 4.1. For all databases the AAMI recommendations for
class-labeling were adopted (Section 4.2 in [AAMI-EC57, 1998–2008]).

Additionally, we used a private database called Biosigna. This database was developed
at Biosigna GmbH, and consists of 56 recordings containing a broad set of pathologies.
Each recording is one hour length, sampled at 500 Hz with an amplitude resolution of
12-bit over a range of 10mV. The recordings were manually annotated by experienced
annotators. More detailed information about this database can be found in [Fischer
et al., 2008].

For the preprocessing of the ECG recordings, we used the same methodologies de-
scribed in Section 2.3.1 of the previous chapter.

We follow the results obtained in Chapter 3 where we developed a heartbeat classifier
with good generalization capability, using rhythm and morphological features together
with a linear classifier compensated for class-imbalance, called LDC-C. This classifier
has the possibility of weighting the class contribution to the covariance matrix (equation
(2.25)) during the training, to deal with the class imbalance seen in Table 4.1. The
equations of the LDC-C were described in Section 2.4.2.

The features obtained from the sequential floating feature selection (SFFS) in [Llamedo
and Martínez, 2011a] are shown in Table 4.2. As the rhythm features of the model do
not depend on the number of available leads, the first four features in Table 4.2 remain
the same. Therefore we will focus the analysis on those features describing heartbeat
morphology, which are the ones that can be improved by the addition of new leads.

The morphology features used in the model are the first zero-crossing (kLZ) and maxi-
mum position (kLM) of the autocorrelation sequence of the ECG DWT at scale 4 for each
lead L (see Section 2.4.1 for details). Both features were calculated in four sets of leads
to study the most suitable way of integrating the information from all leads:

1. The first strategy consists of just including kLZ and kLM from all available ECG leads
and is referred as 12L (or 3L when only 3 leads are available), resulting in two
morphology features per lead.

2. The second strategy computes kLZ and kLM from the three vectocardiogram (VCG)
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Table 4.2: Features used in the model obtained in [Llamedo and Martínez, 2011a] only
for two-lead recordings.

Feature Description
ln(RR[i]) Current RR interval1

ln(RR[i+ 1]) Next RR interval1
ln(RR1) Average RR interval in the last minute1

ln(RR20) Average RR interval in the last 20 minutes1

kxZ Zero-cross position of the WT autocorrelation signal in lead 12

kyZ Zero-cross position of the WT autocorrelation signal in lead 22

kxM Maximum position of the WT autocorrelation signal in lead 12

kyM Maximum position of the WT autocorrelation signal in lead 22

1 See Figure 2.6 2 See Figure 2.10

leads X, Y and Z, transformed from 12L by the Dower matrix. This strategy can
only be performed in 12-leads recordings.

3. In the third strategy, referred as ECG-PCA, we apply principal component analysis
(PCA) to the available ECG leads, then the morphology features are computed from
the two most important components.

4. Finally for the fourth strategy, called WT-PCA, the PCA is applied not to the ECG,
but to the fourth scale of the DWT (W4s(k)), and the two morphological features
kLZ and kLM were calculated from the principal components.

The last two strategies are the result of projecting all ECG leads or its fourth scale DWT
(W s

4 (k)), into the two most important basis of a principal component analysis (PCA). The
PCA consists of finding an orthogonal linear transformation such that the first component
of the transformation comes to lie in the direction of the greatest variance of the data.
For our multilead ECG signal S, with each lead of N samples as a column resulting in a
N × L matrix, the transformation is defined by

R = S·P, (4.1)

where P is the matrix which defines the linear transformation and R is the transformed
ECG. The matrix P is the result of computing the eigenvectors of the sample covariance
matrix C, calculated as described in the next subsection,

P−1CP = Q, (4.2)

being

C = STS. (4.3)
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Figure 4.1: Toy example where a two-lead ECG excerpt is also interpreted geometrically,
and PCA transformation is performed. Note the rotation involved in the PCA transfor-
mation.

The associated diagonal matrix of eigenvalues Q, is related to the importance of each
eigenvector of P in the sense of the variance of the original data S. That is, if we extract
only the first two components of R, we are retaining a fraction of the original QRS
complex variance which is typically above the 90% for normal sinus rhythm heartbeats.
In the rest of this work we will refer to perform PCA to calculate the two most important
projections of a multilead signal.

In the toy example presented in Figure 4.1, a two-lead ECG excerpt is interpreted
as a multilead signal (typical interpretation), and as a bivariate collection of unrelated
samples (geometrical interpretation). The latter interpretation neglects the time relation
between each sample of the sequence. This interpretation is useful to visualize the main
directions of variation of the signal, and the rotation involved in a PCA transformation.
It is useful to think the columns of the P matrix, as weights of a linear transformation.
Each element of the column vectors, are related to the contribution of each lead, as can
be seen in the center of Figures 4.2 and 4.3. The variance shown in the right part of the
figures, is the ratio between the first two eigenvalues of Q and the sum of all eigenvalues.
Note the similar weight patterns for the normal and supraventricular classes, which are
both similarly conducted through the ventricles. These patterns depend on the heartbeat
morphology as can be seen for the ventricular and fusion classes in Figure 4.3.

The PCA is performed for each heartbeat in a 160 ms window centered at the QRS
complex detection sample, or fiducial point (PCA window in Figure 4.4). Then, the
multilead signal is projected into the PCA basis in a wider window starting 130 ms before
and ending 200 ms after the QRS fiducial point. As it is known from previous works
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Figure 4.2: Examples of using PCA in 12-lead ECG recordings which includes normal
and supraventricular heartbeats. Only the first two components, PCA1,2, are retained.
The PCA weights (or basis) are calculated in the QRS complex region limited by a dotted
box. Note the similar weight patterns for the normal and supraventricular classes. These
patterns depends on the heartbeat morphology as can be seen for the ventricular and
fusion classes in Figure 4.3.
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Figure 4.3: Examples of using PCA in 12-lead ECG recordings which includes fusion and
ventricular heartbeats. Only the first two components, PCA1,2, are retained. The PCA
weights (or basis) are calculated in the QRS complex region limited by a dotted box.
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that the first two PCA of the ECG retain most of the signal energy [Acar and Köymen,
1999], one or two principal components are selected to compute in them the morphological
features. Note that the main difference between ECG-PCA and WT-PCA strategies, as
it can be seen in Figure 4.4, is where the PCA is calculated: in the first case, PCA is
applied to the ECG signal, while in the second case, PCA is applied to the W s

4 (k) signal.
Then for strategies 12/3L, VCG, ECG-PCA we calculated W s

4 (k) for each ECG lead.
Remember that for WT-PCA, the WT was calculated previous to the PCA. After that,
the autocorrelation sequence of W s

4 (k) is calculated for each strategy, obtaining rL(k),
where the final step consists in detecting the first zero-crossing (kLZ), and the position of
the first minimum (kLM), as shown in Figure 4.4.

4.2.1.1 Robust Covariance Matrix Computation

As shown above, the PCA computation relies heavily on the calculation of the covariance
matrix C. We already discussed in Section 2.4.4 the importance of performing robust
estimations, since our signals S can be corrupted with noise. For this reason the estimation
of the C matrix was performed with the minimum covariance determinant estimator
(MCD) presented in [Rousseeuw, 1984] and improved in [Rousseeuw and Van Driessen,
1999]. This is given by the subset of h observations with smallest covariance determinant.
The MCD location estimate is then the mean of those h points, and the MCD scatter
estimate is their covariance matrix. The default value of h is roughly 0.75·n, where n is
the total number of observations. Based on the raw estimates, weights are assigned to the
observations such that outliers get zero weight. The reweighted MCD estimator is then
given by the mean and covariance matrix of the cases with non-zero weight. To compute
the MCD estimator, the FastMCD algorithm is used [Rousseeuw and Van Driessen, 1999].
The MCD method is intended for continuous variables, and assumes that the number of
observations n is at least 5 times the number of variables p.

The MCD is a robust method in the sense that the estimates are not unduly influenced
by outliers in the data, even if there are many outliers. Due to the MCD’s robustness, we
can detect outliers by their large robust distances. The latter are defined like the usual
Mahalanobis distance [van der Heijden et al., 2005]

dMah
C (x,µ) =

√
(x− µ)T C−1 (x− µ), (4.4)

but using the MCD location estimate µk, and scatter matrix Ck

dMCD
C (x,µk) =

√
(x− µk)

T C−1
k (x− µk), (4.5)

instead of the nonrobust sample mean µ, Eq. (2.22) and covariance matrix C, Eq. (2.23).
The matrix Ck has the smaller det(Ck) among the K data subsets explored iteratively as
described in [Rousseeuw and Van Driessen, 1999]. The FastMCD algorithm uses several
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Figure 4.4: Illustration of the features calculated from the wavelet correlation signals.
The autocorrelation sequence of the QRS complex at scale 4 is shown for both 12L-
PCA and WT-PCA strategy. The calculated features, zero-crossings and peaks of the
autocorrelation sequence, are indicated with an asterisk.
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Table 4.3: Performance comparison between the different strategies separating AAMI2
classes (N, S, V’) in INCART.

Normal Suprav. Ventr. Total
Set of leads Comments Leads # Features S P+ S P+ S P+ A S P+

12L
best single lead III 6 98 92 86 87 83 88 89 89 89
Ref. model1 II-V1 8 97 93 87 87 84 89 90 90 90
all leads all 28 97 93 86 89 86 89 90 90 90

VCG best lead Y 6 98 93 83 83 81 85 87 87 87
X Y Z 10 98 93 82 84 83 85 87 87 87

ECG-PCA 1 6 98 93 87 87 86 90 90 90 90
1-2 8 98 93 82 87 86 86 89 89 88

WT-PCA 1 6 99 93 86 90 89 90 91 91 91
Selected model 1-2 8 98 93 86 91 90 90 92 92 91

The selected strategy is in bold.
1[Llamedo and Martínez, 2011a]

Table 4.4: Performance comparison between the different strategies separating AAMI2
classes (N, S, V’) in three pseudo-orthogonal leads from INCART.

Normal Suprav. Ventr. Total
Set of leads Comments Leads # Features S P+ S P+ S P+ A S P+

3L best lead V2 6 98 91 88 82 77 89 87 87 88
all leads all 10 98 93 86 86 84 88 89 89 89

ECG-PCA 1-2 8 98 93 87 87 86 91 90 90 90
WT-PCA 1-2 8 98 93 87 89 88 91 91 91 91

The selected strategy is in bold.

time-saving techniques which make it available as a routine tool to analyze data sets with
large n, and to detect deviating substructures in them. For the experiments performed
in this thesis, we used the implementation of FastMCD available in LIBRA: the Matlab
Library for Robust Analysis [Verboven and Hubert, 2005].

4.2.2 Results

As a first experiment we compared the classification performance of the different multilead
strategies (12L, VCG, ECG-PCA, WT-PCA) in the INCART database. For each of the
strategies we tested the performance in different subsets of leads. Table 4.3 shows class
and global classification performances using a k-fold (k = 10) cross-validation approach.
In Table 4.4, we show the results of a similar experiment in the same database, but
considering that only three pseudo-orthogonal leads were available (AvF, V2, V5). In
both cases the best model resulted the one with features computed from the first two
leads of the WT-PCA set. Therefore, this multilead strategy is considered for the next
experiment.

In the last experiment we validated the generalization capability of the classification
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Table 4.5: Performance for all databases where the generalization of the WT-PCA strategy
was studied.

Normal Suprav. Ventr. Total
Tested in Obs. Trained in S P+ S P+ S P+ A S P+

12 leads

INCART
biased INCART 99 94 89 92 91 92 93 93 93

crossval. 98 93 86 91 90 90 92 92 91
Biosigna 99 91 86 92 89 90 91 91 91

Biosigna
biased Biosigna 98 86 92 86 77 97 89 89 90

crossval. 98 85 91 85 75 97 88 88 89
INCART 97 86 89 84 77 96 88 88 89

3 leads

INCART
biased INCART 98 94 92 91 89 95 93 93 93

crossval. 98 93 87 89 88 91 91 91 91
Biosigna 99 91 84 90 86 88 90 90 90

Biosigna
biased Biosigna 98 85 93 84 73 97 88 88 89

crossval. 98 84 92 84 73 97 87 87 88
INCART 96 86 89 84 76 92 87 87 87

2 leads

MITBIH-AR
biased MITBIH-AR 95 82 83 87 78 87 85 85 85

INCART 97 74 75 83 71 89 81 81 82
crossval. 94 77 70 82 75 80 79 79 80

MITBIH-SUP 91 68 67 70 65 93 75 75 77
Biosigna 97 58 40 71 68 89 68 68 72

MITBIH-SUP
biased MITBIH-SUP 94 83 78 75 75 90 82 82 83

crossval. 93 80 74 74 74 88 80 80 81
Biosigna 97 66 49 77 76 85 74 74 76

MITBIH-AR 94 77 45 75 81 69 73 73 73
INCART 96 75 44 74 77 69 72 72 73

INCART
biased INCART 98 93 91 88 84 93 91 91 91

MITBIH-AR 93 93 88 84 85 89 89 89 89
Biosigna 99 89 84 88 83 88 89 89 88
crossval. 98 91 82 83 79 84 86 86 86

MITBIH-SUP 88 95 88 76 81 88 86 86 86

Biosigna
biased Biosigna 98 84 91 85 74 97 88 88 88

crossval. 98 84 90 83 72 96 87 87 88
MITBIH-SUP 85 91 94 69 68 96 82 82 85

INCART 97 86 68 81 74 73 80 80 80
MITBIH-AR 94 87 52 77 80 65 76 76 76

For the biased case train and test distributions are forced to be the same, this being the
best performance achievable for this model.
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model to other databases for different number of leads. For all databases available for a
given number of leads, we assessed the performance using all possible pairs of different
databases as train and test sets. We also evaluated the crossvalidated performance within
each database. To have an upper-bound reference, we additionally assessed the perfor-
mance of the model when trained and tested in the same database. This optimistically
biased performance serves as an upper bound, and represents the performance of the
model if the distributions of the examples in both training and test datasets were iden-
tical. These results, grouped by test database, are presented in Table 4.5 for databases
with 12, 3 and 2 leads. Results show that the reference model extended with the selected
WT-PCA multilead strategy presents good generalization properties for 3 and 12 leads,
while certain degradation is observed when using only two leads.

4.2.3 Discussion and conclusions

In this work we have adapted and improved a two-lead heartbeat classifier by including the
additional morphology information present in multilead recordings, like those of INCART
database. We followed the concept of the morphology features assessed in [Llamedo and
Martínez, 2011a], but calculating these features in sets of leads obtained by following
different lead transformation strategies. The simplest strategies consisted in computing
the features kLZ and kLM in all available leads (12L/3L), and in the derived orthogonal
leads (VCG). The other two strategies apply PCA to the ECG or its WT previously
to the morphology feature computation. The results suggest that strategies using PCA
performed better. Moreover the WT-PCA strategy obtains the best improvements with
respect to the two-lead classifier obtained in [Llamedo and Martínez, 2011a], either in
recordings of 12 or 3 leads. This can be explained because in WT-PCA, the PCA is
calculated in W s

4 (k) where most of the noise and other components not related to the
QRS have been filtered out [Martínez et al., 2004], and therefore PCA provides a better
representation of the multilead evolution of the QRS complex. It must be remembered
that although both PCA and WT are linear transformations, the eigenvector calculation is
not linear, and therefore sets ECG-PCA and WT-PCA differ in how the multilead signal is
projected into the principal components. Another important improvement achieved with
the WT-PCA strategy is the robustness against lead misplacement or recordings with
undocumented leads. Tables 4.3 and 4.4 show that only the WT-PCA strategy showed
the largest observed performance improvement with respect to the two-lead reference
model developed in [Llamedo and Martínez, 2011a].

Results in Table 4.5 confirm the generalization capability of the model using the se-
lected WT-PCA strategy to the rest of the studied databases. For the case of 12-lead
recordings, as those included in the INCART and Biosigna databases, results show very
good generalization for both databases since the performance is slightly lower than the
biased performance when training in the other database. In the same table, almost the
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same figures can be seen for the case of 3-lead recordings. The last results presented in
Table 4.5 are for databases of two leads. It can be noted that the inter-database disper-
sion in the performance increased, probably because of the heterogeneity of the databases
considered.

The results suggest that databases INCART and MITBIH-AR share similar distri-
butions in the feature space, since both obtained the maximal reciprocal performance.
Other interesting aspect regarding the MITBIH databases is the lower performance ob-
tained even for the biased case. This fact evidences the diversity of patients and ECG
contamination (noise, lead disconnection and misplacement) included in these databases;
and therefore the limitation of our classifier to model the data and achieve higher per-
formances. Certainly the biased performance can be thought as a metric of how difficult
to classify is a database by a given classification model, the closer to 100%, the easier.
This last result reinforces the importance of evaluating the performance of a classifier in
several databases.

One advantage of the proposed approach is that it can be used for an arbitrary number
of leads, because after the PCA we only retain the two most important components for the
morphological feature calculation. These components are calculated specifically for the
QRS complex, and in theW s

4 (k) signal (with a band between 11.25 and 22.5 Hz), typically
where the ECG presents high SNR. However in case of a large-scale artifact during the
QRS complex (as a lead disconnection), the PCA calculation would be corrupted, being
this the main limitation found for this approach. This problem is addressed by the robust
MCD algorithm to compute the covariance matrix.

The performance improvement with respect to [Llamedo and Martínez, 2011a] is how-
ever moderate, probably because the automatic classification approach is close to the
performance limit achievable with the current classification model. The worst aspect of
performance remains classification of supraventricular ectopic beats, where further study
is needed. Regarding the ventricular class, techniques of patient adaptation, as described
in [de Chazal and Reilly, 2006], will be presented in Chapter 5.

These results represent an improvement in performance with respect of the previous
two-lead classification model, concluding that the adequate addition of multilead infor-
mation allows the performance improvement of a heartbeat classifier.

4.3 Neural network classifier

In this section, the objective is to improve the classification method used. It is not
difficult to understand that a simple classifier as the LDC, which is capable of dividing
the hyperspace with hyperplanes, is a suboptimal solution for a complex problem such
as the classification of heartbeats. The design of an automatic classifier based on neural
networks shares the same methodology described in Chapter 3, but were used in a different
set of features. The results presented in this section were published in [Mar et al., 2011],
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in collaboration with the Institut für Biomedizinische Technik, at the Dresden University
of Technology, Germany.

4.3.1 Feature Sets

We used a set of 71 features, divided (as shown in Table 4.6) into the following categories:

• Temporal features, which already proved, in different studies, to be the most relevant
[Lannoy, 2010]. This category includes heart-rate features, which were the only
features computed just once for both channels, and features obtained from the
segmentation information yielded by ecgpuwave [Laguna et al., 1994].

• Morphological features, also previously assessed as being of great relevance, made
the bulk of the feature set. Direct samples from the ECG signal, and computed
measurements such as area, power or extrema, were included.

• Statistical features completed the feature set, including different order moment-
based indexes and histogram variance.

Unlike in temporal features, which were acquired from time domain signals exclusively,
the DWT of the ECG signal was used to obtain some of the features belonging to the
morphological and statistical categories. DWT features were based on the same heartbeat
intervals as the features obtained from the time domain, but using the scales 2, 3, 4 and
5 of the DWT ECG signal. Details about the DWT can be found in Section 2.3.2.

Finally, all features were individually normalized, by computing the necessary scaling
to make the features from DS1 signals be mean 0 and variance 1, and normalizing the
corresponding features from DS2 with the obtained scaling factors.

4.3.2 Feature Selection

The SFFS procedure is the same described in Section 2.4.6, but the optimization criterion
was different. We propose a new performance measure which tackles specifically the
problem of providing in a single value complete information about how good an ECG
classification has been. To this end, this new index was chosen to be a combination of two
values defined in Section 2.4.5: the j index, which specifically evaluates the discrimination
of the most important ECG arrhythmias (S and V beats),

j = SS + SV + P+
S + P+

V (4.6)

and the Kappa (κ) index, which globally evaluates the confusion matrix [Cohen, 1960].
This index, despite having been proposed as an evaluation coefficient several decades ago,
and its potential convenience, had never been applied before in the heartbeat classification.
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Table 4.6: Features distributed by categories.
Features Time Domain DWT Domain*

Temporal

Previous RR, current RR,
average RR, average RR of the
last 10 beats, QRS duration,

T-Wave duration, P-Wave flag.

Morphological

Downsampled (10 samples) QRS,
downsampled (9 samples)

T-Wave, QRS area, QRS power,
QRS max, QRS min, QRS

Max-Min ratio, peak width at
70% Max, peak slope, beat area,
beat power, beat max, beat min,

beat Max-Min ratio.

Max(3,4,5), Min(3,4,5), difference
between Max and Min (3,4,5),
distance (in samples) between
Max and Min (3,4),
power(2,3,4,5), power
ratio(3-2,4-3,5-4).

Statistical

QRS variance, QRS skewness,
QRS kurtosis, QRS histogram
(20 slots) variance, beat mean,
beat variance, beat skewness,

beat kurtosis, beat histogram (20
slots) variance.

Mean (3,4), standard
deviation(3,4), skewness (3,4).

* Numbers between parenthesis represent the scales at which the feature was obtained.

From its definition,

κ =
∑C
i=1 n

T
ii −

∑C
i=1 Di

NT −
∑C
i=1 Di

(4.7)

where
Di = (NiPi)

NT

(4.8)

is known as the weighted detections, it can be seen that it evaluates the global quality of
the classification: like the multiway accuracy, it also represents a complete evaluation of
the confusion matrix (in a single value and weighting each beat equally), but it is much
less influenced by the class imbalance.

The resulting combined index, which we named jκ index (Ijκ), takes into account the
misclassification and the imbalance present between all the considered classes, thanks to
the included κ index, and at the same time emphasizes the discrimination of the most
important arrhythmias (S and V), thanks to the j index (Ij).

Ijκ = w1κ+ w2Ij (4.9)

As j takes values in the 0-4 range and κ in the 0-1 range, w1 was set to 1/2 and w2 to 1/8,
so that both factors influence equally the overall result. Consequently Ijκ takes values
between 0 and 1, where 1 indicates perfect classification.
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Table 4.7: DS1 Division Scheme for MLP Evaluation
Dataset N S V F Total

Eval1 DS1 23379 442 1936 40 25797
Eval2 DS1 22283 501 1842 373 24999
Total (DS1) 45662 943 3778 413 50796

Eval1 DS1 comprises data from the recordings 109, 114, 118, 119, 124, 201, 203, 205, 215, 220 and 223

Eval2 DS1 comprises data from the recordings 101, 106, 108, 112, 115, 116, 122, 207, 208, 209 and 230.

4.3.3 Multi-Layer Perceptron

The multilayer perceptron (MLP) belongs to the class of supervised learning networks,
on which the discriminative power is gained through a preliminary learning phase, where
labeled examples are presented to the network. The most common training strategy,
also used in the present study, is the backpropagation (BP) algorithm [Rumelhart et al.,
1986]. It works by computing the error between the returned and the known, desired
output, employing it to adjust the MLP weights. Although the training process requires
a rather long time, the implementation and execution of a trained MLP is very simple,
making this paradigm very suited too for classification on ambulatory settings. On the
other hand, its characteristics make this paradigm very inadequate to guide the feature
selection (FS) process: The random initialization makes MLPs’ results not constant, which
renders the FS procedure unreliable if only one MLP is evaluated for each tested subset.
The unreliability could be overcome by training many MLPs for each tested subset, and
performing statistical analysis to obtain a result that would lead to the next step in the
FS process. Unfortunately, due to the many subsets tested by the SFFS procedure, plus
the relatively long time that training each MLP requires, the time and resources that a
reliable MLP-SFFS procedure would take are beyond our computing capabilities.

Therefore, in the present study the MLP paradigm was only applied to classify ECG
arrhythmias with the feature set obtained from the SFFS. The values of the different
parameters governing the MLP were determined by applying 2 -fold cross-validation on
DS1, training with one fold the MLP parameterized with the desired combination and
evaluating with the remaining one, and vice versa, averaging the results. Again, this
sub-division was performed inter-patiently in such a way that all heartbeat classes were
similarly represented in each of the folds, as shown on Table 4.7. MLPs with a single
hidden layer of 25 neurons were used, trained with a learn rate of 0.25 and a momentum
of 0.03 to avoid getting stuck into local minima. The number of training cycles was chosen
to be the one for which the mean results from the 2-fold evaluation began to get worse,
i.e. when symptoms of over-learning appeared.
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4.3.4 Classifier Combination

As mentioned above, information from both ECG leads was considered throughout the
whole study. Except for the heart-rate ones, all features were obtained separately for each
lead, and the two resulting feature sets applied independently to perform classification.
The posterior probabilities obtained after classification with each feature set were then
combined using the Bayesian product integration scheme [de Chazal et al., 2004]

P (i|x) =
∏L
l=1 Pl(i|x)∑C

c=1
∏L
l=1 Pl(c|x)

, (4.10)

for L = 2 leads and C classes. Finally, each heartbeat was labeled with the class with
higher posterior probability after the combination.

4.3.5 Results

In the present study aiming at reducing the classifiers complexity as much as possible, but
without making its performance worse, we selected as the most suited for our purposes the
classifier with the smallest number of features which achieved at least the performance
obtained with the original feature set on DS1. The reduced subset accomplishing this
criterion contains 9 features which includes Previous RR, current RR, RR average, beat
min, beat max, QRS max-min ratio, peak slope, max-min Difference on DWT scale 3.

After evaluating the performance of the SFFS procedure with the matched classifier
on DS1, the original feature subset and the selected from the SFFS were tested on DS2 to
carry out the final evaluation of the classifier model. Additionally, these subsets were also
tested on DS2 with the MLP classifier, in order to analyze the generalizing capability of
the SFFS procedure in the case where the criterion function and the classifier paradigm
do not match. At the same time, this analysis also tackles the suitability of the MLP
for heartbeat classification, in direct comparison to the LDC classifier. In Table 4.8,
complete classification description is displayed in the form of the confusion matrices for the
results obtained by applying the reduced feature set with either classifier paradigm. These
matrices provide insight into the beat-by-beat performance and ease future comparison
attempts by other authors. For the rest of studied feature sets, results both for LDA and
MLP classification are given through the considered performance measures on Table 4.8.

4.3.6 Discussion and conclusions

In addition to the analysis of the SFFS process itself, it is also interesting to identify
the most relevant features obtained. Inspecting the selected subset we can observe the
previous RR, current RR and RR average features (RR[i− 1], RR[i] and RRA in Figure
2.6) were present. This indicates the uttermost importance that heart-rate features have
on ECG classification. This fact was also corroborated the model found in Chapter 3 and
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Table 4.8: Classifier Performances on DS2 Obtained for the most Relevant Studied Clas-
sifier Models

Tr
ut
h

LDC Algorithm
n s v f Total

N 37384 2726 691 3260 44061
S 60 1517 237 16 1830
V 45 225 2782 156 3208
F 137 1 50 200 388

Total 37626 4469 3760 3632 49487

Tr
ut
h

MLP Algorithm
n s v f Total

N 39497 2778 771 1015 44061
S 122 1523 93 92 1830
V 104 235 2783 86 3208
F 125 6 20 237 388

Total 39848 4542 3667 1430 49487

Normal Suprav. Ventr. Fusion Total
Classifier S P+ S P+ S P+ S P+ A S P+ j κ Ijκ
LDC 85 99 83 34 87 74 52 6 85 77 53 2.78 0.51 0.60
MLP 90 99 83 34 87 76 61 17 89 80 57 2.79 0.60 0.65

Table 4.9: Relevant Indices for AAMI standard and Inter-Patient Division Conform Stud-
ies, Including Present Study’s ones.

Total
Classifier A S j κ jκ
LDC [Mar et al., 2011] 85 77 2.78 0.51 0.60
MLP [Mar et al., 2011] 89 80 2.79 0.60 0.65
LDC [de Chazal et al., 2004] 86 83 2.764 0.532 0.612
LDC* [de Chazal and Reilly, 2006] 94 88 3.234 0.754 0.781
LDC [Llamedo and Martínez, 2007] 80 80 2.372 0.421 0.507
SVM [Park et al., 2008] 86 76 – – –
SVM [Lannoy, 2010] – 83 – – –
LDC** [Llamedo and Martínez, 2011a] 78 83 2.887 0.412 0.567
* Patient adapting: Requires expert intervention.

** Feature set optimized for classification of N, S and

V’ classes, where V’ class included V and F beats.
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presented in Table 4.2. Regarding the results for the feature set obtained, which contained
a much larger number of features, including many statistical ones, it is remarkable to
observe that the 6 non-heart-rate features are all morphological features too, and even
more noteworthy, that 5 of them represent extrema. This fact suggests that extrema
values possess the highest discriminative power among all morphological features.

In spite of the large number of studies in which the MLP classifier paradigm has been
applied for ECG classification, none among them could be found in which the results
were evaluated in conformance with the AAMI standard and inter-patient dataset distri-
bution. Yet, results show that, when applying reduced feature sets, the MLP can clearly
outperform LDC in the task of heartbeat classification. Comparing the results of both
paradigms, an improvement in the range of the 4% can be observed in the global accuracy
(A) and in the global sensitivity (S). Nevertheless, it should be noted that these numbers
are just orientative of the possible improvement, as, due to their random initialization,
successive evaluations of the MLP with the same feature set could yield different results.

Comparing the achieved performances with those of previous studies, it provides fur-
ther insight on the suitability of the proposed techniques. As mentioned, this comparison
can only be objectively done among those studies following the same constrains. Thus,
the performances obtained in the present study on both classifier paradigms have been
compared with the results of the other AAMI conforming studies which followed the
inter-patient division scheme (see Table 4.9).

However, the ones achieved with the MLP outperform all previous non-adapting pro-
posed methods. These results evince that the non-linear classification capabilities of this
type of MLP are extremely suitable to perform heartbeat classification, which is intrin-
sically non-linear too. Moreover, they also show, in the context of this study, a greater
generalization capability of the MLP when compared to algorithmic methods such as LDC,
suggesting that they may be a more appropriate tool for ECG heartbeat classification.

4.A Detailed Results

In this section we present the confusion matrices for ease the comparison of future works.
The summarized performances presented in the previous sections were calculated from
these numbers, according to the methodologies described in Section 2.4.5.
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Chapter 5

Patient-Adapted ECG Heartbeat
Classification

5.1 Introduction

In the current state-of-the-art, it seems that the automatic classification approach has
approximated to a performance upper bound, probably because the huge interpatient
variability makes impossible that the probability distribution learned in a train set be
representative of that found in a test set and during the normal operation of the classifier.
The patient adaptation technique by means of expert assistance (i.e. manual heartbeat
annotation) was reported to be useful in two works to overcome this problem [Hu et al.,
1997, de Chazal and Reilly, 2006], at the expense of sacrificing automaticity. Other works
also reported better performances than the ones obtained by automatic classifiers, always
taking advantage of the expert assistance [Lagerholm et al., 2000, Jiang and Kong, 2007,
Ince et al., 2009, Kiranyaz et al., 2011]. One aspect to study when adopting this technique
is the efficient use of the assistance, in order to keep the classifier as much automatic as
possible. It is interesting to note that some assisted classifiers require from 2 to 5 minutes
of manual annotations, which is equivalent to several hundred of expert labeled heartbeats
[Hu et al., 1997, de Chazal and Reilly, 2006, Ince et al., 2009, Jiang and Kong, 2007], while
[Kiranyaz et al., 2011] requires the annotation of a number of heartbeats, depending on
the amount of beat classes present. One drawback of several patient-adaptable approaches
is that they can not operate without assistance [Lagerholm et al., 2000, Ince et al., 2009,
Jiang and Kong, 2007, Kiranyaz et al., 2011]. This is not the case of those developed
as an evolution of a previous automatic classifier [Hu et al., 1997, de Chazal and Reilly,
2006]. In those cases a fully automatic and an assisted mode can be used.

In this chapter we propose an expert assistance approach pursuing two objectives:
first, to be able to perform automatic classification adapted to the patient’s heartbeat
characteristics, and second, if assistance is available, to take advantage of it efficiently.
For this purpose we suggest the integration of a well-known clustering algorithm based
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on mixture of Gaussians [van der Heijden et al., 2005], with the linear classifier (LDC)
presented in [Llamedo and Martínez, 2011a]. In this solution clustering is responsible
of retaining all patient-specific data ordering, while the automatic classifier performs the
cluster labeling, and can be assisted by an expert, as will be described in detail in the
following sections.

The objective of this chapter is to study how the classification performance of a pre-
viously developed multilead algorithm [Llamedo and Martínez, 2011a, 2012a] can be im-
proved, by implementing a patient-adaptation technique based on clustering. Our working
hypothesis is that within a given recording, classes are clearly separated and beats of the
same class tend to be grouped in one or more homogeneous clusters. In other words,
after clustering the beats from a recording, all beats grouped in the same cluster would
likely belong to the same class. For that purpose, first we search for an appropriate set
of features for intra-recording clustering, and compare several integration strategies in a
development dataset, to finally assess the final performance and generalization capability
to other databases not considered during the development. The performance will be com-
pared with other state-of-the-art classifiers [de Chazal and Reilly, 2006, Jiang and Kong,
2007, Ince et al., 2009, Kiranyaz et al., 2011, Mar et al., 2011].

5.2 Methodology

5.2.1 ECG databases

All experiments performed in this chapter were carried out in several public databases
available on Physionet [Goldberger et al., 2000], and the well known American Heart
Association database [American Heart Association]; their relevant details are summa-
rized in Table 2.3. For all databases the AAMI recommendations for class-labeling were
adopted (Section 4.2 in [AAMI-EC57, 1998–2008]). The details of the databases used in
this chapter can be found in Section 2.1. The databases used include different types of
ECG recordings: some of them were recorded during routine ambulatory practice, but
others were selected to include less common ventricular, junctional or supraventricular
arrhythmias, or baseline ST segment displacement or other ECG abnormalities. As a
result, we use in this chapter a dataset with a broad range of normal and pathological
ECG recordings to evaluate the algorithm performance. Moreover, the different length
of recordings will evidence the ability of the algorithm to handle the nonstationarities
present in the ECG.

We will refer as the development dataset to the union of the MITBIH-SUP database
and the 22 recordings included in the DS1 subset of MITBIH-AR defined in [de Chazal
et al., 2004], while the “evaluation dataset” includes the rest of databases described in
Table 2.3.
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5.2.2 Heartbeats classification

Following the scheme presented in Figure 5.1, the patient-adaptable algorithm includes
a linear discriminant classifier (LDC) and an expectation-maximization clustering algo-
rithm (EMC). Both LDC and EMC work independently and each performs a preliminary
classification/clustering task in different feature spaces. The LDC was developed and
trained as described in [Llamedo and Martínez, 2011a], while the EMC development will
be described later. Finally, the heartbeat and cluster labels provided by the LDC and
EMC respectively, are integrated with a voting scheme into a final heartbeat label. Three
modes of operation are proposed, depending on the degree of expert assistance available
in the application scenario: 1) automatic, 2) slightly assisted and 3) assisted. The algo-
rithm performs the following procedures: a) cluster and centroid identification, b) LDC
automatic classification and c) expert assistance.

For the automatic mode, in each record, K clusters and centroids are identified, corre-
sponding to groups of similar heartbeats, while at the same time, the LDC computes the
labels for each heartbeat. Then for each cluster, the algorithm tests if any label obtains a
qualified majority, meaning that the most represented label exceeds the α percent of the
cluster population. In case this label exists, it is assigned to the whole cluster, superseding
the LDC labels. If the qualified majority is not reached, the uncertainty is considered to
be too high to change the labels, an thus the LDC labels remain unchanged.

The slightly assisted mode is similar to the automatic, with the exception that in
case of not finding a class with qualified majority, expert assistance is required to label
the cluster centroid and propagate it to the whole cluster, ignoring LDC labels. The
procedure of expert assistance is simulated by inspecting the true labels provided with
each database.

Finally in the assisted mode, K clusters and centroids are identified, then the expert
is required to label each centroid. The algorithm concludes assigning these labels to the
rest of heartbeats in each cluster.

To better understand the three modes of operation, a toy example can be found in the
center of Figure 5.1. The LDC by itself makes 4 errors in cluster 1 and 3 in cluster 2. For
the automatic mode, clusters 2 and 3 have majority of V and N classes respectively. Then,
votation propagates centroid labels to the rest of examples within both clusters, occurring
1 mistake in cluster 2. In cluster 1 there is no qualified majority for α = 50%, so the LDC
labels remain unchanged and 5 mistakes happen. The automatic mode made 1 mistake
less than the LDC. For the slightly-assisted mode, only cluster 1 would be modified, by
propagating the true label of the centroid S, resulting 4 errors for this cluster. Finally for
the assisted mode, the result is the same as in the previous mode, four errors in cluster
1, one error in cluster 2 and no errors in cluster 3. In summary, 7 errors for the LDC, 6
for the automatic mode and 5 for the slightly and assisted modes. As it was shown, the
algorithms rely heavily in the ability of the EMC to cluster the heartbeats adequately.
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Table 5.1: feature model used by the automatic classifier for recordings of 2 or more leads
.

Feature Description
ln(RR[i]) Current RR interval1

ln(RR[i+ 1]) Next RR interval1
ln(RR1) Average RR interval in the last minute1

ln(RR20) Average RR interval in the last 20 minutes1

k1
Z Zero-cross position of the WT autocorrelation signal in lead 12

k2
Z Zero-cross position of the WT autocorrelation signal in lead 22

k1
M Maximum position of the WT autocorrelation signal in lead 12

k2
M Maximum position of the WT autocorrelation signal in lead 22

1 See Figure 2.6 2 See Figure 2.10

5.2.3 Automatic classifier

We follow a scheme similar to the one in [Llamedo and Martínez, 2011a, 2012a], where we
developed a multilead heartbeat classifier with good generalization capability. We used a
linear classifier compensated for the class-imbalance, while as feature model we adopted
rhythm and morphological features computed in a multilead manner. Regarding to the
classifier used, we found that linear discriminant functions were suitable for the heartbeat
classification task in terms of performance and generalization capability. The details and
equations of this classification model can be found in Section 2.4.2.

The features used by the automatic classifier are described in Table 5.1. The mor-
phology features kLZ and kLM for lead L, are calculated in the two principal ECG leads
after integrating the multilead information with a principal component analysis (PCA). In
Chapter 4 it was shown that WT-PCA strategy was a good strategy to include multilead
morphology information. Therefore these features account for a multilead morphologi-
cal description of the QRS complex. For a detailed description of the features and the
multilead strategy used see Chapters 3 and 4.

5.2.4 Clustering algorithm

The EMC algorithm used in this chapter is based on the mixture of Gaussians model
[van der Heijden et al., 2005]. It consists of estimating the parameters of a density
function

p(x|Ψ) =
K∑
k=1

πk · f(x;µk,Σk) (5.1)

f(x;µk,Σk) =
K∑
k=1

πk
1√

(2π)m |Σk|
exp− 1

2 (x−µk)T Σ−1
k

(x−µk), (5.2)
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where the m-dimensional vector x is modeled by K Gaussians with mixing coefficients
πk, in order to retain a more realistic structure of the data. The parameter set Ψ =
{πk, µk, Σk|k = 1, . . . , K} is estimated by maximum likelihood criterion. We maximize
the log likelihood

L(X|Ψ) = ln
N∏
n=1

p(xn|Ψ), (5.3)

for the N heartbeats in each recording named X = {x1, . . . , xN}. Since there is not a
closed form solution for Ψ by maximizing L(X|Ψ), the well-known expectation-maximization
algorithm (EM) is used to obtain the estimation equations of the parameters Ψ, which
are the mixing coefficient for each cluster

π̂k = 1
N

N∑
m=1

β̂m,k, (5.4)

the cluster mean
µ̂k = 1

Nπ̂k

N∑
m=1

β̂m,kxm (5.5)

and cluster covariance matrix

Σ̂k = 1
Nπ̂k

N∑
m=1

β̂m,k(xm − µ̂k) · (xm − µ̂k)T. (5.6)

Where β̂m,k is known as the ownership variable, which indicates the probability of sample
xm to have been generated by the k-th component

β̂m,k = π̂k · f(xm; µ̂k, Σ̂k)∑K
j=1 π̂j · f(xm; µ̂j, Σ̂j)

. (5.7)

The EM algorithm iteratively computes the weight, location and dispersion for each of the
K clusters (Eq. (5.4)-(5.6) respectively), until β̂m,k does not change significantly, which
is equivalent to obtaining stable clusters. The interested reader is referred to [van der
Heijden et al., 2005, Duin et al., 2008] for details, equations and the implementation used
in this chapter.

The EM algorithm guarantees the convergence, at least, to a local optimum. The
mathematical demonstration of this can be found in [van der Heijden et al., 2005]. How-
ever, in Figure 5.2 an example of this is shown. The toy example is build from three
Gaussian distributions with different parameters. Even for the case where the algorithm
tried to find less components (K = 2), the algorithm converges. For the rest of the cases,
the redundancy of the components is notorious. This leads to one of the most critical
aspects of this kind of clustering algorithms, how to estimate the complexity of the data
to cluster. As there is not a reliable methodology to answer this, one recommendation
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Figure 5.2: Toy example of a non-Gaussian distribution with several amount of clusters
to be found. The elliptic equiprobable contour shows the estimated Gaussian distribution
component at each step. Three situations of the EM algorithm are shown: initial, middle
and last iteration. Note how the components are adapted to the data.

is to follow the a priori knowledge of the problem. As will be explained below in the
results section, as our classification problem involves 3 classes, we will allow between 3
and 4 clusters per class, which means 9 or 12 clusters in total. An example with real data
is shown in Figure 5.3. In this example two clusters are shown where the EMC grouped
normal and ventricular heartbeats. In the top-right of the same figure, among the more
distant heartbeats, some misclassified examples can be seen. Note the presence in the
morphology details of some widened QRS complexes.

5.2.5 Feature selection for clustering

Regarding the feature model used with the EMC, we followed the same feature selection
procedure described in Section 2.4.6, by means of a sequential floating feature selection
algorithm (SFFS) [Pudil et al., 1994, van der Heijden et al., 2005]. The complete pool
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Table 5.2: Features used with the EMC algorithm.
Feature Description
ln(RR[i]) Current RR interval1

ln(RR[i− 1]) Previous RR interval1
ln(PRR) Prematurity of the heartbeat1

ln(dRRL) Local RR interval variation1

ln(RR20) Mean RR interval within the last 20 minutes1

ln(S1
QRS) QRS mean wavelet scale in the first principal component2

k1
M

First minimum position of the WT autocorrelation sequence
in the 1st principal component3

rQRST(kM)
Value of the first maximum in the QRST complex
crosscorrelation sequence between WT scale 3 of the3 first
two principal components

1 See Figure 2.6 2 See Figure 2.9 3 See Figure 2.10

of features consisted of 61 features, described in Section 2.4.1. For the case of clustering,
instead of looking for features with generalization capability or interpatient separability,
we looked for those with high intrapatient separability. This criterion was achieved by
modifying the SFFS’ optimization criterion explained in Section 2.4.6, in order to find a
feature model that provides as much intrapatient class separability as possible, facilitating
the clusters identification. The first modification consisted in evaluating our clustering
algorithm in a patient by patient fashion since this is how this algorithm will be used in
practice. The second is that the performance will be evaluated in an optimistically biased
fashion, described in Section 2.4.5, assuming that we know a priori the true labels of the
heartbeats. The feature selection experiments were carried out in a dataset formed by the
union of MITBIH-SUP with DS1 subset of MITBIH-AR [de Chazal et al., 2004]. As the
SFFS performs thousands of model evaluations, this task is very demanding in processing
power, specially for the random and iterative nature of the EMC. For this reason we
replaced the EMC, only for the feature selection task, for a classifier based on mixture
of Gaussians (MoG), which uses the same algorithm used for cluster discovery. The
classifier based on MoG (MoGC) models each AAMI class with K Gaussian distributions,
in contrast with the LDC-C that models each class with a mean vector and a pooled
covariance matrix for all classes (Eq. (2.22) and (2.23) respectively). The MoGC uses
during training the EM algorithm for the estimation of the Gaussian components. This
modification results, first, in moving through deterministic paths through the performance
surface evaluated with the SFFS, and second in easing the EM iteration since the heartbeat
labels are known a priori. As a result, a model of 8 features was obtained. This model
also includes a description of the rhythm and morphology of heartbeats as shown in Table
5.2.

Among the rhythm features used in the model, some of them have already been used
in previous works. The prematurity of a heartbeat
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PRR[i] = RR[i]∑i+1
k=i−1 RR[k]

, (5.8)

measures how anticipated is a heartbeat respect to the previous and next RR inter-
val. The local RR interval variation is defined as dRRL[i] = ∑i+1

k=i−1 |dRR[k]|, where
dRR[i] = RR[i] − RR[i − 1]. One of the morphology related features is the wavelet
scale where the QRS complex is mostly projected. It is known that fast evolving signals,
as a normal heartbeat, tend to be projected in lower wavelet scales or contains higher
frequency components. The QRS center scale for each lead (SLeadQRS) is calculated as the
weighted sum

SLQRS =
∑6
s=1 A

L
s .s∑6

s=1 A
L
s

(5.9)

where ALs is the mean absolute amplitude of the QRS peaks at scale s of the DWT, and
lead L

ALs = 1
D

D∑
d=1

∣∣∣WL
s s(ld)

∣∣∣ , s = 1, 2, . . . 6 (5.10)

being D the number of detected peaks (1 or 2) and ld the positions of the peaks. The
last morphology feature used is the maximum of the autocorrelation sequence of the ECG
WT at scale 3 (rQRST(kM)), which describes the QRST complex similarity between PCA
leads at scale 3 of the WT. This feature is related to changes in the multilead morphology
and the depolarization axis of the QRST complex. See Figure 2.10 for details about the
calculation of all the morphology features used.

5.2.6 Performance evaluation

The performance is calculated from the confusion matrix after performing a classification
experiment, in terms of the class sensitivity (Si), class positive predictive value (P+

i ),
global accuracy (A), global sensitivity (S) and global positive predictive value (P+) as
suggested in [AAMI-EC57, 1998–2008] and described in [Llamedo and Martínez, 2011a,
2012a]. As the initialization of the EMC is random, the results of the clustering algorithm
are not deterministic. Then each experiment is repeated 30 times to evaluate the mean
and standard deviation of the performance estimates. The amount of expert assistance
required in the patient-adaptable modes of operation will be also accounted for each
experiment.

5.3 Results

We performed two experiments, in the first one we studied the values of the algorithm
parameters, that will be used in the second to evaluate its performance. The objective
of the first experiment was to set up the number of clusters (K) and the qualified ma-
jority percentage used in votations (α), both parameters used in automatic and slightly
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Table 5.3: Performance obtained in the development dataset for the election of K and α
parameters.

Normal Supraventricular Ventricular Total
Operation mode α K S P+ S P+ S P+ A S P+

Slightly assisted
50 9 96± 0 97± 0 58± 2 53± 1 79± 1 67± 1 93± 0 77± 0 72± 0

12 96± 0 97± 0 56± 2 51± 1 78± 1 66± 1 92± 0 77± 1 72± 0

75 9 97±0 98±0 60±1 61±1 84±1 71±1 94±0 80±1 77±1
12 97± 0 98± 0 61± 1 60± 1 84± 1 71± 1 94± 0 80± 0 76± 0

Automatic

0 9 96± 0 97± 0 52± 3 49± 1 78± 1 65± 1 92± 0 75± 1 71± 1
12 95± 0 97± 0 50± 2 49± 1 77± 1 63± 1 92± 0 74± 1 70± 1

50 9 96±0 97±0 53±2 51±2 77±1 65±1 92±0 75±1 71±0
12 95± 0 97± 0 52± 1 48± 1 77± 1 64± 0 92± 0 75± 0 70± 0

75 9 95± 0 97± 0 50± 1 47± 0 77± 0 61± 0 92± 0 74± 0 68± 0
12 95± 0 97± 0 50± 1 47± 0 77± 0 61± 0 92± 0 74± 0 68± 0

K: number of clusters; α: majority threshold (in percent)

assisted modes of operation. These parameters were assessed in the development dataset
(MITBIH-SUP and DS1 subset of MITBIH-AR), and then used for the final performance
evaluation in the remaining datasets. Table 5.3 shows the results of this experiment for
two values of the evaluated parameters. As a result of this experiment we adopted K = 9
and α = 50% for the automatic mode, and K = 9 and α = 75% for the slightly assisted
mode.

The final evaluation of the algorithm was performed in a broad set of databases in
order to obtain a realistic estimation of its performance, as done in [Chudácek et al., 2009,
Llamedo and Martínez, 2012a]. The three modes of operation were evaluated for each
database with the parameter values obtained in the first experiment. The results of this
experiment are presented in Tables 5.4 and 5.5 grouped by dataset. Comparison with
the most relevant algorithms found in the literature are presented separately in Table
5.4. In Table 5.5 the performance obtained for all databases are presented. For each
database we present the performance of our previous classifier [Llamedo and Martínez,
2011a] at the bottom for comparison, and a biased performance estimation on top as an
upper bound. This biased performance is obtained when a quadratic classifier [Llamedo
and Martínez, 2011a, van der Heijden et al., 2005, Duin et al., 2008] and the feature
model presented in Table 5.2 are trained and tested in the same patient, for each patient
in a database. This optimistically biased performance serves as an upper bound, and
represents the performance of the model if it could be re-trained for each patient. From
the results presented in Table 5.4, the proposed algorithm outperforms almost all reviewed
algorithms, except the algorithms of Jiang [Jiang and Kong, 2007] and Ince [Ince et al.,
2009], both in a small subset of MITBIH-AR, and the algorithm of Kiranyaz [Kiranyaz
et al., 2011] in the MITBIH-LT. Finally the results showed in Table 5.5 evidence that the
algorithm improves the baseline performances obtained by the LDC.
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Table 5.6: Results for the datasets most used in other works, with the AAMI labeling.
Normal Supraventr. Ventricular Total

Dataset Observation #MAHB S P+ S P+ S P+ A

MITBIH-AR
Assisted 12 100±0 99±0 89±2 88±3 91±1 97±1 98±0

9 99±0 99±0 86±1 85±2 89±2 97±1 98±0
Slightly assisted 1 98±0 99±0 78±3 62±3 86±2 93±1 96±0
Automatic 0 96±0 98±0 74±4 42±2 84±1 88±1 94±0

DS2
Assisted 12 100±0 99±0 92±1 90±3 93±1 97±1 98±0

9 99±0 99±0 92±1 86±3 91±3 96±1 98±0
Slightly assisted 1 97±0 99±0 83±4 58±5 91±3 90±2 96±0
Automatic 0 95±0 99±0 79±2 46±2 89±1 87±1 94±0

#MAHB: manually annotated heartbeats per recording.

5.4 Discussion and Conclusions

In this chapter we presented a versatile ECG heartbeat classification algorithm suitable
for a broad range of scenarios, from automatic or unassisted to fully assisted mode. The
automatic part of the algorithm relies on a previously developed automatic classifier
with proven generalization capability [Llamedo and Martínez, 2011a], referred as LDC
in Figure 5.1. The main limitation of the LDC is the inability to handle large inter-
patient rhythm and morphology variations. Many works overcame this limitation with
the assistance of an expert [Hu et al., 1997, Lagerholm et al., 2000, de Chazal and Reilly,
2006, Jiang and Kong, 2007, Ince et al., 2009, Kiranyaz et al., 2011]. The approach to
handle assistance presented in this chapter is based on a clustering algorithm, responsible
of retaining most of the patient specific characteristics of the heartbeats (EMC in Figure
5.1). For this reason the feature model used with the clustering algorithm pursues the
maximum intrapatient class separability. This approach is different to the one used in
the development of the LDC feature set in [Llamedo and Martínez, 2011a], which pursued
the maximization of a generalization criterion. As a result, Tables 5.1 and 5.2 show the
different feature models used in the algorithm. As it can be seen, both feature models use
rhythm and morphology features for heartbeats representation. Regarding to the rhythm
features, the EMC has the addition of features PRR and dRRL, which are related to the
local RR interval variation. As for the morphology description, features S1

QRS and k1
M

may together represent a robust surrogate of the QRS width; while feature rQRST(kM)
describes the QRST complex similarity between PCA leads at scale 3 of the WT. This
measure is related to morphologic and depolarization-axis changes in the QRST complex.

To operate in automatic and slightly assisted modes, the EMC algorithm uses K as
the number of clusters to model, and the voting scheme uses α as a threshold to assume
that a whole cluster belongs to a class. As can be seen in Table 5.3, the performance
intervals are comparable for the selected configurations but a mild improvement can be
observed for the highlighted configurations. These configurations will be used for the final
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evaluation and comparison of the algorithm.
The reference performances used for comparison purposes were in all cases AAMI

[AAMI-EC57, 1998–2008] compliant. This means that the AAMI2 alternative labeling
used is equivalent when calculating the S and V’ class-performances, presented in tables
5.4 and 3.3. The reader interested in this aspect is referred to section A.3.5.2 of [AAMI-
EC57, 1998–2008]. In Table 5.6 are shown the results obtained in DS2 of MITBIH-AR
and MITBIH-AR, when considering the five AAMI classes. It can be seen that both
AAMI and AAMI2 labeling yield the same results for the N, S and V classes.

The performance comparisons presented in Table 5.4 evidence the usefulness of the
proposed algorithm. Without expert assistance the proposed algorithm performs better
than a recent algorithm of Mar et al. [Mar et al., 2011] and the automatic version of
de Chazal et al. [de Chazal et al., 2004]. Furthermore, when assistance is available our
algorithm outperforms the reviewed algorithms [Hu et al., 1997, de Chazal and Reilly,
2006, Jiang and Kong, 2007, Ince et al., 2009] in the MITBIH-AR, with the following
clarification. The algorithms of Jiang et al. [Jiang and Kong, 2007], Ince et al. [Ince et al.,
2009] and de Chazal et al. [de Chazal and Reilly, 2006] outperform our algorithm in a
subset of MITBIH-AR, but using more expert assistance. However the same algorithms
perform worse in bigger subsets of the same database, as can be seen in Table 5.4. This fact
reinforces the importance of evaluating arrhythmia classifiers in a wide range of databases,
to have a complete idea of its performance. Finally, the algorithm presented by Kiranyaz
[Kiranyaz et al., 2011] performed better than our algorithm in the MITBIH-LT, but with
an increased effort in assistance of 15 minutes, or approximately 900 manually annotated
heartbeats (MAHB) per recording, respect to the 20 MAHB required by this algorithm.
However the differences in performance are moderate, and considering that the algorithm
presented in [Kiranyaz et al., 2011] was specifically developed for long-term recordings. It
is worth remarking that the MITBIH-LT presents the bigger class imbalance among the
studied databases, showing some limitations of the EMC to detect scarcely represented
classes, as the supraventricular.

An interesting aspect of the proposed algorithm is the improvement achieved in the
amount of expert assistance required, 42 times less annotation effort than the algorithms
of Hu [Hu et al., 1997] and de Chazal [de Chazal and Reilly, 2006], 25 times less than
Jiang [Jiang and Kong, 2007] and Ince [Ince et al., 2009], and 45 times less than Kiranyaz
[Kiranyaz et al., 2011].

Regarding to the comparison with the previous automatic multilead classifier, the
fully automatic mode of the patient-adapted algorithm presented in this chapter achieved
performance figures higher than those obtained in [Llamedo and Martínez, 2011a] for all
databases except in the two databases including long-term recordings (MITBIH-LT and
MITBIH-ST), where the performance was slightly lower. The decrease in MITBIH-LT
and ST shows a limitation of the clustering features to adequately account for changes
in long recordings. Moreover, as both databases include a small number of recordings (7
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and 18, respectively), a particular recording could have an exaggerated influence on the
whole database performance. However, for the automatic mode the mean improvement
across databases with respect to the LDC is of 2.3% in A, of −2% in S and of 1.8% in
P+. With a small degree of assistance, 1-2 MAHB per recording in the slightly assisted
mode, we obtained a mean improvement of 6.9% in A, of 6.5% in S and of 8.9% in P+.
Furthermore, an assistance of just 12 MAHB per recording results in a mean improvement
of 13.1% in A, of 13.9% in S and of 36.1% in P+. The important improvement in
performance achieved in assisted mode shows that our working hypothesis, separate and
homogeneous clusters within a recording, is corroborated in most cases. The algorithm
showed robust dealing with different types of noise present throughout the evaluated
databases, as a result of using robust features. In addition, the results presented in Table
3.3 are consistent, as more assistance is translated into larger performance improvement.
This experiment evidences that the algorithm can handle properly the different degrees
of assistance provided by an expert. Note that the development dataset, which includes
DS1 of MITBIH-AR and MITBIH-SUP, is included in the results presented in Table 3.3.
These results are optimistically biased and should be considered only as an additional
description of the algorithm performance.

In slightly assisted mode, it is worth noting that the intra-cluster class-heterogeneity
in the recordings analyzed is proportional to the assistance required. Remember that the
algorithm ask for assistance in those clusters where a qualified majority is not reached.
According to Table 3.3, from 11 to 16% of the clusters did not reach a qualified ma-
jority. For the particular case of the MITBIH-LT this figure raised to the 29%. This
increase is reasonable since the nonstationarities of the ECG signal, and thus the cluster
heterogeneity, are more evident in long-term recordings.

The algorithm’s computational efficiency was not analyzed in detail, however it takes
around 25 seconds to classify a MITBIH-AR recording (30 minutes of two-lead ECG)
in a desktop PC (Intel Core2 E8500 CPU). The measurement was performed in a freely
available implementation of the algorithm in Matlab [Llamedo, 2012]. Although the ex-
ecution time is not excessively large, there is room for improvement with an optimized
implementation.

From the evaluation of the algorithm some limitations were found and need to be
addressed in future improvements. The first one, is the inability of the clustering al-
gorithm to find marginally represented classes. This problem slightly affects the global
performance since the less represented classes have a mild effect in a database-aggregated
performance estimates. However, in certain applications the misclassification of this kind
of infrequently arrhythmias could limit the usefulness of algorithms based on clustering
techniques. Other limitations are related to the feature model used by the EMC, pre-
sented in Table 5.2. In certain recordings where the classes are reasonably represented
to be clustered, the EMC fails to recognize the clusters probably due to the inability of
the feature model to separate the classes. This problem is also evidenced in the biased
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evaluation performance, showed on top for each database in Table 5.5. Theoretically if
the features and classifier used could adequately model the data, the biased performance
should be perfect for all classes (Si and P+

i 100%). Since this is not true, it can be
concluded that the presented model still has limitations. This could be improved with
the development of better features or a most sophisticated classifier. The last limitation
found during the evaluation appeared in long-term recordings. In these recordings the ev-
ident nonstationarities in the feature space made the algorithm performance to decrease
considerably. For this reason, the assistance provided to the algorithm was increased
for long-term recordings. Strategies to deal with nonstationarities, as the proposed in
[Kiranyaz et al., 2011], will be studied in the future.

The results presented in this chapter represent a performance improvement with re-
spect to the published works in the field of automatic and patient-adaptable heartbeats
classification. These results show that the performance of an automatic classifier can be
improved with an efficient handling of the expert assistance. The authors freely distribute
a Matlab implementation of the algorithm for academic use, presented in Appendix A.

5.A Detailed Results

In this section we present the confusion matrices for ease the comparison of future works.
The summarized performances presented in the previous sections were calculated from
these numbers, according to the methodologies described in Section 2.4.5.
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Chapter 6

Conclusions and Future Work

In this chapter we summarize the main contributions of the thesis and the conclusions
of previous chapters. We will also enumerate some of the future works to be done as a
continuation of the thesis.

6.1 Summary

In the previous chapters we suggested and analyzed a framework for the development of
an ECG heartbeat classifier. We started from scratch designing the heartbeat features.
We were interested in using features that had a physiological meaning, were simple to
compute and robust to the noise present in the ECG. We explored several features of
different nature and domains, at the same time that the methodology to put them together
in the same classification model. To keep the complexity of the model as low as possible,
without sacrificing performance, we adopted a floating feature selection algorithm. As
our knowledge about the classification problem was limited at the beginning, we decided
to adopt a simple classifier to be able to easily understand and interpret results and any
issue during the development. Our first objective was developing an automatic classifier
with generalization capability. To achieve this goal, we used a feature selection algorithm
with a modified criterion to obtain a model with these properties. The model evaluation
yielded good results in two databases [Llamedo and Martínez, 2011a], and comprehends
the contents of Chapter 3.

With the availability of multilead databases, we suggested a strategy that extended
the model developed in [Llamedo and Martínez, 2011a] . As a result we found a useful
solution at the signal level, based on principal components analysis (PCA), that allows
our two-lead model to handle signals of an arbitrary number of leads. Another important
improvement achieved with the WT-PCA strategy is the robustness against lead misplace-
ment or recordings with undocumented leads. With this strategy we slightly improved
the performance of our classifier in the data used in [Llamedo and Martínez, 2011a], and
confirmed the generalization of the model when applied to unseen 12-leads recordings.
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These results were published in [Llamedo and Martínez, 2012a] and the methodology is
explained in Section 4.2. In Section 4.3 the framework used in Chapter 3 was used to
evaluate the improvement of a non-linear classifier, as the MLP, and these results were
also published in [Mar et al., 2011].

Other aspect that we were interested in, was the adaptation to the patient under
analysis. This technique was reported to be useful for improving the performance in
problems with high interpatient variability. For this purpose we designed an adaptation
algorithm that uses the classifier developed in Chapters 3 and Section 4.2, together with
a clustering algorithm (see Figure 5.1). The feature model of the clustering algorithm was
also obtained from the same feature selection algorithm used in Chapter 3, but with a
modified criterion that maximized intrapatient class separability. Finally, a semiautomatic
algorithm that integrates the methodologies developed in [Llamedo and Martínez, 2011a,
2012a] was evaluated in a set of eight public databases, described in Section 2.1, and the
results were published in [Llamedo and Martínez, 2012b].

6.2 Conclusions

In this section the conclusions drawn through the chapters of this thesis are summarized.
We start emphasizing the importance of the feature design, and therefore the understand-
ing of the problem. In our experience, without a proper understanding of the problem it is
impossible to design adequate features, and then a classifier with generalization capability.
At the moment of writing this thesis, we are studying deep belief networks (DBN) [Hinton
et al., 2006] classifiers and have pending its implementation. This kind of classifiers not
only improved the state-of-the-art in other pattern recognition tasks, as handwriting or
speech recognition, but they did it directly from the digitized signal samples or pixels.
They simply skip the feature design step in the development of a classifier. Despite being
in contradiction with of our first conclusion, DBN classifiers need further corroboration
in the field of heartbeat classification. Probably other feature models can achieve further
improvement that the samples by itself. Anyhow, we believe that classifiers of the black
box style (or any other nonlinear or nonparametric) should be avoided as a first attempt
to solve a classification problem, and used when a baseline performance was achieved with
a simple classifier.

The importance of having a large dataset to perform the experiments is determinant.
In applications as the classification of heartbeats, where there exist large interpatient
variations, the definition of large can be misleading. In our experience, it is more im-
portant having databases with many subjects, than a small number of subjects, maybe
repeated, of long-term recordings. However, the classification of long-term recordings is
an aspect not deeply studied in this thesis and requires further work. This fact reinforces
the importance of evaluating a classifier in as many databases as possible, to have a better
estimation of its real performance.
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In our feature selection experiments we found two models, pursuing different optimiza-
tion criteria. In Table 3.4 a model with good intersubject performance is shown. As can
be noted, the selected features are computed without exception from time interval mea-
surements. This could be explained given that the used databases do not always include
the same pair of ECG leads in each recording. Therefore the classification performances
of features which are calculated from amplitudes are heavily degraded. The directional
features (like the V CGφ) were also probably affected by this fact, even if the clinical im-
portance of this kind of features is well-known by cardiologists [Taylor, 2002]. In contrast,
the intervals seem to retain the classification ability with independence of the pair of leads
chosen. The first four features in the model are clearly connected to the evolution of heart
rhythm, while the other four can be understood as surrogate measurements of the QRS
width, and therefore a description of the QRS morphology. In addition, it only relies on
a coarse QRS fiducial point detection, making the classifier model robust to degraded
signals where the delineation of the ECG waves is not reliable or feasible.

On the other hand, in Table 5.2 a model with good intrasubject performance is shown.
The model also includes rhythm and morphology features. Regarding to the rhythm
features, the EMC has the addition of features PRR and dRRL, which are related to the
local RR interval variation. As for the morphology description, features S1

QRS and k1
M

may together represent a robust surrogate of the QRS width; while feature rQRST(kM)
describes the QRST complex similarity between PCA leads at scale 3 of the DWT. This
measure can be related to morphologic and depolarization-axis changes in the QRST
complex.

The LDC-C linear decision functions showed to be useful in the development of a
classifier with generalization capability. This can be explained because a conservative de-
cision function, as a hyperplane, is more appropriate for difficult classification problems,
or with large interpatient variability. In this kind of problems, almost none of the hy-
pothesis imposed by our design decisions are completely fulfilled. Just to clarify this last
sentence, we must say that in our initial problem we should have a training dataset which
resembles the whole universe of heartbeats, this is not only unfeasible, but in our limited
case we can say that is even quite different from the test set, just by simple inspection
of the performance figures (compare results in Table 3.2 with 3.3). With this evident
limitation, the classifier with more capacity to model the training data, in our case the
QDC, is likely to fail more often in the test set. This limitation is probably the reason
that makes a conservative classifier, as the LDC, the better choice. In Figure 2.12, the
discriminant functions produced by the LDC and QDC can be compared.

When we limit the problem to one subject at a time, and we pursue the best intrapa-
tient performance, we allow the classifier to produce non-linear decision functions. In our
case we used a mixture of Gaussian classifier, which uses the same EM algorithm used by
the clustering algorithm.

The feature selection scheme used resulted in a convenient methodology to reduce
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the complexity of the classification task and to improve the generalization of the model
obtained. The SFFS was specifically useful when using simple and deterministic classi-
fiers (QDC or LDC), but for the case of non-deterministic classifiers (MLP, mixture of
Gaussians) some workarounds were adopted, since we must ensure (or at least limit) the
repeatability.

The generalization capability of a classifier is, in our opinion, one of the most im-
portant characteristics of a heartbeat classifier. In Chapter 5 we showed that is possible
to perform a thorough evaluation of a classifier’s performance, exclusively in publicly
available databases.

The performance estimation for class-imbalanced problems, as the studied in this the-
sis, can be misleading specially when comparing different classifiers. In this thesis we
explored different methodologies for dealing with the class-imbalance problem. However,
none of the solutions suggested in Chapters 3 and 4, as the balanced performance, guar-
antee the resolution of the problem. Despite of this problem, the confusion matrix can
always provide clarification at expense of redundancy, and in our opinion, should always
be included to ensure comparability. Another problem is when comparing performances
across databases with different class imbalances. To help interpretation we suggested the
comparison against the biased performance estimation, which provides an upper-bound
reference.

The comparisons performed in the previous chapters were performed in a fair manner
up to our best knowledge. The works included in our comparisons have comparable
methodologies and were representative of the state of the art. In general, as were already
detailed in the previous chapters, our classifiers performed better than others. For all the
comparisons, we always provided a detailed description of our performances in order to
allow future improvements.

Summing up, the results presented in this thesis represent a performance improve-
ment with respect to the published works in the field of automatic and patient-adaptable
heartbeats classification.

6.3 Future work

Some of the possible future works that we identified during the development of this thesis
were:

1. More complex classifiers. One possible improvement to the classification perfor-
mance is the implementation of complex classifiers, as support vector machines
(SVM) [Ivanciuc, 2007] or DBN, instead of the LDC-C used. In Section 4.3 we
pointed out some of the limitations of the LDC-C, and showed how in this context
the substitution by the MLP performed better. Following this reasoning, we think
that may be possible to achieve some performance improvement by replacing the
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LDC-C in the framework presented in Chapters 3 and 4.

2. Improved model for supraventricular heartbeats. Throughout the chapters, the weak-
est point of all the classifiers presented was the supraventricular class performance.
From Chapter 5 it is clear to us that both feature models, LDC-C and EMC, still
have limitations to discriminate the supraventricular class. New features and clas-
sification strategies should be explored to improve this aspect, for example classifi-
cation models that take into account the sequence of heartbeats, as hidden Markov
models.

3. Other physiological signals. Signals as the blood pressure or the plethysmographic
signal are of much interest for heartbeat classification. The main reason is because
in our model, we only take into account the electrical activity of the heart. Any
signal that includes the mechanical counterpart can allow us to make a better char-
acterization of the heart function. Therefore, the strategies to include them in the
classification model would probably lead to a performance improvement.

4. Arbitrary length of recordings. One aspect not considered in this thesis were the
long-term recordings included in some databases. Specially in this kind of recordings
the nonstationarities of the ECG signal are evidenced. Although the performance
figures achieved by our classifier were good for these recordings, we believe that
improvements in performance and/or expert assistance required (amount of MAHB)
can be achieved if we deal with the length of the recordings. Some solutions were
suggested in the work of Kiranyaz et al. [Kiranyaz et al., 2011].

5. Other classification strategies. One promising classification alternative to the frame-
work presented in the first chapters can be the SVM semi-supervised learning meth-
ods [Joachims, 1999], which can take advantage of unlabeled data to improve the
training of the classifier. This feature can be important in order to improve the per-
formance in the less represented classes, as the supraventricular class. Note that this
kind of heartbeats are not easy to detect even for experienced cardiologists, therefore
it is hard to find databases with reliable and high quality heartbeats annotations as
the MITBIH-AR.

6. Extrapolation of the semiautomatic framework to ECG detection/delineation. The
semiautomatic framework presented in Chapter 5 can be useful for similar ECG
processing tasks, such as the QRS detection and ECG delineation. The possibility
of interacting (e.g. correcting errors) with the algorithm when processing long-term
recordings could be a useful feature. This would avoid the necessity of changing
thresholds or recording for cases not considered during the development of the al-
gorithm.



142 CHAPTER 6. CONCLUSIONS AND FUTURE WORK



Scientific Contributions

This thesis produced the following contributions to peer-reviewed journals and conference
proceedings:

Journal articles

M. Llamedo and J.P. Martínez. Heartbeat classification using feature selection driven by
database generalization criteria. IEEE Transactions on Biomedical Engineering, 58(3):
616–625, march 2011. ISSN 0018-9294. doi: 10.1109/TBME.2010.2068048.

M. Llamedo and J. P. Martínez. Cross-database evaluation of a multilead heartbeat
classifier. IEEE Transactions on Information Technology in Biomedicine, In press:–,
2012a.

M. Llamedo and J. P. Martínez. An automatic patient-adapted ECG heartbeat classifier
allowing expert assistance. IEEE Transactions on Biomedical Engineering, Currently
under review, with major revision:–, 2012b.

T. Mar, S. Zaunseder, J. P. Martínez, M. Llamedo, and R. Poll. Optimization of ECG
classification by means of feature selection. Biomedical Engineering, IEEE Transactions
on, 58(8):2168 –2177, aug. 2011. ISSN 0018-9294. doi: 10.1109/TBME.2011.2113395.

Conference proceedings

J Bolea, E Pueyo, Almeida R, M Sotaquira, M Llamedo, J.P. Martínez, P Laguna, and
E.G. Caiani. Microgravedad simulada mediante head-down-bed-resting y su influencia
en la dinámica del QT/RR. In XXIX Congreso Anual de la Sociedad Española de
Ingeniería Biomédica (CASEIB 11)., 2011.

M. Llamedo and J.P. Martínez. Analysis of a semiautomatic algorithm for ECG heartbeat
classification. In Computers in Cardiology 2011, volume 38. IEEE Computer Society
Press, 2011a.

143



144 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

M. Llamedo and J.P. Martínez. Análisis de un algoritmo para la clasificación semiau-
tomática de latidos en ECG. In XXIX Congreso Anual de la Sociedad Española de
Ingeniería Biomédica (CASEIB 11)., 2011b.

M. Llamedo and J.P. Martínez. Analysis of 12-lead classification models for ECG classi-
fication. In Computers in Cardiology 2010, volume 37. IEEE Computer Society Press,
2010a.

M. Llamedo and J.P. Martínez. Evaluation of an ECG heartbeat classifier designed by
generalization-driven feature selection. In Engineering in Medicine and Biology Society.
EMBC 2010. Annual International Conference of the IEEE, 2010b.

M. Llamedo and J.P. Martínez. Analysis of multidomain features for ECG classification.
In Computers in Cardiology 2009, volume 36, pages 561 – 564. IEEE Computer Society
Press, 2009a.

M. Llamedo and J.P. Martínez. Clasificación de ECG basada en características de escala,
dirección y ritmo. In XXVI Congreso Anual de la Sociedad Española de Ingeniería
Biomédica (CASEIB 09)., 2009b.

M. Llamedo and J.P. Martínez. An ECG classification model based on multilead wavelet
transform features. In Computers in Cardiology 2007, volume 34, pages 105–108. IEEE
Computer Society Press, 2007a.

M. Llamedo and J.P. Martínez. An ECG classification model based on multilead wavelet
transform features. In XVI Congreso Argentino de Bioingeniería. San Juan. ISBN
978-950-605-505-9, pages 531–534, 2007b.



Appendix A

Matlab Implementation

A.1 Introduction

The Argentinian-Aragonese heartbeat classifier (a2hbc1) [Llamedo, 2012] is a Matlab script
developed for research purposes during the development of this thesis. It is just a heart-
beat classifier and its graphical user interface (GUI) to be operated. The main objective of
this software is to ease the performance comparison against other (hope better) heartbeat
classifiers. It can also be used for classifying unlabeled ECG recordings as well.

A.2 Features

The main features of a2hbc are:

• Validated performance. The performance was thoroughly evaluated in [Llamedo and
Martínez, 2012b].

• More common ECG formats accepted (MIT, ISHNE, AHA and HES)

• Open source. Documented and easily customizable.

• Multiprocessing ready. It is ready to run in both a desktop PC or a high performance
cluster.

• User interface. The algorithm has a simple graphical user interface (GUI) to ease
the labeling of heartbeat clusters.

A.3 Installation and Usage

The a2hbc can be downloaded from here, just unpack it, read the documentation, try
some of the examples included and you are done. Several examples are included in the

1http://code.google.com/p/a2hbc/
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examples.m script. In this appendix we will show some examples to show the main
features of a2hbc. There are also some recordings included to follow the examples. It can
be started simply by executing the main script

>>a2hbc

In this case the control panel is displayed to gather some information from the user:

You must enter the recording file name and its format, the other controls you can leave
with its default values by the moment. You can select the 208.dat recording, included in
the example recordings folder, and set the MIT format. Then press Run!, the script will
start working. You can follow the evolution in the progress bar, and after a while, it ends
and displays the classification results

Configuration
-------------
+ Recording : ... \ example recordings \208. dat (MIT)
+ Mode: auto (12 clusters , 1 iterations , 75% cluster - presence )

True | Estimated Labels
Labels | Normal Suprav Ventri Unknow | Totals

-----------------|----------------------------|-------
Normal | 1567 6 13 0 | 1586
Supraventricular | 2 0 0 0 | 2
Ventricular | 255 8 1102 0 | 1365
Unknown | 2 0 0 0 | 2

-----------------|----------------------------|-------
Totals | 1826 14 1115 0 | 2955

Balanced Results for
---------------------
| Normal || Supravent || Ventricul || TOTALS |
| Se +P || Se +P || Se +P || Acc | Se | +P |
| 99% 45% || 0% 0% || 81% 99% || 60% | 60% | 48% |

Unbalanced Results for
-----------------------
| Normal || Supravent || Ventricul || TOTALS |
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| Se +P || Se +P || Se +P || Acc | Se | +P |
| 99% 86% || 0% 0% || 81% 99% || 90% | 60% | 62% |

This is possible because this recording include the expert annotations, or ground truth,
for each heartbeat. The manual annotations in MIT format are typically included in .atr
files (in this case 208.atr). Now you can check other operation modes, as the slightly-
assisted. Click on Run! and then, eventually, the algorithm may ask you for help. In case
of needing help, a window like this will appear:

In this window the algorithm is asking you to label the centroid of the cluster, that
is showed in the left panel. In the top of each panel some information is showed, as the
amount of heartbeats in the current cluster. In the middle panel, you have some examples
of heartbeats close to the centroid in a likelihood sense. The same is repeated in the right
panel, but with examples far from the centroid. This manner you can have an idea of
the dispersion of heartbeats within a cluster. Large differences across the panels indicate
large cluster dispersion. If you decide to label the cluster, you can use one of the 4 buttons
on your right. The unknown class is reserved for the cases where you can not make a
confident decision. At the same time, in the command window, a suggestion appears:

Configuration
-------------
+ Recording : .\ example recordings \208. dat (MIT)
+ Mode: assisted (3 clusters , 1 iterations , 75% cluster - presence )
Suggestion : Normal

This means that the centroid heartbeat in the .atr file is labeled as Normal. You will
see this suggestion for each cluster analyzed, if there are annotations previously available.
You are informed about the percentage of heartbeats already labeled with a progress bar,
in the bottom of the control panel window.

In case you believe that a cluster includes several classes of heartbeats, you can decide
to skip the classification, and try to re-cluster those heartbeats in the next iteration. You
are free to perform as many iterations as you decide, by skipping clusters. The refresh
button resamples heartbeats close and far from the centroid, and then redraws the middle
and right panels. This feature is useful for large clusters.
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There are two possible ways of using A2HBC, in a single desktop PC or in a high
performance cluster of computers.

A.3.1 The power of the command-line

You can control all the features described up to the moment (and more) from the command-
line of Matlab. This is particularly useful for integrating a2hbc in your scripts. You can
find several examples in the script examples.m, this is probably the best way of getting
familiar with it. Here I reproduce some worked examples included in this script. First
let’s start executing

a2hbc ( ...
’recording_name ’, [ ’.’ filesep ’example recordings ’ filesep ’208. dat ’], ...
’recording_format ’, ’MIT ’, ...
’op_mode ’, ’auto ’);

As you can see, the parameter interface of a2hbc is by name-value parameters. In the
previous example, the name of the parameters are self-explanatory, the only comment is
for the third, which is the operating mode. In Table A.1 you can check the complete list
of parameters. As a result, you will get similar results to the obtained in the first example
using the GUI.

Configuration
-------------
+ Recording : .\ example recordings \208. dat (MIT)
+ Mode: auto (12 clusters , 1 iterations , 75% cluster - presence )

True | Estimated Labels
Labels | Normal Suprav Ventri Unknow | Totals

-----------------|----------------------------|-------
Normal | 1575 3 8 0 | 1586
Supraventricular | 2 0 0 0 | 2
Ventricular | 250 7 1108 0 | 1365
Unknown | 1 0 1 0 | 2

-----------------|----------------------------|-------
Totals | 1828 10 1117 0 | 2955

Balanced Results for
---------------------
| Normal || Supravent || Ventricul || TOTALS |
| Se +P || Se +P || Se +P || Acc | Se | +P |
| 99% 46% || 0% 0% || 81% 99% || 60% | 60% | 48% |

Unbalanced Results for
-----------------------
| Normal || Supravent || Ventricul || TOTALS |
| Se +P || Se +P || Se +P || Acc | Se | +P |
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| 99% 86% || 0% 0% || 81% 99% || 91% | 60% | 62% |

In the case that you would like to integrate a2hbc to your software, or you have a
proprietary ECG format not allowed by a2hbc, the best choice is that you pass the ECG
samples directly. For doing this, you will have follow the requirements in Table A.1
indicated with a 2, and

• ECG is the ECG signal matrix of nsamp× nsig, in ADC samples.

• ECG_header is a struct with the ECG properties, with fields:

– freq is the sampling rate of the ECG

– nsamp is the number of samples

– nsig is the amount of leads.

– gain is a vector of nsig×1 with the gain of each lead (ADC samples/µV ).

– adczero is a vector of nsig×1 with the offset of each lead in ADC samples.

• QRS_annotations is a struct with the location of the QRS complexes, with fields:

– time is a vector of QRS_amount×1, with the sample value where the QRS
complexes are.

– ann_type [optional] is a char vector of QRS_amount×1, with each heartbeat
label. This field is for evaluating the performance of a classifier, as a result
a2hbc generates the confusion matrix seen in the examples above.

The parameters ’cant_pids’ and ’this_pid’ are explained in the next section, since were
designed for partitioning and multiprocessing of recordings. The parameter SimulateEx-
pert was designed to simulate the expert input by using the expert annotations provided
in the annotations files, or via the QRS_annotations parameter. ClusterPresence is a
threshold for evaluating the qualified majority in operating modes auto or slightly-assisted.
The lower this threshold the more confident the algorithm in labeling all heartbeats in
a cluster as the centroid. Repetitions was designed to evaluate multiple times the algo-
rithm performance in a particular recording. As a result, the computed confusion matrix
is a 3-D cube with the amount of repetitions as the third coordinate. With this kind
of confusion matrix it is possible to estimate the dispersion of the results presented in
[Llamedo Soria, 2012, Llamedo and Martínez, 2012b]. Finally, the ClusteringRepetitions
parameter requires a special explanation, since it was not described in the bibliography.
In few words, it is a trick for increasing the clustering resolution for complex or long-term
recordings. The higher this parameter, the higher the amount of cluster found and, at
the end, the assistance required by the algorithm.

From the user point of view, you should be satisfied with this clue, however if you
are interested in the trick, I will explain it with a toy example. Consider the following
clustering problem, where we are interested in finding 3 clusters.
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1 QRS_amountHeartbeats

Cluster 1

Cluster 2

Cluster 3

2

Now if we repeat the same process two times, our clustering algorithm does not guar-
antee to find the same partition. However our intuition tells us that in case where the
classes are well separated, the partition is likely to remain very similar through the rep-
etitions. In the opposite case, the partition can change. Then after N repetitions, the
QRS_amount heartbeats were assigned N cluster labels.

1 QRS_amountHeartbeats

Cluster 1

Cluster 2

Cluster 3

2

Repetition 1

2

3

4

5

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8

So the number of clusters increases according to N. In order to keep this number in
the order of tens, it was used a merging criterion for similar clusters. The similarity is
measure in terms of labeling differences across the repetitions. For example:

Distance 0 Distance 1 Distance 5

Then we can group together some clusters based on this labeling distance. The a2hbc
group together clusters within a distance of 0.2·N .

A.3.2 The power of a high performance computing cluster

Maybe one of the most useful features of a2hbc is that was developed for being used in
a high performance computing cluster. The parameters cant_pids and this_pid controls
the partitioning of the work for each recording.
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Table A.1: List of parameters of a2hbc
Name Value Descriptiondefault validation
’recording_name’ – char The file name of the ECG

recording1

’recording_format’ – {MIT, ’ISHNE’, ’AHA’,
’HES’, ’MAT’}

The format of the ECG
recording1

’ECG’ – numeric The ECG samples2

’ECG_header’ – struct Struct with ECG
features2,3

’QRS_annotations’ – numeric && xi ≥ 1, ∀i Sample occurrence of QRS
complexes2

’op_mode’ ’auto’ {’auto’, ’slightly-assisted’,
’assisted’} || 1 ≤ x ≤ 3

’cant_pids’ 1 x ≥ 1 How many processes in
total to compute this
recording3

’this_pid’ 1 x ≥ 1 && x ≤’cant_pids’ Which of the processes is
this.3

’CacheData’ true logical Save intermediate results
to speed-up re-processing.

’InteractiveMode’ false logical Show the control panel
after processing the
recording.

’SimulateExpert’ false logical Use expert annotations to
simulate expert
interaction3

’tmp_path’ – char Path to store intermediate
results.

’NumOfClusters’ 12 x > 1 Number of cluster to
search.

’ClusteringRepetitions’ 1 1 ≤ x ≤ 10 Repetitions of the
clustering process.3

’ClusterPresence’ 75 0 ≤ x ≤ 100 Threshold for the qualified
majority.3

’Repetitions’ 1 x ≥ 1 Repetitions to evaluate
this recordings.3

1 and 2 indicates groups of parameters that can not be mixed. You can specify file name
and format, or pass the ECG samples, QRS annotations, etc.
3 See a complete explanation in the text, or in the references [Llamedo Soria, 2012, Llamedo and Martínez, 2012b].
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% Computer 1

lab1 = a2hbc ( ...
’recording_name ’, [ ’.’ filesep ’example recordings ’ filesep ’208. dat ’], ...
’recording_format ’, ’MIT ’, ...
’this_pid ’, 1, ...
’cant_pid ’, 2, ...
’op_mode ’, ’auto ’);

% Computer 2

lab2 = a2hbc ( ...
’recording_name ’, [ ’.’ filesep ’example recordings ’ filesep ’208. dat ’], ...
’recording_format ’, ’MIT ’, ...
’this_pid ’, 2, ...
’cant_pid ’, 2, ...
’op_mode ’, ’auto ’);

% Somewhere : results collection and processing
lab = [lab1; lab2 ];
...

It is recommended to adapt this features to the batch manager available in your
computing facilities. In the case of our University, the batch manager used is Condor
[Condor, 2010]. You can ask me for the condor implementation for multiprocessing, but
the details of this are outside of the scope of this tutorial.
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ESTTDB European ST-T Database

F Fusion of normal and ventricular beats

FP Fiducial point. QRS complex location

FS Feature selection
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LDC-C Linear discriminant classifier compensated for class imbalance
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MITBIH-ST The MIT-BIH ST Change Database

MLP multilayer perceptron
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RR Interval between two consecutive heartbeats.
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S Supraventricular beats

SCD Sudden cardiac death

SCS Specific conduction system

SFFS Sequential floating feature selection algorithm
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S Sensitivity



156 APPENDIX A. MATLAB IMPLEMENTATION



List of Figures

1.1 Structure of the heart, and course of blood flow through the heart chambers
and heart valves. Diagrams based on image http://en.wikipedia ... -en.svg
under license CS-BY-SA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Course of the blood flow through the heart, and the electrical conduction
system of the heart. Diagrams based on image http://commons.wikimedia
... Heart.svg under license CS-BY-SA. . . . . . . . . . . . . . . . . . . . . 3

1.3 Wiggers diagram. Events of the cardiac cycle for left ventricular function,
showing changes in left atrial pressure, left ventricular pressure, aortic pres-
sure, ventricular volume, and the electrocardiogram. . . . . . . . . . . . . . 4

1.4 Reproduced from [Natale and Wazni, 2007]. Top panel: on left, the action
potential in contractile cells, and on the right in SCS cell. Bottom panel:
predominant currents during the different phases of Na-channel-dependent
action potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Based on Figure 2.20 from [Bayés de Luna, 2010]. Refractory period of
ventricular cells. During absolute refractory period (ARP) depolarization
is not possible. During the relative refractory period (RRP), an increased
activation is necessary to depolarize the cell. After the total refractory
period, the cell is able to produce a normal AP upon activation. . . . . . . 6

1.6 The morphology and timing of the action potentials from different regions
of the heart and the related cardiac cycle of the ECG as measured on
the body surface. Based on Figure 6.2 from [Sörnmo and Laguna, 2005].
Diagrams based on image http://commons.wikimedia ... Heart.svg under
license CS-BY-SA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 The normal sequence of ventricular depolarization. The instantaneous
heart vector is shown at four times during the process: 10, 20, 40, and
60 milliseconds. From Massie and Walsh, 1960. . . . . . . . . . . . . . . . 8

1.8 Einthoven limb leads and Einthoven triangle. The Einthoven triangle is an
approximate description of the lead vectors associated with the limb leads.
Diagrams based on image http://commons.wikimedia ... planes.svg under
license CS-BY-SA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

157

http://en.wikipedia.org/wiki/File:Heart_diagram-en.svg
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:ConductionsystemoftheheartwithoutHeart.svg
http://commons.wikimedia.org/wiki/File:ConductionsystemoftheheartwithoutHeart.svg
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:ConductionsystemoftheheartwithoutHeart.svg
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Human_anatomy_planes.svg
http://creativecommons.org/licenses/by-sa/3.0/deed.en


158 LIST OF FIGURES

1.9 Wilson central terminal and precordial leads position on the torso. Di-
agrams based on image http://commons.wikimedia ... planes.svg under
license CS-BY-SA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.10 The projections of the lead vectors of the 12-lead ECG system in three
orthogonal planes when one assumes the volume conductor to be spherical
homogeneous and the cardiac source located in the center. Diagrams based
on image http://commons.wikimedia ... planes.svg under license CS-BY-SA. 12

1.11 Normal Vectocardiogram and the projection to the 12-lead ECG. . . . . . . 13

1.12 Electrical reentry, the mechanism responsible for initiating and maintaining
atrial fibrillation. Reproduced from [Grubb and Furniss, 2001]. . . . . . . . 16

1.13 Types of after depolarization currents. EAD, early after depolarization;
DAD, delayed after depolarization. Reproduced from [Natale and Wazni,
2007]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.14 Several examples of sinus rhythms. . . . . . . . . . . . . . . . . . . . . . . 17

1.15 Example of an atrial escape beat. . . . . . . . . . . . . . . . . . . . . . . . 18

1.16 Examples of A-V nodal escape beats. . . . . . . . . . . . . . . . . . . . . . 19

1.17 Example of a ventricular escape beat. . . . . . . . . . . . . . . . . . . . . . 20

1.18 Examples of atrial premature beats. The blue triangles indicate the pre-
mature beats in the top panel, and the non-conducted beats in the bottom. 20

1.19 Examples of ventricular premature beats. . . . . . . . . . . . . . . . . . . 23

2.1 Baseline wander removal procedure with median filters. . . . . . . . . . . . 40

2.2 Transfer function of the low-pass filter used for ECG preprocessing. Note
the adequate attenuation at powerline frequencies and the low distortion
introduced in a normal heartbeat. . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Discrete wavelet transform implementation schemes (dyadic grid). . . . . . 44

2.4 Wavelet prototype used in this thesis. A quadratic spline that matches the
derivative of the convolution of four rectangular pulses. . . . . . . . . . . . 45

2.5 Transfer functions of the filter-bank used to calculate the DWT up to the
5th scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Transfer function of the low-pass filter used for ECG preprocessing. . . . . 47

2.7 QRS width measured for a normal and a ventricular heartbeat. . . . . . . . 48

2.8 Illustration of the features calculated from the VCG loop computed with
the two available leads, for a normal (continuous line) and ventricular (dot-
ted line) beats. The maximum value of the loop and the angle at this point
are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

http://commons.wikimedia.org/wiki/File:Human_anatomy_planes.svg
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Human_anatomy_planes.svg
http://creativecommons.org/licenses/by-sa/3.0/deed.en


LIST OF FIGURES 159

2.9 Illustration of the features calculated from the wavelet transform for the
same normal and ventricular beat in Fig. 2.8. The two most important
peaks from the QRS complex and T wave are indicated with an asterisk,
and the relative distances (di) to the most important peak in the fourth
scale. Also the scale where the QRS complex is centered (SLQRS) is shown
for both types of heartbeats used for its calculation (only for one lead). . 50

2.10 Illustration of the features calculated from the wavelet correlation signals
for the same normal and ventricular beats. The autocorrelation signal of
the QRS complex at scale 4 is shown for both leads (rx and ry) as well
as the cross-correlation signal (rxy) at the bottom. The zero-crossings and
peaks of interest are indicated with an asterisk. . . . . . . . . . . . . . . . 52

2.11 Excerpt of record 201 of MIT-BIH database. Normal (N) and ventricu-
lar (V) AAMI class heart beats. In the top Figures both ECG leads are
shown with their corresponding wavelet decomposition (scales 2-5). The
lower panel depicts the RMS composition of both leads wavelet transform
(WRMS

s (k)). Some features measured in the WRMS
s (k) signal are also shown. 53

2.12 The three classifiers, and their discriminant functions, for a three imbalanced-
classes problem. Note the different regions caused by the classifiers trained
over the same data. The imbalance is evidenced in the difference between
the LDC and the LDC-C. See in the lower panels the effect of the class
priors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.13 Example of wrapped dataset A showing the original dataset before and
after considering feature 1 and 2 as directional in the (−π : π], domain. . . 58

2.14 Example of semi-wrapped dataset A showing the original dataset before
and after considering feature 1 as directional in the (−π : π], domain. . . . 59

2.15 In the top panels, wrapped dataset using the approximated wrapped Gaus-
sian distribution and the linear Gaussian distribution respectively. In the
bottom panels the decision region for both classes and both distributions
is showed. Region filled with red color is for Class 1, corresponding to the
blue crosses. Note the huge difference on classification performance. . . . . 60

2.16 In the top panels, semi-wrapped dataset using the approximated wrapped
Gaussian distribution and the linear Gaussian distribution respectively. In
the bottom panels the decision region for both classes and both distribu-
tions is showed. Region filled with red color is for Class 1, corresponding
to the blue crosses. Note the huge difference on classification performance. 61

2.17 Example of the outliers removal when estimating the parameters for both
types of classifiers used. In both examples the features used are RR[i −
1] and RR[i]. Note the different shape of the classification regions as a
consequence of the the outliers removal in the lower panels. . . . . . . . . . 62

2.18 Scheme showing the three data division methods used. . . . . . . . . . . . 63



160 LIST OF FIGURES

2.19 Flow diagram of the sequential floating feature selection (SFFS) algorithm
used for the feature selection among d features. . . . . . . . . . . . . . . . 67

3.1 Block diagram describing the experiments performed in this chapter. In
panel a) the feature selection algorithm is summarized, indicating the train
and validation dataset division, as well as the different parameters of the
algorithm. In panel b) is shown the methodology to obtain the best per-
forming model among the different searches performed. Finally in panel c),
the best performing model is selected for the final performance evaluation
in the test datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Example of a particular SFFS search. The left axis represents the criterion
value, and is matched with the blue signal. The colored axis on the right
indicates the index of a feature, and the abscissas the iterations of the
algorithm. For this example we restricted the search for 45 features, so the
first feature in the pool has color dark blue, and the last dark red. The
height of the bar is related to the feature model size, at iteration 1 we have
a model with only 1 feature, and at iteration 176, a model with all the 45
features. The best model in this search was found soon, at iteration 6 with
only 7 features. A summary of all the searches performed is shown in Table
3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Toy example where a two-lead ECG excerpt is also interpreted geometri-
cally, and PCA transformation is performed. Note the rotation involved in
the PCA transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Examples of using PCA in 12-lead ECG recordings which includes normal
and supraventricular heartbeats. Only the first two components, PCA1,2,
are retained. The PCA weights (or basis) are calculated in the QRS com-
plex region limited by a dotted box. Note the similar weight patterns for
the normal and supraventricular classes. These patterns depends on the
heartbeat morphology as can be seen for the ventricular and fusion classes
in Figure 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Examples of using PCA in 12-lead ECG recordings which includes fusion
and ventricular heartbeats. Only the first two components, PCA1,2, are
retained. The PCA weights (or basis) are calculated in the QRS complex
region limited by a dotted box. . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Illustration of the features calculated from the wavelet correlation signals.
The autocorrelation sequence of the QRS complex at scale 4 is shown
for both 12L-PCA and WT-PCA strategy. The calculated features, zero-
crossings and peaks of the autocorrelation sequence, are indicated with an
asterisk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



LIST OF FIGURES 161

5.1 Overview of the proposed algorithm. There is a graphical description in
the center of the scheme about the task carried out by each block. The toy-
example in the middle is also commented in the text to better understand
the three modes of operation. . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Toy example of a non-Gaussian distribution with several amount of clus-
ters to be found. The elliptic equiprobable contour shows the estimated
Gaussian distribution component at each step. Three situations of the
EM algorithm are shown: initial, middle and last iteration. Note how the
components are adapted to the data. . . . . . . . . . . . . . . . . . . . . . 113

5.3 Clustering algorithm applied to the recording 208 of MITBIH-AR database.
Only two clusters are shown for simplicity. In the top panel one with normal
heartbeats, and below one with ventricular heartbeats. Within each panel,
some heartbeats sampled from each cluster, from left to right, the centroid
heartbeat and the 10 closer and farther heartbeats to the centroid. The
red dashed lines indicates the heartbeat position. The rhythm evolution
and the morphology details are also shown below. Note some bad-clustered
heartbeats in the farther examples. . . . . . . . . . . . . . . . . . . . . . . 114



162 LIST OF FIGURES



List of Tables

2.1 Original annotation format used in the databases. . . . . . . . . . . . . . 31
2.2 AAMI class conversion matrices for the formats used. . . . . . . . . . . . 32
2.3 Databases and datasets used in this thesis with its class representation. . 38

3.1 Class distribution of the databases used and division of the MITBIH-AR
database into training (DS1) and testing (DS2) sets. Recordings with
paced beats were excluded. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Summary of the best performing models found with the SFFS algorithm
separating all AAMI2 classes. . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Performance comparison between the model selected in Table 3.2 and the
reference classifier [de Chazal et al., 2004] separating all AAMI2 classes in
DS2 of MITBIH-AR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Features used in the model selected in Table 3.2 for the final performance
evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Performance comparison between the model selected in Table 3.2 and the
reference classifier [de Chazal et al., 2004] separating all AAMI classes in
DS2 of MITBIH-AR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Confusion matrix as a result of separating all AAMI2 classes in the IN-
CART database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Detailed results grouping by recording (or subject). . . . . . . . . . . . . . 80
3.8 Detailed results grouped by recordings in the INCART database . . . . . . 81

4.1 Databases used in this work. Heart beats classes are N: normal, S: supraven-
tricular, V: ventricular, F: fusion, and Q: unknown. . . . . . . . . . . . . . 84

4.2 Features used in the model obtained in [Llamedo and Martínez, 2011a] only
for two-lead recordings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Performance comparison between the different strategies separating AAMI2
classes (N, S, V’) in INCART. . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Performance comparison between the different strategies separating AAMI2
classes (N, S, V’) in three pseudo-orthogonal leads from INCART. . . . . . 91

4.5 Performance for all databases where the generalization of the WT-PCA
strategy was studied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

163



164 LIST OF TABLES

4.6 Features distributed by categories. . . . . . . . . . . . . . . . . . . . . . . . 96
4.7 DS1 Division Scheme for MLP Evaluation . . . . . . . . . . . . . . . . . . 97
4.8 Classifier Performances on DS2 Obtained for the most Relevant Studied

Classifier Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.9 Relevant Indices for AAMI standard and Inter-Patient Division Conform

Studies, Including Present Study’s ones. . . . . . . . . . . . . . . . . . . . 99
4.10 Confusion matrices of the results presented in Table 4.5 for 12-leads databases.101
4.11 Confusion matrices of the results presented in Table 4.5 for 3-leads databases.102
4.12 Confusion matrices of the results presented in Table 4.5 for 2-leads databases.103
4.13 Confusion matrices of the results presented in Table 4.5 for 2-leads databases.104
4.14 Confusion matrices of the results presented in Table 4.5 for 2-leads databases.105

5.1 feature model used by the automatic classifier for recordings of 2 or more
leads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Features used with the EMC algorithm. . . . . . . . . . . . . . . . . . . . . 115
5.3 Performance obtained in the development dataset for the election of K and

α parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.4 Performance comparison with reference algorithms. . . . . . . . . . . . . . 118
5.5 Generalization evaluation of the proposed algorithm for all databases. . . 119
5.6 Results for the datasets most used in other works, with the AAMI labeling. 121
5.7 Confusion matrices of the results presented in Table 5.5 for AHA database. 125
5.8 Confusion matrices of the results presented in Table 5.5 for ESTTDB

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.9 Confusion matrices of the results presented in Table 5.5 for INCART database.127
5.10 Confusion matrices of the results presented in Table 5.5 for LTSTDB

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.11 Confusion matrices of the results presented in Table 5.5 for MITBIH-AR

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.12 Confusion matrices of the results presented in Table 5.5 for DS2 of MITBIH-

AR database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.13 Confusion matrices of the results presented in Table 5.5 for MITBIH-LT

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.14 Confusion matrices of the results presented in Table 5.5 for MITBIH-ST

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.15 Confusion matrices of the results presented in Table 5.5 for MITBIH-SUP

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.16 Confusion matrices of the results presented in Table 5.6 for MITBIH-AR

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.17 Confusion matrices of the results presented in Table 5.6 for DS2 of MITBIH-

AR database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



LIST OF TABLES 165

A.1 List of parameters of a2hbc . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



166 LIST OF TABLES



Bibliography

AAMI-EC57. Testing and reporting performance results of cardiac rhythm and ST-
segment measurement algorithms. American National Standard, ANSI/AAMI/ISO
EC57, 1998–2008.

Burak Acar and Hayrettin Köymen. SVD-based on-line exercise ECG signal orthogonal-
ization. 46:311 – 321, 1999.

American Heart Association. American heart association ECG database. URL https:
//www.ecri.org.

Claus Bahlmann. Directional features in online handwriting recognition. Pattern Recog-
nition, 39(1):115 – 125, 2006. ISSN 0031-3203. doi: DOI:10.1016/j.patcog.2005.05.012.

Antoni Bayés de Luna. Electrocardiografía clínica de las arritmias. Publicaciones Per-
manyer, 2010.

P. de Chazal, M O’Dwyer, and R. B. Reilly. Automatic classification of heartbeats using
ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical
Engineering, 51:1196–1206, 2004.

P. de Chazal and R. B. Reilly. A patient-adapting heartbeat classifier using ECG morphol-
ogy and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 53:
2535–2543, 2006.

I. Christov, German Gómez-Herrero, Vessela Krasteva, I Jekova, A Gotchev, and Karen
Egiazarian. Comparative study of morphological and time-frequency ECG descriptors
for heartbeat classification. Elsevier Medical Engineering & Physics, 28:876–887, 2006.

V Chudácek, G Georgoulas, L Lhotská, C Stylios, M Petrík, and M Cepek. Examining
cross-database global training to evaluate five different methods for ventricular beat
classification. Physiological Measurement, 30(7):661, 2009. URL http://stacks.iop.
org/0967-3334/30/i=7/a=010.

Albert Cohen and Jelena Kovačević. Wavelets: The mathematical background. Proceed-
ings of the IEEE, 84(4):514–522, April 1996.

167

https://www.ecri.org
https://www.ecri.org
http://stacks.iop.org/0967-3334/30/i=7/a=010
http://stacks.iop.org/0967-3334/30/i=7/a=010


168 LIST OF TABLES

Jacob Cohen. A coefficient of agreement for nominal scales. Educational and Psychological
measurements, 20:37–46, 1960. doi: 10.1177/001316446002000104.

Condor. Condor high throughput computing system, 2010. URL http://www.cs.wisc.
edu/condor/.

Dirección de Estadísticas e Información en Salud, Feb. 2012. URL http://www.deis.
gov.ar/.

R.P.W. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. deRidder, D.M.J. Tax, and
S. Verzakov. PR-tools, a matlab toolbox for pattern recognition, 2008. URL http:
//www.prtools.org.

W Einthoven. Weiteres über das elektrokardiogram. Pflüger Arch. ges. Physiol., 122:
517–48, 1908.

Peter Filzmoser, Ricardo Maronna, and Mark Werner. Outlier identification in high
dimensions. Computational Statistics & Data Analysis, 52:1694 – 1711, 2008. doi:
10.1016/j.csda.2007.05.018.

R Fischer, MF Sinner, R Petrovic, E Tarita, S Kääb, and T K Zywietz. Testing the
quality of 12 lead holter analysis algorithms. In Computers in Cardiology, volume 35,
pages 453–456, 2008.

Ary L. Goldberger, Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch.
Ivanov, Roger G. Mark, Joseph E. Mietus, George B Moody, Chung-Kang Peng, and
H. Eugene Stanley. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new
research resource for complex physiologic signals. Circulation, 101(23):e215–e220, 2000.

SD Greenwald. Improved detection and classification of arrhythmias in noise-corrupted
electrocardiograms using contextual information. PhD thesis, Harvard-MIT Division of
Health Sciences and Technology, 1990.

Neil R Grubb and Steve Furniss. Radiofrequency ablation for atrial fibrillation. BMJ,
322(7289):777–780, 3 2001. doi: 10.1136/bmj.322.7289.777.

Arthur Guyton and John Hall. Textbook of Medical Physiology. Elsevier Saunders, 11th
edition, 2006. ISBN 0-8089-2317-X.

F. van der Heijden, R.P.W. Duin, D. de Ridder, and D.M.J. Tax. Classification, Parameter
Estimation and State Estimation. John Wiley & Sons, 2005. doi: 10.1002/0470090154.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527–1554, 2006.

http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/
http://www.deis.gov.ar/
http://www.deis.gov.ar/
http://www.prtools.org
http://www.prtools.org


LIST OF TABLES 169

Y. H. Hu, S. Palreddy, and WJ Tompkins. A patient-adaptable ECG beat classifier
using mixture of experts approach. IEEE Transactions on Biomedical Engineering, 44:
891–899, 1997.

OT Inan, L Giovangrandi, and GTA Kovacs. Robust neural-netwok-based classification of
premature ventricular contractions using wavelet transform and timing interval features.
IEEE Transactions on Biomedical Engineering, 53:2507–2515, 2006.

Turker Ince, Serkan Kiranyaz, and Moncef Gabbouj. A generic and robust system for auto-
mated patient-specific classification of ECG signals. IEEE Transactions on Biomedical
Engineering, 56:1415–1426, 2009.

Instituto Nacional de Estadística. Inebase, Feb 2012. URL http:/www.ine.es/inebase/.

Ovidiu Ivanciuc. Applications of support vector machines in chemistry. Rev. Comput.
Chem., 23:291–400, 2007.

F. Jager, A. Taddei, G. Moody, M. Emdin, G. Antoli, R. Dorn, A. Smrdel, C. Marchesi,
and R. Mark. Long-term ST database: A reference for the development and evaluation
of automated ischaemia detectors and for the study of the dynamics of myocardial
ischaemia. Medical and Biological Engineering and Computing, 41:172–182, 2003. ISSN
0140-0118. URL http://dx.doi.org/10.1007/BF02344885. 10.1007/BF02344885.

Wei Jiang and Seong Kong. Block-based neural networks for personalized ECG signal
classification. IEEE Transactions on Biomedical Engineering, 18:1750–1761, 2007.

Thorsten Joachims. Transductive inference for text classification using support vector
machines. pages 200–209. Morgan Kaufmann, 1999.

Serkan Kiranyaz, Turker Ince, Jenni Pulkkinen, and Moncef Gabbouj. Personalized long-
term ECG classification: A systematic approach. Expert Systems with Applications, 38
(4):3220 – 3226, 2011. ISSN 0957-4174. doi: DOI:10.1016/j.eswa.2010.09.010. URL
http://www.sciencedirect.com/science/article/pii/S0957417410009140.

Vessela Krasteva and Irena Jekova. Qrs template matching for recognition of ventricular
ectopic beats. Annals of Biomedical Engineering, 35:2065–2076, 2007. ISSN 0090-6964.
URL http://dx.doi.org/10.1007/s10439-007-9368-9. 10.1007/s10439-007-9368-9.

M. Lagerholm, C Peterson, G Braccini, L Edenbrandt, and L Sörnmo. Clustering ECG
complexes using hermite functions and self-organizing maps. IEEE Transactions on
Biomedical Engineering, 47:838–848, 2000.

P Laguna, R Jané, and P Caminal. Automatic detection of wave boundaries in multilead
ECG signals: Validation with the cse database. Computers and Biomedical Research,
27(1):24–60, 1994. URL http://www.physionet.org/physiotools/ecgpuwave/.

http:/www.ine.es/inebase/
http://dx.doi.org/10.1007/BF02344885
http://www.sciencedirect.com/science/article/pii/S0957417410009140
http://dx.doi.org/10.1007/s10439-007-9368-9
http://www.physionet.org/physiotools/ecgpuwave/


170 LIST OF TABLES

G.de Lannoy. Feature relevance assessment in auntomatic inter-patient heartbeat classifi-
cation. In BIOSIGNALS 2010 - International Conference on Bio-inspired Systems and
Signal Processing, 2010.

Cuiwei Li, Chongxun Zheng, and Changfeng Tai. Detection of ECG characteristic points
using wavelet transforms. 42(1):21–28, January 1995.

Mariano Llamedo Soria. Automatic Processing and Classification of Electrocardiogram for
the Detection of Risk Indexes. PhD thesis, Universidad de Zaragoza, June 2012.

Mariano Llamedo. Argentine-aragonese heartbeat classifier (a2hbc), 2012. URL http:
//code.google.com/p/a2hbc/.

M. Llamedo and J.P. Martínez. Heartbeat classification using feature selection driven by
database generalization criteria. IEEE Transactions on Biomedical Engineering, 58(3):
616–625, march 2011a. ISSN 0018-9294. doi: 10.1109/TBME.2010.2068048.

M. Llamedo and J. P. Martínez. Cross-database evaluation of a multilead heartbeat
classifier. IEEE Transactions on Information Technology in Biomedicine, In press:–,
2012a.

M. Llamedo and J. P. Martínez. An automatic patient-adapted ECG heartbeat classifier
allowing expert assistance. IEEE Transactions on Biomedical Engineering, Currently
under review, with major revision:–, 2012b.

M. Llamedo and J. P. Martínez. An ECG classification model based on multilead wavelet
transform features. In Computers in Cardiology 2007, volume 34, pages 105–108. IEEE
Computer Society Press, 2007.

S. Mallat. A Wavelet tour of signal processing. Academic Press, second edition, 1999.

Stephane Mallat. Multifrequency channel decompositions of images and wavelet models.
37:2091–2110, December 1989.

S. Mallat and S. Zhong. Characterization of signals from multiscale edge. IEEE Trans-
actions Pattern Analysis and Machine Intelligence, 14(7):710–732, 1992.

J Malmivuo and R Plonsey. Bioelectromagnetism. Oxford University Press, 1995. ISBN
0-19-505823-2.

T. Mar, S. Zaunseder, J. P. Martínez, M. Llamedo, and R. Poll. Optimization of ECG
classification by means of feature selection. Biomedical Engineering, IEEE Transactions
on, 58(8):2168 –2177, aug. 2011. ISSN 0018-9294. doi: 10.1109/TBME.2011.2113395.

R. Mark, G. Moody, and SD. Greenwald. Mit-bih supraventricular arrhythmia database.
http://www.physionet.org/physiobank/database/svdb/, 1990.

http://code.google.com/p/a2hbc/
http://code.google.com/p/a2hbc/


LIST OF TABLES 171

J P Martínez, R Almeida, S Olmos, AP Rocha, and P Laguna. A wavelet-based ECG
delineator: Evaluation on standard databases. IEEE Transactions on Biomedical En-
gineering, 51:570–581, 2004.

R Mason and L Likar. A new system of multiple leads exercise electrocardiography. Am.
Heart J., 71:(2):196–205, 1966.

GB Moody and RG Mark. The impact of the MIT-BIH arrhythmia database. IEEE Eng
in Med and Biol, 20(3):45–50, May-June 2001.

Andrea Natale and Oussama Wazni. Handbook of Cardiac Electrophysiology. Informa
Healthcare, 2007. ISBN-10: 1 84184 620 1.

K.S. Park, B.H. Cho, D.H. Lee, S.H. Song, and J.S. Lee. Hierarchical support vector
machine. In Computers in Cardiology 2008, volume 35, pages 229–232. IEEE Computer
Society Press, 2008.

P Pudil, J Novovicova, and J Kittler. Floating search methods in feature selection. Pattern
Recognition Letters, 15(11):1119–1125, 1994.

P.J. Rousseeuw. Least median of squares regression. Journal of the American Statistical
Association, 79:871–881, 1984.

P.J. Rousseeuw and K. Van Driessen. A fast algorithm for the minimum covariance
determinant estimator. Technometrics, 41:212–223, 1999.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by
error propagation. pages 318–362, 1986.

J. S. Sahambi, S.N. Tandon, and R. K. P. Bhatt. Wavelet based ST-segment analysis. 36
(9):568–572, September 1998.

Zeeshan Syed, John Guttag, and Collin Stultz. Clustering and symbolic analysis of cardio-
vascular signals: discovery and visualization of medically relevant patterns in long-term
data using limited prior knowledge. EURASIP J. Appl. Signal Process., 2007:97–97,
January 2007. ISSN 1110-8657. doi: http://dx.doi.org/10.1155/2007/67938. URL
http://dx.doi.org/10.1155/2007/67938.

L. Sörnmo and P. Laguna. Bioelectrical Signal Processing in Cardiac and Neurological
Applications. Elsevier, 2005. ISBN 0-12-437552-9.

A. Taddei, G. Distante, M. Emdin, P. Pisani, G. B. Moody, C. Zeelenberg, and C. March-
esi. The european ST-T database: standard for evaluating systems for the analy-
sis of ST-t changes in ambulatory electrocardiography. European Heart Journal, 13
(9):1164–1172, 1992. URL http://eurheartj.oxfordjournals.org/content/13/9/
1164.abstract.

http://dx.doi.org/10.1155/2007/67938
http://eurheartj.oxfordjournals.org/content/13/9/1164.abstract
http://eurheartj.oxfordjournals.org/content/13/9/1164.abstract


172 LIST OF TABLES

G. J. Taylor. 150 Practice ECGs: Interpretation and Review. Blackwell Science, 2002.
ISBN 0-632-04623-6.

S. Verboven and M. Hubert. Libra: a matlab library for robust analysis. Chemometrics
and Intelligent Laboratory Systems, 75:127–136, 2005. URL http://wis.kuleuven.
be/stat/robust/LIBRA.html.

AD Waller. A demonstration on man of electromotive changes accompanying the heart’s
beat. J. Physiol. (Lond.), 8:229–34, 1887.

R. Watrous and G. Towell. A patient-adaptive neural network ECG patient monitoring
algorithm. In Computers in Cardiology 1995, pages 229 –232, sep 1995. doi: 10.1109/
CIC.1995.482614.

FN Wilson, AG Macleod, and PS Barker. Potential variations produced by the heart beat
at the apices of einthoven’s triangle. Am. Heart J., 7:207–11, 1931.

World Health Organization. Cardiovascular diseases, 2012. URL http://www.who.int/
cardiovascular_diseases/en/.

http://wis.kuleuven.be/stat/robust/LIBRA.html
http://wis.kuleuven.be/stat/robust/LIBRA.html
http://www.who.int/cardiovascular_diseases/en/
http://www.who.int/cardiovascular_diseases/en/

	332.pdf
	Title Page
	Abstract
	Resumen
	Conclusiones

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 The heart
	1.2.2 From the action potentials to the electrocardiogram
	1.2.3 Arrhythmias 
	1.2.4 Manifestation of arrhythmias on the ECG 

	1.3 Previous works
	1.4 Objective
	1.5 Outline of the Thesis

	2 Materials and Methods
	2.1 ECG Databases
	2.1.1 AAMI class labeling recommendations
	2.1.2 MIT-BIH Arrhythmia Database (MITBIH-AR)
	2.1.3 MIT-BIH Supraventricular Arrhythmia Database (MITBIH-SUP)
	2.1.4 St. Petersburg Institute of Cardiological Technics (INCART) 12-lead Arrhythmia Database
	2.1.5 European ST-T Database (ESTTDB)
	2.1.6 The MIT-BIH ST Change Database (MITBIH-ST)
	2.1.7 The Long-Term ST Database (LTSTDB)
	2.1.8 American Heart Association (AHA) ECG Database 

	2.2 Supercomputing Resources
	2.3 Signal Processing
	2.3.1 ECG preprocessing
	2.3.2 Wavelet Transform 
	2.3.3 Prototype Wavelet

	2.4 Heartbeat classification
	2.4.1 Classification Features
	2.4.2 Discriminant Functions
	2.4.3  Domain Handling for some Features
	2.4.4 Outlier Removal
	2.4.5 Performance evaluation
	2.4.6 Model Selection and Dimensionality Reduction


	3 Automatic ECG Heartbeat Classification
	3.1 Introduction
	3.2 Methodology
	3.2.1 ECG Databases
	3.2.2 ECG preprocessing
	3.2.3 Features and Classifiers
	3.2.4 Experiment Setup

	3.3 Results
	3.4 Discussion and Conclusions
	3.A Detailed Results

	4 Extensions to the Automatic Classifier
	4.1 Introduction
	4.2 Multilead classification
	4.2.1 Material and methods
	4.2.1.1 Robust Covariance Matrix Computation 

	4.2.2 Results
	4.2.3 Discussion and conclusions

	4.3 Neural network classifier
	4.3.1 Feature Sets
	4.3.2 Feature Selection 
	4.3.3 Multi-Layer Perceptron
	4.3.4 Classifier Combination
	4.3.5 Results
	4.3.6 Discussion and conclusions

	4.A Detailed Results

	5 Patient-Adapted ECG Heartbeat Classification
	5.1 Introduction
	5.2 Methodology
	5.2.1 ECG databases
	5.2.2 Heartbeats classification
	5.2.3 Automatic classifier
	5.2.4 Clustering algorithm
	5.2.5 Feature selection for clustering
	5.2.6 Performance evaluation

	5.3 Results
	5.4 Discussion and Conclusions
	5.A Detailed Results

	6 Conclusions and Future Work
	6.1 Summary
	6.2 Conclusions
	6.3 Future work

	Scientific Contributions
	A Matlab Implementation
	A.1 Introduction
	A.2 Features
	A.3 Installation and Usage
	A.3.1 The power of the command-line
	A.3.2 The power of a high performance computing cluster

	A.4 Acknowledgments

	Acronyms
	Figures
	Tables
	Bibliography


