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ABSTRACT

The magnetic field source is the most expensive element of a magnetic refrigeration device. The design of an efficient magnet with high and
low field regions, using reduced volumes of permanent magnets, is of paramount importance for the practical application of this new tech-
nology. A two-pole rotary magnet formed by sectors of oriented hard magnets and soft iron pieces is optimized in angular width and mag-
netization direction of each sector. A quadratic approximation is used for the optimization of the defining angles. This procedure provides
the parameters that result in extreme values of a given functional F, defined as an efficiency variable of the working device. The procedure
also gives the correlation between parameters and the relative importance of the deviations with respect to their mathematical optimal
values. An optimized magnet has also been built, and the resulting calculated fields are compared with experimental measurements in the
real system.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5114702

I. INTRODUCTION

After the discovery of the so-called “giant magnetocaloric
effect”1 (GMCE), magnetic refrigeration at room temperature (RT)
became a competitive technology to other conventional methods.
To date, more than 50 prototypes of refrigeration systems have
been published or patented. The most important and expensive
component of such a system is the magnetic field source that, for a
home device, is usually based on permanent magnets of NdFeB
alloys.2 In this context, the efficiency of a magnet has been quan-
tified by Björk et al.3 with an expression that applied to our magnet
would be

Λcool ¼ hB2=3
highi � hB2=3

low i
� �Vfield

Vmag
P field , (1)

where hB2=3
highi is the average of B2=3

high in the high field region

(similarly, hB2=3
low i in the low flux density region), with B being the

flux density in tesla. Vfield is the volume of the high field region,
Vmag is the volume of the permanent magnets, and P field is the time
fraction in which the active magnetic regenerator (AMR) is in the
high flux region. The power 2/3 arises from the dependence of the
magnetocaloric effect (MCE) near the Curie temperature in typical

materials having a second-order magnetic transition. In this expres-
sion, it turns out that, for a given design, a near zero field in the
low field region is more important than reaching a very high field
in the high field region. This parameter Λcool has been increasing
since the early 2000s from Λcool ¼ 0:054 to Λcool ¼ 0:21 with a
four-pole magnet.5 A further derivation of this design by Eriksen
et al.6 replaces almost one half of the permanent magnet material
with soft iron, with only a small reduction of the maximum field
but achieving a high increase of Λcool . However, this design has
small regions with demagnetization risk of the magnets, i.e.,
regions of the permanent magnets where B is small or even oppo-
site to the magnetization M. These regions should be made of a
harder magnetic material, which usually implies a lower magnetiza-
tion. This smart design can be improved by optimizing the angular
thickness and magnetization directions of the NdFeB sectors. Our
work deals with the optimization of these parameters and, for this
purpose, a functional F(xi) of the optimizable parameters xi is
defined with a view to its application in magnetic refrigeration.

II. DESIGN AND OPTIMIZATION

The design starts with the two-pole magnet reported
by Eriksen et al.6 The variable parameters are shown in Fig. 1.
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In order to save computing time, the calculation has been made in
2D, considering that this simplification has no relevant effect on
the optimized parameters, for the chosen dimensions. These are
the radii a, b, c, d, the azimuthal angles of the iron-magnet and
magnet-magnet interphases, α1, α2, α3, and the angles defining the
direction of magnetization of each sector, β1, β2, β3. The central
blue zone (core) is made of a magnetically soft iron with negligible
anisotropy and hysteresis. The lateral iron sectors are under a
nearly static magnetic field. Finally, the empty meniscus between
the AMR and each iron sector has circular boundaries, one of them
with the center at x ¼ aþ e, y ¼ 0, with e being another adjustable
parameter. In Fig. 1, the fields B, H, and M are symmetric with
respect to the y-axis and antisymmetric with respect to the x-axis.

For our purpose, the green region in Fig. 1 (gap) is filled with a
magnetocaloric material divided into eight sectors, covering an
angular range of 45� each. Every sector acts as an active magnetic
regenerator (AMR) along the axial direction, z-axis, perpendicular to
Fig. 1. In the normal working procedure, a cold fluid flows through
the AMRs in the two low field regions toward a cold thermal source,
while a warm one flows through the sectors in the two high field
regions toward a hot sink. The fluid is at rest in the four regions of
the intermediate field. The outer part of the magnet assembly
(rotor), including permanent magnets and iron sectors, turns around
the z axis and the fluid motion is accordingly synchronized in each
sector, when the magnetic flux is high, low, or intermediate.

To determine the magnetic field at every point, the magnetic
behavior of the materials has been modeled as follows. Far enough

from reaching the coercive field, the permanent magnets of NdFeB
alloys behave very accurately as media with constant magnetization
M. The core and two iron sectors are made of soft iron and low-
carbon steel, respectively. They can be chosen among a wide
variety of materials. For the calculations, iron is assumed to give a
linear dependence B ¼ μ(Fe)H with relative permeability
μr(Fe) ¼ μ=μ0 ¼ 200; nevertheless, this parameter has a small
effect on the field, provided that μr(Fe) � 1. The actual values of
μr(Fe) exceed safely 200, adding a negligible reluctance to the mag-
netic circuit. The value assumed in the calculations assures an
upper limit for the flux leakage to the gap in the region of lowest
flux density. The magnetization of the AMR depends on tempera-
ture and field in a nontrivial way. In reality, the magnetic work
received by an AMR per cycle and unit volume, Wm ¼ Þ

M � dB
comes explicitly from the dependence of μ on temperature. The not
always linear, nor simple, B(H) dependence of the AMR has some
measurable effect on the field,7 but it is not decisive. For the sake of
simplicity, a linear dependence has been assumed with constant
μ ¼ 2μ0, a typical average value for a magnetocaloric material near
its Curie temperature. Finally, the permeability of air is taken as μ0.
Under these conditions, M is assumed to be a constant vector in
the permanent magnets, 5 �H ¼ 5 � B=μ0 �5 �M ¼ 0. In linear
homogeneous media B ¼ μH ) 5 �H ¼ 5(1=μ) � Bþ5 � B=μ
¼ 0. In both cases, the magnetic field, H ¼ �5f, derives from a
scalar potential f obeing the Laplace equation in every region, with
the boundary conditions of continuity of the normal components
of B and the parallel components of H at every interphase. The
scalar potential has been determined by the finite element method
(FEM) with triangular meshing, using the software GMESH8 and
GETDP9 for solving the system of equations.

In a further simplification, all permanent magnets are
assumed to have the same constant M, changing only the direction
from one sector to another. Therefore, M is a scale factor. The flux
density data are given as the dimensionless quantity B=μ0M. For an
initial calculation using the FEM, a meshing of 8473 nodes and
16 752 triangles has been made. These numbers change slightly
with every modification in the system’s parameters. The size has
been chosen by making the calculations with smaller and smaller
triangles until the difference in the results was negligible. B is
found to be intense near the corners of the regions. Theoretically
B ! 1 with the logarithm of the distance to any corner, but the
assumption of constant M is not realistic near a corner and the real
corners are not mathematical vertices. Leaving the space of the
regenerators empty (making μAMR ¼ μ0), the average B(θ) over the
radius of the gap region agrees with the calculation of Eriksen et al.6

using the same geometry and NdFeB material described in this refer-
ence. Considering μAMR ¼ 2μ0, the maximum field in the gap
increases markedly. B is very small, meaning H ≃ �M, near the top
and bottom of the magnet, as also seen in Fig. 2, being the only
regions with demagnetization risk. Moreover, the high field resulting
near the central hole of Fig. 1 could have a risk of saturation of the
iron core, which can be reduced by decreasing the parameter a. In
Fig. 2, the space occupied by one of the eight AMRs, when its center
makes a polar angle θ with the maximum field position, is marked
by a solid black line. Each AMR covers an angle 2α ¼ 45�.

Instead of the usual maximum gradient method, for the opti-
mization we use the quasi-Newton method to find the zero of the

FIG. 1. Cross section of the magnet’s initial design, following the model of
Eriksen et al.,6 with the definition of the variable parameters. The outer dashed
circle marks the limit for the finite element method (FEM) calculation
(1:5 � d ¼ 150 mm), where the radial component of B has been fixed to zero.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 126, 164502 (2019); doi: 10.1063/1.5114702 126, 164502-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


gradient of a functional, given by a quadratic approximation.10 The
optimized functional F(xi), of N adjustable parameters xi
(i ¼ 1, 2, . . . , N), will be defined below, according to the specifica-
tions of the physical system. F(xi) is minimized or maximized for
the values of xi. This procedure not only gives the optimal parame-
ters but also the relative importance of each one and whether a
given parameter is optimizable or not. Near a critical point
(maximum, minimum, or saddle point), F(xi) can be expanded in
a Taylor series of several variables up to second order as

F(xi)¼ F(xi0)þ
XN
i¼1

@F
@xi

� �
xi0

(xi�xi0)

þ1
2

XN
i¼1

XN
j¼1

@2F
@xi@xj

� �
xi0

(xi�xi0)(xj�xj0)þ���

¼ F(xi0)þ
XN
i¼1

Bi(xi�xi0)þ1
2

XN
i¼1

XN
j¼1

Aij(xi�xi0)(xj�xj0)þ���

(2)

with vector (xi0) being an arbitrary point in the parameter space. If
we have some method to evaluate F(xi) for any set of parameters,
the first and second derivatives can be evaluated taking small incre-
ments Δxi by finite-difference approximations, with errors propor-
tional to Δx3i . Defining, for each pair of increments Δxi ¼ xi�xi0
and Δxj ¼ xj�xj0,

F0 ¼ F(x10, . . . , xi0, . . . , x j0, . . . , xN0),
F1 ¼ F(x10, . . . , xi0 � Δxi, . . . , x j0, . . . , xN0),

F2 ¼ F(x10, . . . , xi0 þ Δxi, . . . , x j0, . . . , xN0),
F3 ¼ F(x10, . . . , xi0 � Δxi, . . . , x j0 � Δxj, . . . , xN0),
F4 ¼ F(x10, . . . , xi0 þ Δxi, . . . , x j0 � Δxj, . . . , xN0),
F5 ¼ F(x10, . . . , xi0 � Δxi, . . . , x j0 þ Δxj, . . . , xN0),
F6 ; F(x10, . . . , xi0 þ Δxi, . . . , x j0 þ Δxj, . . . , xN0),
we have, up to second order in the increments,

@F
@xi

� �
xi0

¼ Bi ffi F2 � F1
2Δxi

, (3)

@2F
@x2i

� �
xi0

¼ Aii ffi F2 þ F1 � 2F0
Δx2i

, (4)

@2F
@xi@xj

� �
xi0

¼ Aij ffi F6 � F5 � F4 þ F3
4ΔxiΔxj

: (5)

The quadratic expression, replacing the derivatives with the finite
differences, is not merely an approximation of the Taylor series,
but an interpolation formula that matches the exact functional
F(xi) at (xi0) and at points obtained from it by the increment of a
single variable to xi0 + Δxi, i.e., it matches exactly the F0, F1, F2
values for each variable. The value of F6 � F5 � F4 þ F3 for every
pair of increments Δxi, Δxj is also exactly represented. A critical

point (xi,cr) is defined as obeying @F
@xi

� �
xi,cr

¼ 0, 8i ¼ 1, . . . , N .

Using the quadratic approximation leads to the linear system of
equations,

XN
j¼1

Aij(x j,cr � x j0)þ Bi ¼ 0, i ¼ 1, . . . , N: (6)

The solution (x j,cr , j ¼ 1, . . . , N) will surely correspond to a
minimum if the matrix A is positive definite, to a maximum if neg-
ative definite, and to a saddle point if it has some positive and
some negative eigenvalues. If an eigenvalue is zero, the correspond-
ing eigenvector is a linear combination of increments which makes
F(xi) locally invariant near (xi,cr), up to third order in the incre-
ments. Like in a least squares optimization, which is a particular
case of functional F, the approximation would be more accurate if
(xi0) is near the critical point, but the obtained solution (xi,cr) can
be taken as a new (xi0) for iteration, until the convergence is
reached within some allowed error.

The procedure, in principle, can be used to optimize the
working parameters of a real system or a simulation, when F is an
experimental result or comes from a complete computer simulation
of a system. In such cases, as happens when a 3D FEM calculation
becomes necessary, reducing the number of evaluations of F is
vital. In each iteration, this procedure needs 2N þ 1 evaluations of
F(xi) to obtain the first-order and direct second-order derivatives
and 2N(N � 1) evaluations for the mixed second-order derivatives,
or 2N2 þ 1 evaluations in total. Each evaluation involves meshing,
finite elements solution for the field, and numerical evaluation of
F(xi) from the results. Note that a quadratic function of N variables
has only (N þ 1)(N þ 2)=2 coefficients to be determined; this is,
hence, the minimum number of evaluations of F to determine the

FIG. 2. B=μ0M for a typical FEM calculation. The sector limited by a solid
black line represents one of the eight AMRs, in a position determined by the
polar angle θ between the center of this AMR and that of maximum field. Each
AMR covers an angle 2α ¼ 45�.
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critical point, i.e., the critical point of the unique hyperparaboloid
passing exactly through (N þ 1)(N þ 2)=2 given points. We there-
fore use an approximation involving more evaluations but giving
the derivatives with a higher order of approximation. For small
deviations with respect to (xi0) and for the present approximation,
the error in F(xi) is a combination of cubic terms in xi � xi0,
xj � x j0, xk � xk0 (i, j, k ¼ 1, . . . , N). The error in the first and
second derivatives is quadratic since, for the first derivatives, the
even terms of the Taylor expansion cancel in F2 � F1. The error in
F2 � F1 is then cubic, and in (F2 � F1)=Δxi it is quadratic.
Similarly, for the second derivatives, the cubic terms cancel in the
expansion of F1 þ F2 � 2F0 and also in F6 � F5 � F4 þ F3. The
ratio of the number of evaluations used with respect to the
minimum is f ¼ 2(2N2 þ 1)=[(N þ 1)(N þ 2)], with 1 � f , 4.
For our case N ¼ 6, f ¼ 2:61. Finally, extending the Taylor series
to higher order terms has no practical interest with many variables
because the number of partial derivatives to be determined
increases quickly. We will not discuss the general conditions for
convergence of this procedure, but merely mention that it leads to
a maximum of F(xi), in the present problem of optimizing a
magnet, if the initial point is close enough to the maximum, that is,
if the Bi vector is small, and especially if the hyperellipsoid centered
at (xi0) and with half-axes (Δxi) contains the critical point. A
detailed discussion of the convergence of the quasi-Newton
method is given in Ref. 11.

Once the critical point (x j,cr) has been found, the functional F
can be expressed in terms of the increments with respect to (x j,cr).
This is, defining x0i ¼ xi � xi,cr , we have

F � F0 ≃ 1
2

XN
i,j¼1

Aijx
0
ix

0
j , (7)

where the linear terms have vanished, since the first derivatives are
zero at a critical point. As any symmetric matrix, A can be diago-
nalized by an orthogonal matrix O, made with the eigenvectors of
A written in columns, in such a way that the diagonal elements of
Ad ¼ OtAO are the eigenvalues, λi. Using the new coordinates yi ¼PN

j Ot
ijx

0
j near the critical point, the quadratic approximation

results in

F � F0 ≃ 1
2

XN
i¼1

λiy
2
i : (8)

Therefore, the eigenvectors of A (columns of O ) indicate the inde-
pendent combinations of increments x0i , in such a way that the
change of F with respect to the critical value produced by one
single increment yi is independent of any other yj. The eigenvalues
indicate how large an increment of F is produced by a given yi. If
every λi . 0, F is a minimum at (xi,cr), if every λi , 0, F is a
maximum, and if λi . 0 and λj , 0 for some i and j, it is a saddle
point. If one λi ¼ 0, F is locally invariant, indicating that F does
not vary for small changes of this particular parameter yi, up to
second order in yi.

Now, we will discuss about the functional to be optimized.
The magnet is intended for a magnetic refrigerator. The eight

independent AMRs are placed in the green region of Fig. 1, cover-
ing an angle of 45� each. The outer part of the magnet assembly
rotates counterclockwise around the z axis, perpendicular to Fig. 1.
To analyze the case, let us suppose that the AMRs rotate clockwise
with constant angular speed and the outer part of the magnetic
circuit is fixed. The liquid starts flowing when the right end of the
analyzed AMR sector reaches the maximum field point, that is,
when θ ¼ α in Fig. 2, and stops flowing when the left end leaves
the maximum field point (θ ¼ �α). It also flows when the AMR is
in the minimum field region (dark blue region of the gap, near the
x axis) between θ = α-π/2 and θ = -α-π/2, with cold liquid flowing
to the cold source. The same thing happens in the AMRs at their
opposite positions, at 180� þ θ. For these four AMRs, there is a dead
time without flow between the high and low field regions (while the
AMR turns 90� � 2α), allowing the field to change from high to low
values. During this dead time, the other four AMRs are active, with
liquid flow, in the maximum or minimum field regions.

Regarding the application, the important quantity is the
average field over one AMR. The field profile is symmetric with
respect to the maximum and minimum, therefore, the average
effective field, when the center of an AMR is near the position
θ0 ¼ 0 or 90�, is given by

hBi ¼ 1
α(c2 � b2)

ðc
b
rdr

ðθ0þα

θ0�α
B(r, θ)dθ: (9)

Computing hBi for the highest and lowest field zones, the
maximum MCE will be obtained for the largest difference.
Consequently, the quantity to be maximized is
F ¼ (hBhighi � hBlowi)=μ0M, computing hBhighi and hBlowi with
Eq. (9) for the values θ0 ¼ 0� and 90�, respectively.

As pointed out in Ref. 3, the MCE can be proportional to the
average of another power of B. Moreover, for the net cooling
power, the field should be averaged over the volume of one AMR,
and over the time the heat exchange liquid is flowing through it.
The flow starts when the right side of the AMR reaches the
maximum field position, θ ¼ α in Fig. 2, and stops when the left
side reaches the maximum field point, θ ¼ �α. Similarly, at the
minimum field position. By symmetry, the average can be calcu-
lated as an integral between 0 and 2α (or between 90� and
90� þ 2α), but considering that the maximum field B(r, 0) is
always acting on some point of the AMR, while B(r, θ) is acting
only during a shorter time, tending to zero at the starting (θ ¼ α)
and at the end (θ ¼ �α) of liquid flow. This effect could be taken
into account in the functional to be optimized including a weight-
ing factor. Equation (9) would change to

hBni ¼ 1
α2(c2 � b2)

ðc
b
rdr

ðθ0þ2α

θ0

Bn(r, θ)(2α � θ þ θ0)dθ: (10)

Even the weighting factor could also consider the real flow of
liquid, possibly not constant, when it is on. Nevertheless, as an
example of the procedure we opted for simplicity, using Eq. (9).

Not all the parameters in Fig. 1 can be optimized. The fields
B, H are invariant under the application of a scale factor to all
lengths. The maximum flux density increases if the gap, c� b,
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decreases (the maximum F occurs for c� b ¼ 0, which is obviously
useless), but it has to be determined by the desired volume of the
AMRs. For a magnetic circuit made with permanent magnets
having a constant M, taking a closed line along the circuit,
Ampere’s law states

þ
H � dl ¼ 0 )

ð
mag

M � dl

¼
ð
mag

(B=μ0)dl þ
ð
AMR

(B=μAMR)dl þ
ð
Fe
(B=μFe)dl (11)

where the subscripts mag, AMR, and Fe refer to the parts of the
circuit line of each material. The magnetic flux through the closed
circuit, Φ, is constant. Taking the circuit with average cross sections
for the different materials, Amag , AAMR, and AFe, one can write the
total flux as a function of the average field in each region,

Φ ¼ hBmagiAmag ¼ hBAMRiAAMR ¼ hBFeiAFe: (12)

This allows to determine approximately the flux Φ and the
average fields in each region by substituting B in Eq. (11) with its
average value in each term, taken from Eq. (12). Thus, using Φ ¼
hBAMRiAAMR and the values taken for μAMR and μFe results in

hBAMRi ¼
μ0

Ð
mag M � dl

AAMR
lmag

Amag
þ lAMR

2AAMR
þ lFe

200AFe

� � , (13)

where the parenthesis in the denominator is the reluctance of
the magnetic circuit. For the dimensions of Fig. 1, the reluctance
of the iron parts of the magnetic circuit happens to be negligible
and lAMR � lmag , all cross sections being of similar magnitude.
Then, for a quick and simple estimate, the flux is roughly deter-
mined by the magnetization M, the alignment of the vector M
with the flux lines, and the length lmag of the flux lines in the
magnets. This means that lAMR ¼ 2(c� b) can be increased up to
values compatible with a small decrease of the magnetic flux
(e.g., for lAMR=lmag ¼ 0:1, a 5% decrease is expected with respect
to the case c� b ¼ 0).

The a parameter is also not optimizable, since the optimal
value is zero. However, F is quite insensitive to a, since the core
reluctance is negligible anyways. This parameter can be made high
enough to save the material, but it should not be too high to
prevent saturation of the iron core, since B reaches high values
right next to the central hole, near the x axis.

III. NUMERICAL RESULTS

Let us consider for the initial parameters the approximate
values deduced from the figures given by Eriksen et al.,6 taking the
lengths a ¼ 20 mm, b ¼ 50 mm, c ¼ 65 mm, d ¼ 110 mm,
e ¼ 6 mm, and angles α1 ¼ 33�, α2 ¼ 52�, α3 ¼ 71�, β1 ¼ 140�,
β2 ¼ 195�, and β3 ¼ 250�. With these parameters, the calculation
of B=μ0M in an empty AMR of 45�, using the FEM, gives
F ¼ hBhigh=μ0Mi � hBlow=μ0Mi ¼ 1:014. The first derivatives Bi

are high, and the quadratic approximation is not necessarily good.
Moreover, we find that the field on the iron sectors can be near

saturation. Calculations have been made with and without menis-
cus, and they show that, within the model, the meniscus has only a
small effect on the total flux. On the one hand, it reduces the field
in the gap near θ ¼ 90�, but it also reduces the cross section of the
iron sector, increasing B where it can already be near saturation.
Moreover, the material saving is not so important, since the iron
sectors are not made of any critical material, and the absence of
meniscus makes their construction easier.

We changed slightly these parameters to a ¼ 0, b ¼ 40 mm,
c ¼ 57 mm, d ¼ 100 mm and canceled the meniscus, according to
our specifications for the size of the magnet and the available
volume for the magnetocaloric material. With these new parame-
ters and keeping the same angles, we found F ¼ 0:974 for a gap
without any magnetocaloric material (the calculation for an empty
gap is useful for a further comparison with measurements in the
actual magnet) and F ¼ 1:162 for a filled gap with a material
having μr ¼ 2.

To optimize the magnet, we made an initial FEM calculation
of F with single variations of the angles, one by one, taken the
increments Δxi and Δxj in Eqs. (3) to (5) as 5�. We found a signifi-
cant increase of the optimized functional value to F ¼ 1:236 for
μr ¼ 2 and the following parameters x1, . . . , x6: α1 ¼ 35�,
α2 ¼ 55�, α3 ¼ 75�, β1 ¼ 125�, β2 ¼ 170�, and β3 ¼ 235�. These
first optimized parameters have been taken as a starting point for
the final optimization of our magnet. The complete optimization,
following the procedure previously described, gave the final angles
α1 ¼ 28:5�, α2 ¼ 56:6�, α3 ¼ 72:6�, β1 ¼ 128:9�, β2 ¼ 167:3�, and
β3 ¼ 234:9�, resulting in a value F ¼ 1:251 for the functional.

Table I gives the initially optimized parameters x j0, the
vector of the first derivatives, (Bi), the symmetric Hessian matrix
A and the values of F obtained from the initial parameters x j0

and from the final x j,opt values for the maximum F. It also
reveals that the A matrix is negative definite, indicating that the
critical point found is a maximum of F. The highest eigenvalue
λ1, in absolute value, corresponds mainly to β3 variations com-
bined with α3. Both of them are by far the most influential
parameters for the optimization of F, as can be seen from Eq.
(8). On the other hand, the influence of α1 deviations from the
optimum value is one order of magnitude below. This detail will
be considered for the construction of the actual system and can
be understood in the framework of the magnetic circuit. When
the iron and gap reluctances are negligible, an increment of α1

produces a decrease of lmag ≃ 2(90� α1)(π=180)(cþ d)=2, which
results in approximately the same factor in the numerator and
denominator of Eq. (13). F is then insensitive to α1. Actually,
lmag ≃ 4:3lAMR making such a simplification a bit crude. Also,
small changes in β1 and β2 are almost irrelevant. The optimum
F for the functional defined in this work is about 8% higher than
the value obtained with the original parameters α1 to β3 of Ref. 6.
A calculation of the optimized F has also been made for a system
made with 16 sectors of permanent magnets (i.e., with parameters
α1, . . . , α4, β1, . . . , β4), but the value of F only improves a mere
2%. Therefore, the actual design has been made with only 12
sectors of permanent magnets. Finally, the optimization of the e
parameter, defining the center of the meniscus line, gave a very
small difference of only 0.2% in F. As discussed above, the
meniscus increases the reluctance of the gap for the direct flux
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between the core and the iron sectors, reducing hBlowi, but
the effect is small since B radial is already zero at the x axis due
to the symmetry. On the other hand, the calculated flux density
in the iron sectors is near the limit of the linear dependence of
B ¼ μ(Fe)H and the meniscus reduces its cross section, increas-
ing B inside. In this region of the B(H) curve of iron, a small
increase of B would produce a large increase of H, expelling the
flux lines, due to the continuity of the parallel components of H
at the iron-air interface.

IV. EXPERIMENTAL MEASUREMENTS IN THE BUILT
MAGNET

The built magnet (Fig. 3) was made with the initial FEM cal-
culations, using single variations of the parameters and a further
step looking to optimize the functional with each parameter. The
effect of the nonzero susceptibility of the magnetocaloric material
in the AMRs was also included. Moreover, the meniscus was finally
not built, considering its small effect and the resulting easier con-
struction without it. The final parameters were slightly different
from the results of the full optimization described above. For our
magnet, the radii were scaled to have a small system, but with

enough volume for the AMR to test different magnetocaloric mate-
rials with a good cooling power. The actual values of the
construction were α1 ¼ 37�, α2 ¼ 56�, α3 ¼ 73�, β1 ¼ 133�,
β2 ¼ 180�, β3 ¼ 237�, a¼�e¼ 12:5 mm, b¼ 40 mm, c¼ 57 mm,
and d¼ 100 mm.

The length along the z direction was L ¼ 200 mm. The main
difference with the optimal values previously calculated is the
increase of α1, which saves the expensive material. This can be
expressed in terms of Λcool [Eq. (1)], considering the important
reduction of Vmag , against a small decrease of hB2=3

highi � hB2=3
lowi.

NdFeB for the sectors of permanent magnet was N48H, with a
typical remanence Brem ¼ μ0M ¼ 1:41 T and intrinsic coercivity
μ0Hc ¼ 1:70 T, preventing any risk of demagnetization for
B . �0:10 T in the M direction. The iron sectors of the magnetic
circuit were made with low-carbon nonalloy steel S235JR, having a
permeability μr ¼ 800 at B ¼ 1:5 T. The core was made of soft
magnetic iron M600-50A, with μr ¼ 1660 at B ¼ 1:5 T, in electri-
cally insulated sheets perpendicular to the z axis to reduce eddy
currents’ dissipation. The magnetocaloric material filling the AMR
increases the relative permeability of the gap from 1 to 2, which
produces an important increase of the flux. For the given radii
and lengths, the optimized values for the angles, α1, . . . , β3, con-
sidering the AMR space full of the magnetocaloric material with
μr ¼ 2, resulted in a functional value F ¼ 1:251. The built magnet
keeps close to the optimized values the three most influential
parameters, β3, α3, and α2. The angle α1 is markedly higher than
the optimized value, but this deviation has a small influence on F,

TABLE I. Matrix A and vector B as defined in Eq. (6), eigenvalues of A, λi (in
decreasing absolute values), normalized eigenvectors, (vi) (in columns), and solution
of the system A(x− x0) =−B for the optimal increments. All matrix elements and
eigenvalues in the table must be multiplied by 10−4. Maximum and minimum
average fields 〈Bhigh〉, 〈Blow〉 for θ0 = 0 and 90°, respectively, in units of μ0M,
defined in Eq. (9), and values of the functional F = 〈Bhigh〉− 〈Blow〉, for the initial,
xj0, and the optimized parameters, xj,opt.

α1 α2 α3 β1 β2 β3

xj0
35 55 75 125 170 235
Ai1 Ai2 Ai3 Ai4 Ai5 Ai6 Bi

A1j −4.072 −0.957 −0.073 0.685 0.704 −0.015 −25.80
A2j −0.957 −6.693 0.297 1.004 1.144 −0.044 4.269
A3j −0.073 0.297 −25.72 −0.118 3.129 0.6073 −52.28
A4j 0.685 1.004 −0.118 −0.884 0.031 0.013 6.066
A5j 0.704 1.144 3.129 0.031 −1.293 0.056 6.607
A6j −0.015 −0.044 0.6073 0.013 0.056 −34.86 9.164
λi −37.94 −23.06 −7.48 −3.81 −0.90 −0.34

v1 v2 v3 v4 v5 v6

v1j −0.0012 0.0080 0.3289 0.9233 0.0177 0.1972
v2j 0.0042 −0.0057 0.9079 −0.3665 −0.0105 0.2030
v3j −0.4525 0.8820 −0.0209 −0.0182 −0.0917 0.0898
v4j −0.0019 0.0046 −0.1718 −0.0905 0.7405 0.6433
v5j 0.0372 −0.1279 −0.1938 −0.0678 −0.6652 0.7054
v6j 0.8910 0.4533 −0.0067 −0.0037 −0.0172 0.0168
Δxj,opt −6.480 1.580 −2.376 3.856 −2.682 −0.153
xj,opt 28.52 56.58 72.62 128.86 167.32 234.85

〈Bhigh〉 〈Blow〉 F

xj0 1.247 0.011 1.236
xj,opt 1.266 0.014 1.251

FIG. 3. Image of the magnet built with the specifications given in the text.
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reducing, on the other hand, the amount of permanent magnet
used, and the also sizable deviations of β1 and β2 are even less
important, as seen above. The resulting functional F, with the
actual geometric parameters, decreases only to 1.234. Considering
the dimensions of the magnet, the volume of the high field region
restricted to its use in each AMR with 2α ¼ 45�, and hB2=3i calcu-
lated in the high and low field regions, the resulting figure of merit
of Eq. (1) is Λcool ¼ 0:16. Using the magnet with only four AMRs
having 2α ¼ 90�, gives Λcool ¼ 0:20.

In Eq. (13), leaving out the very small reluctance of the iron
parts of the circuit and defining the constant γ ¼ (lAMRAmag)=
(lmagAAMR), the relative change of BAMR with respect to an empty
gap is ΔB=B ¼ (μr � 1)=(1þ μr=γ), with μr being the relative per-
meability of the material filling the AMR. According to the geomet-
rical data and the calculated field, the high flux in the gap covers a
total angle of 2(90� � α3) (Fig. 2). Considering one half of the
magnetic circuit, we can estimate lmag ≃ (cþ d)(90�α1)π=180
¼ 145 mm, Amag ≃ (d� c)L¼ 8600 mm2, lAMR ≃ 2(c� b)¼ 34 mm,
and AAMR ≃ (1=2)(bþ c)L(90�α3)π=180¼ 2878 mm2. With these
values, it results γ ¼ 0:70. Assuming μr ≃ 2, an increase in the
maximum field of about 26% can be expected when the AMR is
completely filled with the magnetocaloric material, similar to the
21% increase given by the FEM calculations.

Measurements of the actual field were taken on the gap of the
empty magnet using calibrated Hall probes for the longitudinal and
transverse components, at different radial, angular and longitudinal
positions, r, θ, 0 mm � z � 200 mm, taking the center at
z ¼ 100 mm. Figure 4 shows these measured values at
z ¼ 100 mm, along the circle with the average radius of the AMRs
region. The high and low field regions have values around
Bmax ¼ 1:50 T for θ ¼ 0� and Bmin ¼ 0:00 T for θ ¼ 90�.
Measurements taken in the gap, at 10 mm from the ends

(z ¼ 10 mm and 190 mm), showed a decrease of the radial compo-
nent of 20% from the maximum field and a longitudinal compo-
nent Bz , 0:3 T. The calculated values, using μr ¼ 1 to take into
account that the measured region is empty of the magnetocaloric
material, are also shown. A good agreement was found between the
measured and calculated fields, using a value for the magnetization
of the NdFeB sectors μ0M ≃ 1:33 T, which is slightly lower than
the reported typical value for the material used.

V. CONCLUSIONS

A simple method for optimizing the design of a magnetic
circuit, intended for applications in magnetic refrigeration, has
been developed. A finite element method has been used in the cal-
culation of the magnetic field induction for each geometrical confi-
guration of the magnet. The optimization procedure obtains the set
of parameters xi for the optimum functional F(xi) using a very
limited number of evaluations of F, reducing the computation
time. In this case, the functional F has been defined as the differ-
ence of the effective average magnetic field acting on a single regen-
erator in the region of high field, minus the same average in the
region of low field. These averages have been calculated over each
AMR that covers an angle of 45�. The optimized difference of
average flux densities for this two-pole magnet with 12 hard mag-
netic sectors has been found to be 1.251μ0M. The magnetic field
measured in an actual magnet built with optimized parameters
agrees very well with the expected values from the calculations. The
built magnet minimized the use of expensive hard magnets and
gave a high volume for cooling material. The radial thickness of the
gap for the AMRs allows an available volume for magnetocaloric
material over 40% of the volume of NdFeB, and more than 50% of
the magnet was completed with soft iron.
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