000095877 001__ 95877
000095877 005__ 20230622083309.0
000095877 0247_ $$2doi$$a10.1109/ACCESS.2020.2965209
000095877 0248_ $$2sideral$$a116777
000095877 037__ $$aART-2020-116777
000095877 041__ $$aeng
000095877 100__ $$0(orcid)0000-0001-7207-5536$$aAcero, Jesús$$uUniversidad de Zaragoza
000095877 245__ $$aAdapting of Non-Metallic Cookware for Induction Heating Technology via Thin-Layer Non-Magnetic Conductive Coatings
000095877 260__ $$c2020
000095877 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095877 5203_ $$aWe analyze the feasibility of heating non-metallic cookware, unappropriate for heating by means of induced currents, with the purpose of extending the applicability range of the current induction heating cooktops. In order to turn materials as glass, ceramic, wood or plastic into suitable for the induction heating technology, we propose the use of thin layers of a metal (not necessarily a ferromagnetic material) which can be deposited on a surface by means of a thin or thick layer technology. For this purpose, the inductive performance of these layers is investigated by means of an analytical electromagnetic model, finite element simulations and experimental measurements. Calculations point out that for a specific induction arrangement working at a fixed frequency, it exists a thickness which maximizes the induction efficiency for each layer material. The suitability of this result is tested by means of a set of samples with copper thin layers whose thicknesses range from one hundred of nanometers to tens of micrometers, which are implemented using a phase vapor deposition (PVD) technology. The obtained induction efficiency and equivalent resistance are compared with those obtained with conventional ferromagnetic materials. As a proof of concept, the inner and outer bottoms of two glass pots are covered with a copper layer of 2µm, and 1.5µm , respectively, and 1 kW is inductively supplied by means of a series resonant inverter, reaching the boiling water conditions.
000095877 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/TEC2016-78358-R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/RTC-2017-5965-6
000095877 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095877 590__ $$a3.367$$b2020
000095877 591__ $$aCOMPUTER SCIENCE, INFORMATION SYSTEMS$$b65 / 162 = 0.401$$c2020$$dQ2$$eT2
000095877 591__ $$aTELECOMMUNICATIONS$$b36 / 91 = 0.396$$c2020$$dQ2$$eT2
000095877 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b94 / 273 = 0.344$$c2020$$dQ2$$eT2
000095877 592__ $$a0.586$$b2020
000095877 593__ $$aComputer Science (miscellaneous)$$c2020$$dQ1
000095877 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ1
000095877 593__ $$aEngineering (miscellaneous)$$c2020$$dQ1
000095877 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095877 700__ $$0(orcid)0000-0003-4858-9734$$aLope, Ignacio$$uUniversidad de Zaragoza
000095877 700__ $$0(orcid)0000-0001-7901-9174$$aCarretero, C.$$uUniversidad de Zaragoza
000095877 700__ $$0(orcid)0000-0002-9655-5531$$aBurdío, José M.$$uUniversidad de Zaragoza
000095877 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000095877 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000095877 7102_ $$12002$$2247$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Electromagnetismo
000095877 773__ $$g8, 19313317 (2020), 11219-11227$$pIEEE Access$$tIEEE Access$$x2169-3536
000095877 8564_ $$s583213$$uhttps://zaguan.unizar.es/record/95877/files/texto_completo.pdf$$yVersión publicada
000095877 8564_ $$s488620$$uhttps://zaguan.unizar.es/record/95877/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095877 909CO $$ooai:zaguan.unizar.es:95877$$particulos$$pdriver
000095877 951__ $$a2023-06-21-14:59:12
000095877 980__ $$aARTICLE