000095883 001__ 95883
000095883 005__ 20210902121649.0
000095883 0247_ $$2doi$$a10.3390/w12010115
000095883 0248_ $$2sideral$$a116815
000095883 037__ $$aART-2020-116815
000095883 041__ $$aeng
000095883 100__ $$aCakir, R.
000095883 245__ $$aHydrological alteration index as an indicator of the calibration complexity ofwater quantity and quality modeling in the context of global change
000095883 260__ $$c2020
000095883 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095883 5203_ $$aModeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and 31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources.
000095883 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095883 592__ $$a0.717$$b2020
000095883 593__ $$aAquatic Science$$c2020$$dQ1
000095883 593__ $$aWater Science and Technology$$c2020$$dQ1
000095883 593__ $$aGeography, Planning and Development$$c2020$$dQ1
000095883 593__ $$aBiochemistry$$c2020$$dQ1
000095883 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095883 700__ $$aRaimonet, M.
000095883 700__ $$aSauvage, S.
000095883 700__ $$aParedes-Arquiola, J.
000095883 700__ $$aGrusson, Y.
000095883 700__ $$aRoset, L.
000095883 700__ $$aMeaurio, M.
000095883 700__ $$aNavarro, E.
000095883 700__ $$0(orcid)0000-0003-1856-4659$$aSevilla-Callejo, M.$$uUniversidad de Zaragoza
000095883 700__ $$aLechuga-Crespo, J.
000095883 700__ $$aPascual, J. J. G.
000095883 700__ $$aBodoque, J. M.
000095883 700__ $$aSánchez-Pérez, J. M.
000095883 7102_ $$13006$$2010$$aUniversidad de Zaragoza$$bDpto. Geograf. Ordenac.Territ.$$cÁrea Análisis Geográfico Regi.
000095883 773__ $$g12, 1 (2020), 115 [33 pp]$$pWater (Basel)$$tWater (Switzerland)$$x2073-4441
000095883 8564_ $$s1346779$$uhttps://zaguan.unizar.es/record/95883/files/texto_completo.pdf$$yVersión publicada
000095883 8564_ $$s491093$$uhttps://zaguan.unizar.es/record/95883/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095883 909CO $$ooai:zaguan.unizar.es:95883$$particulos$$pdriver
000095883 951__ $$a2021-09-02-09:05:50
000095883 980__ $$aARTICLE