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Abstract: Energy supply in remote areas (mainly in developing countries such as Colombia) has
become a challenge. Hybrid microgrids are local and reliable sources of energy for these areas where
access to the power grid is generally limited or unavailable. These systems generally include a
diesel generator, solar modules, wind turbines, and storage devices such as batteries. Battery life
estimation is an essential factor in the optimization of a hybrid microgrid since it determines the
system’s final costs, including future battery replacements. This article presents a comparison of
different technologies and battery models in a hybrid microgrid. The optimization is achieved using
the iHOGA software, based on data from a real microgrid in Colombia. The simulation results
allowed the comparison of prediction models for lifespan calculation for both lead–acid and lithium
batteries in a hybrid microgrid, showing that the most accurate models are more realistic in predicting
battery life by closely estimating real lifespans that are shorter, unlike other simplified methods that
obtain much longer and unrealistic lifetimes.
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1. Introduction

Global warming and the increase of greenhouse gases caused by fossil-fuel-based energy generation
have resulted in worldwide concern about future energy supply [1]. These inconveniences have
become an opportunity for the use of renewable energy such as solar, wind, tidal, geothermal, and
biomass, among others. In 2018, approximately 15% of the total energy consumed worldwide was
of renewable origin, and it is estimated that by 2050 this percentage may reach 28% [2]. In terms
of electrical energy generated, renewable sources generated 28% of the total worldwide energy in
2018, and it is estimated that they could produce 49% by 2050 [2], reducing fossil fuel dependence
and mitigating the effects caused by climate change. However, one drawback of renewable sources is
their unpredictable nature and intermittency. To overcome this drawback, an attractive solution is to
combine two or more energy sources in a hybrid system and include energy storage [3]. For example,
photovoltaic power generation can be used during the day and wind power generation (which usually
generates more energy) can be used at night, so the two sources of energy complement each other [4,5].
Furthermore, the different energy sources can be managed as a microgrid, which can solve reliability
problems and provide an environmentally friendly solution [6]. In addition, increasing renewable
energies can cause problems for quality; therefore, it is necessary to have a flexible and intelligent
electrical network. One of the fundamental aspects to increase the electrical grid’s flexibility is the use
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of storage systems that allow compensation for the variability of renewable energy sources. Conversely,
electricity grids are designed considering energy sources that do not present variability, which happens
with renewables, so electricity grids must have enough back-up capacity. Storage capacity is essential,
thus making it possible to increase renewable generation while avoiding the possible problems that
could be caused by its variability [3].

Hybrid microgrids are a new solution in remote areas that are difficult to access or that do not
have access to conventional power grids [7]. In hybrid microgrids based on renewable energy, one of
the main elements that support the energy supply due to the variable intermittency such as radiation
or wind, as mentioned above, is storage technologies, and batteries in particular are the most suitable
and convenient.

Batteries are the most widely used storage devices in hybrid systems due to the maturity of
technologies such as lead–acid and the emergence of technologies such as lithium-based batteries.
The latter represents an attractive option due to their high energy density, longer life, and better
environmental sustainability [8]. In addition, lithium batteries have seen a price reduction between
8–16% annually [9].

Batteries represent a high cost within a hybrid microgrid, and their performance and duration
mainly depend on the microgrid’s operation. Battery life estimation is crucial since it influences the
replacement costs and, therefore, the total system cost [10]. The batteries’ optimal operation within
a hybrid microgrid is influenced by factors such as technology, the amount of charge and discharge
cycles, the current, and the operating temperature, among others [11,12]. Parameters related to aging by
degradation and corrosion have been represented by authors, such as the model by Schiffer et al. [13]
that used weighted cycles and applied to lead–acid batteries.

Based on this model, a comparison of lead–acid battery life prediction models was presented by
Dufo-López et al. [14]. For battery life prediction, models based on equivalent cycles or “Rainflow”
cycle counting models have traditionally been used [15]. As for lithium batteries, there are models
(e.g., Wang et al. [16]) that include parameters such as the cycled charge (Ah) over time, charge and
discharge currents, and temperature, applicable to LiFePO4/graphite (LFP) batteries. Other models for
the same type of lithium batteries, such as that of Groot et al. [17], study their degradation when subjected
to asymmetric charge cycles and at different temperatures. Conversely, Saxena et al. [18] considered an
aging model based on state of charge (SOC) for lithium cobalt oxide LiCoO2/graphite batteries.

When batteries work in real conditions, the way they degrade and age differs from laboratory
tests, so that the lifespan may be shorter than expected, as demonstrated in [19] for lead–acid batteries.
When optimizing isolated hybrid systems, it is essential to consider battery aging and degradation
models to estimate parameters such as net present cost (NPC) and levelized cost of energy (LCOE) [19].
In [20], the authors presented an optimization of microgrid-insulated diesel-solar-wind power charge
states of lead–acid batteries. Other studies have compared aging models for lead–acid and lithium
batteries used in isolated photovoltaic systems [21,22].

The optimization of isolated hybrid systems mainly depends on predicting battery life, since an
erroneous or overly optimistic prediction can lead to a poor estimate of the system costs. The importance
of these considerations has been highlighted in recent publications [23,24]. However, it is necessary
to consider these factors in systems where the actual and climatic conditions of operation differ
considerably from the datasheet and the expected life of the battery according to laboratory tests.

This article presents the optimization of an isolated hybrid microgrid considering different
lead–acid and lithium battery technologies and models. The system integrates solar modules, a battery,
a wind turbine, a diesel generator, an inverter, and a charge controller. In addition, this system is
optimized considering different battery models and technologies. In the second section, the different
battery aging models are presented. In the third section, the microgrid under consideration is
shown, and the results are presented in the fourth section. Finally, the conclusions and future work
are presented.
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2. Materials and Methods

Battery aging models represent essential aspects such as anodic corrosion, active mass degradation,
loss of adhesion to the grid, formation of lead sulfate in the active mass, loss of water, and electrolyte
stratification [25]. Conversely, the models used for lithium batteries analyze capacity and power losses,
impedance increase, and the effects caused by temperature [26]. The different lead–acid and lithium
battery models considered in this study are described below.

2.1. Simplified Model of Equivalent Ah Cycles

This model is used by optimization programs such as HOMER [27]. In this model, battery life is
supposed to be reached at the end of a finite number of charge and discharge cycles, and the number of
cycles is usually shown in the battery datasheet. The IEC 60896-11: 2002 [28] establishes the number of
cycles. However, this model does not consider the battery’s operating status (e.g., SOC, temperature,
acid stratification in the case of lead–acid batteries, current, and the amount of time the battery has not
reached full charge). The number of complete cycles (Zn) is calculated by Equation (1):

Zn(t + ∆t) = Zn(t) +

∣∣∣Idischbat(t)
∣∣∣× ∆t

Cn
, (1)

where
∣∣∣Idischbat(t)

∣∣∣ (A) is the absolute value of the discharge current. Cn is the nominal capacity of the
battery (Ah).

If Zn(t) = ZIEC (when the number of cycles performed from the beginning of life until time t (h) is
the same as the IEC number of cycles provided by the manufacturer), then the end of the battery life
is reached.

2.2. Cycle Counting or Rainflow Model

The cycle-counting model, also known as “Rainflow,” is based on the Dowing algorithm [29].
This model is based on the Zi cycle count, corresponding to each Depth of Discharge (DOD) range (%),
which is divided into m intervals for 1 year (an average year or the whole life). For each interval, there
are several cycles until failure (CFi). The battery life is calculated by Equation (2):

Li f ebat =
1∑m

i=1
Zi

CFi

, (2)

This model takes into consideration the depth of discharge of the cycles; however, it does not take
into account the batteries’ operating conditions, such as acid stratification, current, and temperature.

2.3. Schiffer et al.’s (2007) Model

The Schiffer model is a weighted charge model (Ah) proposed by Schiffer et al. [13] specifically for
lead–acid batteries. The actual cycled charge in Ah is multiplied continuously by a weight factor that
fully represents the battery’s actual operating conditions, considering the SOC (e.g., temperature, acid
stratification, current, and the time it takes without reaching full charge) during the battery lifetime.
The end of the battery’s lifetime is reached when its remaining capacity corresponds to 80% of the
nominal capacity. Users can adapt this model to different battery types using the lifetime and flotation
datasheet. Complex calculations to calculate the final loss of battery capacity due to continuous
corrosion and degradation are made using Equation (3):

Crest(t) = Cd(0) −Ccorr(t) −Cdeg(t), (3)

where Ccorr is loss of corrosion capacity, Cdeg is degradation capacity losses, and Cd(0) is initial
normalized battery capacity.
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This model allows us to model the charge controller and configure the protections against
overloads and other parameters.

2.4. Wang et al.’s (2011) Model

Wang et al.’s (2011) model provides a life cycle model for LiFePO4/graphite lithium–ferrophosphate
batteries considering parameters such as accelerated charge/discharge tests under different temperature
conditions and discharges depths [30]. At low charge rates, the results indicate that the loss of capacity
is significantly affected by time and temperature, whereas the effect is less important in the depth
of discharge. This model underestimates the loss of capacity at 60 ◦C and overestimates it at 45 ◦C.
The authors obtained a percentage of capacity loss given by Equation (4):

Qloss(%) = 30, 330× exp
−31, 500
8.314× T

A0.552
h , (4)

where T is the absolute temperature in kelvins and Ah is the amount of charge (Ah) involved in the
charging process since the start of battery operation.

This equation is valid for charge rates equivalent to C/2; that is, 2-h full charge and discharge
times. Charging rates are evaluated from this value up to 10C; that is, the battery will be fully charged
in one-tenth of an hour. In our paper, we use this equation during the average year or the whole life.

2.5. Groot et al.’s (2015) Model

Groot et al. [17] obtained an empirical equation for lithium batteries of 2.3 Ah. It is shown that
the life cycle of LiFePO4/graphite lithium–ferrophosphate batteries not only depends on the rates of
charge and discharge (current), temperature, and depth of discharge, but is also affected by the pauses
between charge and discharge times and those dependencies are highly nonlinear. To model the above,
they proposed an empirical relationship given by Equation (5):

QEOL =
(
a× eb×I

× T(C×I2+d×I+e)
)
+ f , (5)

where QEOL is the charge that the battery can deliver in its lifetime (kAh), I is the charge rate, T is the
temperature in ◦C, and a, b, C, d, e, and f are adjustment constants. In our paper, we use this equation
during the average year or the whole life.

2.6. Saxena et al.’s (2016) Model

Saxena et al.’s (2016) model [18] quantifies the life cycle for lithium oxide cobalt LiCoO2/graphite
batteries subjected to charge states between 0–60%. It develops a model that estimates the batteries’
loss of capacity and the influence of the SOC and the rate of charge. Percentage of capacity loss is
modeled by Equation (6):

Qloss(%) = K1× SOCmean × (1 + K2× ∆SOC + K3× ∆SOC2
×

(EFC
100

)0.453
, (6)

where SOCmean is the average SOC (30–50%), ∆SOC is variation of the SOC (100–60%), EFC is equivalent
full cycles, and K1, K2, K3 = 3.25, 3.25, and 2.25, respectively. In our paper, we use this equation during
the average year or the whole life.
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2.7. Aging by Calendar Model

This model considers two options for determining age, the first proposed by Petit et al. [30], which
takes into account the loss of battery capacity due to two factors: current and temperature. Equation
(7) describes this model:

Qcyc
loss(%) = Bcyc × exp

(
−Eacyc + γ× |I|

R× T

)
AhZcyc , (7)

where Bcyc is an exponential factor in Ah1−Zcyc, which depends on the current, Eacyc is the activation
energy expressed in J mol−1, γ is a coefficient to determine the acceleration in aging due to the current
J mol−1 A−1, |I| (A) is the absolute value of the current, R is the gas constant (8.314 J·mol−1

·K−1), T is the
absolute temperature (K), and Zcyc is a constant with a value close to 0.5.

Swierczynski et al. [31] presented the other model that considers the storage temperature, the
number of cycles, and depth described using Equation (8):

Qloss(%) =
(
0.019× SOC0.823

st + 0.5195
)
×

(
3.258× 10−9

× T5.087 + 0.295
)
) × t0.8

m , (8)

where tm is the storage time in months, T is the temperature in ◦C, and SOCst is the SOC at which the
battery is stored (%).

The iHOGA (improved hybrid optimization by genetic algorithms) [15] software version 2.5
allows selecting any of the two models. The value of the current is limited in such a way that when the
current is below Ctimes, the nominal capacity of the batteries’ (0.2 by default) calendar aging model is
used, and when it is higher, a cyclic aging model is used. In our paper, we use these equations during
the average year or the whole life.

2.8. Economic Calculations

iHOGA software performs the simulation of different combinations of components (photovoltaic
(PV) generator, wind turbine/s, battery bank, diesel generator, etc.) during a whole year, in hourly
steps, except for the cases where the Schiffer et al. [13] model for the battery is selected. In these
cases, the simulation is also performed in hourly steps during the number of years of the battery
lifetime (a priori it is not known, but it becomes known when the battery’s remaining capacity has
dropped to 80%).

For each combination of components and control strategies of the system, NPC and LCOE must
be calculated so that the genetic algorithm [32] used by iHOGA can calculate the fitness of each
combination and finally, after several generations, achieve the optimal system (the optimal combination
of components and control strategy).

The NPC (€) of a combination of components i and control strategy k (NPCi,k) is obtained
considering the acquisition cost of all the components, the installation and replacement costs of the
components, the operating and maintenance (O&M) cost, and the fuel cost during the system lifetime,
Lifesystem (years). All the cash flows are converted to the initial moment of the system (hour 0, year 1),
considering inflation and interest rates [23]:

NPCik =
∑

j

[
Cost j + NPCrepj

∑Li f esystem

ty=1

(
CostO&M j×

(1+In fgeneral)
ty

(1+I)ty

)
]+∑Li f esystem

ty=1

(
Cost f uel ×

(1+In f f uel)
ty

(1+I)ty

)
+ CostINST,

(9)

where j is the different components, ty is one year of the system lifetime, Costj is the acquisition cost of
component j, NPCrepj is the sum of the replacement costs of component j during the system lifetime
minus the residual cost of component j at the end of the system lifetime, CostO&Mj is the annual O&M
cost of component j, Infgeneral is the general annual expected inflation, I is the annual interest rate,
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Costfuel is the annual cost of the fuel used by the diesel generator, Inffuel is the annual expected diesel
fuel inflation, and CostINST is the installation cost.

The LCOE (€/kWh) of a combination of components i and control strategy k (LCOEi,k) is calculated
as follows:

LCOEi,k =
NPCi,k

Eload × Li f esystem
, (10)

where Eload (kWh/yr) is the annual expected load of the system.

2.9. Case Study

The microgrid considered for this study is located in the community of Nazareth (Department of
La Guajira, Colombia), and its coordinates are latitude 12◦ 20′ 52.14” N, longitude −71◦16′8.80” W.
This place belongs to Colombia’s non-interconnected area (the Spanish acronym ZNI is used for these
areas); however, it is located in a geographical place with a high potential for solar and wind resources,
where proposals for microgrids have been made [33,34]. In addition, this area is characterized by not
having 100% energy supply coverage. Figure 1 shows the microgrid.
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Figure 1. Nazareth microgrid [35].

The load profile is obtained according to the Energy Solutions data for the non-interconnected
areas of Colombia IPSE (the government branch that plans and promotes these energy systems) [36],
with an average temperature of 27 ◦C [37]. Table 1 shows the irradiation and wind data of the system
installation site obtained from [38]. It can be seen that variation in irradiation and wind throughout
the year is not very high. This situation is typical at latitudes close to the equator [39,40]. This
small variability in wind and photovoltaic resources throughout the year allows for better use of
renewable sources than at other latitudes [6]. The average daily electricity consumption is 30 kWh/day.
The consumption is for households and street lighting. As it is an isolated microgrid, not interconnected
with an electricity system, consumers of the microgrid cannot participate in the Colombian electricity
market as self-consumers. The high number of areas not connected to the electricity grid is one of the
most significant obstacles for renewable energy sources to participate in the Colombian electricity
market [41].
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Table 1. Irradiation and wind speed at the microgrid location.

Month Irradiation (kWh/m2/day) Wind Speed (m/s)

January 5.86 7.04
February 6.51 7.24

March 7.02 7.1
April 6.92 6.93
May 6.72 6.86
June 7 7.64
July 7.13 7.39

August 7.17 6.62
September 6.66 5.7

October 5.99 5.25
November 5.57 5.75
December 5.39 6.7

Figures 2 and 3 show the wind speed and solar radiation values for 1 year at the simulated
microgrid’s location. Figure 4 shows the load profile during a typical day.Energies 2020, 13, x FOR PEER REVIEW 7 of 17 
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The voltages in the microgrid are 48/220 V (CD/AC), the wind turbine power is 600 W, the inverter
charger is 500 VA/48 V/70 A, the charge controller is PWM/48V/40A, and the diesel generator power is
1.6 kW. The other system data are summarized in Tables 2 and 3.

The system’s lifetime is considered the same as a PV generator’s expected lifetime (the most
common PV lifetime considered by researchers all around the world is 25 years). The economic data
used to calculate the NPC of the actual system are shown in Table 4, obtaining the results of Section 3.1.

Table 2. Photovoltaic (PV) data of the simulated microgrid.

PV Module Type Monocrystalline

PV module power (Wp) 380
Number of PV modules in serial/Parallel 2/22
PV module short current Isc (A) 10.11
PV module open-circuit voltage Voc(V) 24
PV module temperature coefficient (%/◦C) −0.37
NOCT (◦C) 48◦

PV module slope 15◦

PV module azimuth 0◦

Table 3. Batteries data.

Battery Type OPZS

Number of batteries in serial/parallel 24/1
Battery voltage (V) 2
Battery capacity C10 (Ah) 3360
Battery float life at 20 ◦C (years) 15
Battery equivalent full cycles 1500

Table 4. Economic data for net present cost (NPC) calculation.

Parameters Economic Data

Battery bank acquisition cost 30,960 €
PV generator acquisition cost 9680 €
PV generator expected lifetime 25 years
Diesel generator acquisition 800 €
Diesel generator expected lifetime 10,000 h
Inverter acquisition cost 2915 €
Wind turbine acquisition cost 4255 €
Wind turbine generator expected lifetime 15 years
Controller acquisition cost 2215 €
Expected controlled and inverter lifetime 10 year
The lifetime of the system 25 years
Average annual interest rate/inflation rate 4%/4%
Installation cost 500 €
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In this work, electricity supply optimization has been carried out for this case, considering various
possibilities for the PV generator size, as well as for the wind turbine, diesel generator, and lead–acid
batteries. In addition, various lithium battery sizes have been considered.

Tables 5–9 show, in detail, the parameters used in the optimization for each of the
system components.

Table 5. PV modules considered in the optimization.

Parameters Data

Nominal Power 380 Wp
Isc 10.11 A
NOCT 47◦

α −0.37%/◦C
Acquisition cost 220 €
Lifespan 25 years
Nominal voltage (2 in serial) 24 V
Maximum number allowed 2 in serial/50 in parallel

Table 6. Wind turbines used in optimization.

Parameters Model 1: WT600 Model 2: WT3000

Maximum power 660 W 3471 W
Hub height 13 m 15 m
Acquisition cost 4255 € 7555 €
Lifespan 15 years 15 years
O&M cost 85 €/year 50 €/year
Maximum number allowed in parallel 3 3

Table 7. Batteries used in the optimization.

Parameters
Lead–Acid 1 Lead–Acid 2 Lithium 1 Lithium 2

OPZS OPZS BYD B-Box 5.0 LG Chem

Capacity 1865 Ah 3360 Ah 106.6 Ah 63 Ah
Acquisition cost 820 € 1010 € 3390 € 3400 €

O&M cost (one cell) 8.2 €/year 10.1 €/year 20 €/year 30 €/year
O&M cost (whole bank) * 50 €/year 50 €/year 50 €/year 50 €/year

Nominal voltage 2 V 2 V 48 V 48 V
Float life at 20 ◦C 20 years 18 years 10 years 10 years

Equivalent full cycles 1500 1600 6000 3200
SOCmin 20% 20% 20% 20%

Self-discharge 3%/month 3%/month 2%/month 2%/month
Number of series batteries 24 24 1 1

Maximum number in parallel 6 6 6 6

* Cost of the maintenance technician’s journey.

Table 8. Diesel generator considered in the optimization.

Parameters Data

Nominal Power 1.9 kVA
Minimal power 30%
Acquisition cost 800 €
Lifespan 10,000 h
O&M cost 0.14 €/h
Diesel fuel cost (including transportation) 1.13 €/l
Maximum number allowed in parallel 2
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Table 9. Inverter/charger considered in the optimization.

Nominal Power 5 kVA
Efficiency 90%

Optimization means also looking for the optimal control strategy between the two preselected
options by the iHOGA software [42]. The two global strategies are as follow:

• Demand monitoring: Based on systems that include batteries and either diesel or gasoline
generators, when the energy from renewable sources is not enough to meet the demand,
the batteries will provide the rest of the energy. If the batteries cannot cover all of the demand,
then the generator will work to meet the rest of the demand.

• Cyclic charging: If the generator is required to provide power, then it will only work at its
nominal power not only to meet the demand but also to charge the batteries only during that hour.
This strategy may have a variation called a cyclic strategy up to the setpoint, which means that
the diesel generator will continue to operate at its nominal power until the battery bank reaches a
specific value of SOC charge status, which is at 95% by default.

3. Results

3.1. Actual System

Table 10 shows the simulation results of the current system obtained from the data summarized
in Section 2, considering different battery-aging models.

Table 10. Simulation results for the current system, using the three lead–acid battery-aging models and
an average ambient temperature of 27◦.

Battery-Aging Model
Lifespan NPC LCOE

(years) (€) (€/kWh)

Rainflow cycle counting 9.23 98,891 0.36
Average full equivalent cycles 9.23 99,061 0.36
Schiffer 7.05 119,458 0.49

It is observed that the battery life is shorter with the Schiffer model (the most realistic model), and
therefore more replacements are necessary throughout the system’s lifetime (25 years), so that NPC
and LCOE are higher than using the other less realistic models.

3.2. System Optimization

Various optimizations have been made considering the different component options detailed
in Section 2 (Tables 5–9). For each battery life model, two optimizations have been made, one for a
hypothetical case of an average temperature of 20 ◦C and another for the real average temperature of
the system’s location, which is 27 ◦C.

Table 11 shows the results for the microgrid optimization considering the three aging models
for lead–acid batteries (equivalent cycle model, Rainflow, and Schiffer et al.). Classic models such as
equivalent cycles and Rainflow present similar results, both in the expected lifetime as well as factors
such as NPC and LCOE. These costs are higher when considering Schiffer’s aging model, which is
more realistic, since decreasing the batteries’ lifetime would require more replacements during the
project lifetime and therefore increase the total system cost.

It is also observed that using the equivalent cycle and Rainflow models, the battery lifetime is that
of the floating lifetime since few cycles are performed per year. There is a reduction in the batteries’
lifetimes due to a 39.2% temperature increase using the real average temperature (27◦ at the installation
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site) compared to the case of 20 ◦C (the reduction is of the order of 50% for every 8.3 ◦C increase [43]).
This reduction is much lower when using the Schiffer model since it considers many more parameters
in addition to the temperature and cycles.

Considering the most realistic model (Schiffer) at the real average temperature (27 ◦C), the best
system would be composed of the following: PV with 31.9 kWp capacity, diesel with 1.9 kVA capacity,
wind with 660 W capacity, batteries with a 89.520 kWh energy storage capacity, inverter of 5 kVA
capacity, with demand monitoring as the optimal control strategy, a battery life of 5.52 years, a NPC of
€104,690, and an LCOE of €0.36/kWh. Compared to the result of the current system, considering the
Schiffer model (Table 4), where the NPV is €119,458 and the LCOE is €0.49/kWh, it is observed that the
current system is not optimal.

The results for one of the optimal cases obtained are shown in Figure 5 (with lead–acid batteries,
Schiffer aging model, and at a temperature of 27 ◦C). The mono-objective optimization consists of
obtaining the lowest NPC. The results show a minimum NPC of €104690 and an equivalent level of
total CO2 emissions during the year of 1824 kg/year.

In Figure 5, the horizontal axis shows the generations of the evolutionary algorithm used by the
iHOGA optimization software. An evolutionary algorithm generation is similar to an iteration [32].

Table 11. Results of the system optimizations in the case of lead–acid batteries, using the three battery
life models and with two different values of average ambient temperature (20 ◦C or 27 ◦C).

Battery
Aging

Model 1

Ambient
Temp.

Optimal System
Configuration 2

(In all cases: Diesel Generator
Power = 1.9 kVA, Battery

Bank Capacity = 89.52 kWh,
and Inverter Power = 5 kVA)

Control
Strategy 3

Lifetime
(Years)

NPC
(€)

LCOE
(€/kWh)

AFEC 20◦ 12.16 kWp/0 kW LF 20 52,544 0.19
AFEC 27◦ 12.16 kWp/0 kW LF 12.31 59,413 0.21
RCC 20◦ 34.2 kWp/0 kW LF 20 52,013 0.19
RCC 27◦ 33.4 kWp/0 kW LF 12.31 59,413 0.21

Schiffer 20◦ 32.68 kWp/0 kW LF 7.73 91,573 0.32
Schiffer 20◦ 32.68 kWp/0 kW CC 7.59 92,195 0.32
Schiffer# 20◦ 32.44 kWp/0 kW CC 7.36 92,650 0.32
Schiffer 27◦ 31.9 kWp/660 kW LF 5.52 104,690 0.36
Schiffer 27º 29.64 kWp/660 kW CC 5.67 104,730 0.36
Schiffer# 27º 29.64 kWp/660 kW CC 5.63 105,307 0.36

1 AFEC = average full equivalent cycles. RCC = rainflow cycle counting. Schiffer# = Schiffer without continuing up
to SOC setpoint.; 2 PV power (kWp)/Wind turbine power (kW).; 3 LF = load following. CC = cycle charging.
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Figure 5. Results for NPC and CO2 emissions for every generation.

Figure 6 shows the annual distribution of energy generated in this case by the system for a year.
The percentage of energy generated by renewables is 96.81%. Of this, 9703 kWh/year is supplied by
the photovoltaic generator and 6705 kWh/year by wind turbines, while a smaller contribution is made
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by the 541 kWh/year diesel generator. The excess energy is 3496 kWh/year, which could be used to
charge electric vehicles or to generate hydrogen, which could later be used in fuel-cell-powered electric
vehicles [44].Energies 2020, 13, x FOR PEER REVIEW 12 of 17 
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The optimization results considering lithium batteries instead of lead–acid batteries are shown in
Table 12. It is considered that the lithium batteries used can be LiFePO4/graphite or LiCoO2/graphite.
Wang et al.’s model proved the most optimistic even when compared to the Groot model when the
temperature rises, whereas Saxena’s model showed similar results for different temperatures because
it is based on the SOC.

Table 12. Results of the optimizations for the case of lithium batteries, using the three models of battery
life and with two different average ambient temperature values (20 ◦C or 27 ◦C).

Battery
Aging

Model 1

Ambient
Temp.

Optimal System Configuration 2

(In all Cases, Inverter Power = 5 kVA)
Control

Strategy 3
Lifetime
(Years)

NPC
(€)

LCOE
(€/kWh)

Wang 20◦ 14.44 kWp/1.9 kVA/0 kW/15.35 kWh LF 10 47,889 0.17
Wang 20◦ 15.2 kWp/1.9 kVA/0 kW/20.46 kWh CC 10 52,657 0.18
Wang 27◦ 14.44 kWp/1.9 kVA/1.66 kW/15.35 kWh LF 6.15 56,204 0.20
Wang 27◦ 13.68 kWp/1.9 kVA/1.66 kW/15.35 kWh CC 6.12 64,796 0.23
Groot 20◦ 14.44 kWp/1.9 kVA/0 kW/15.35 kWh LF 10 47,934 0.17
Groot 20◦ PV 15.2 kWp/1.9 kVA/0 kW/20.4 kWh CC 10 52,657 0.19
Groot 27◦ 14.44 kWp/1.9 kVA/0 kW/15.35 kWh LF 6.15 56,204 0.20
Groot 27◦ 15.2 kWp/1.9 kVA/0 kW/20.4 kWh CC 6.15 63,747 0.23

Saxena 20◦ 13.68 kWp/1.9 kVA/0 kW/15.35 kWh LF 3 78,427 0.29
Saxena 27◦ 19 kWp/1.9 kVA/3.32 kW/15.35 kWh LF 3.03 84,742 0.22
AFEC 20◦ 20.52 kWp/1.9 kVA/1.66 kW/10.2 kWh LF 10 54,216 0.19
AFEC 27◦ 13.68 kWp/3.8 kVA/3.32 kW/5.1 kWh LF 6.15. 58,216 0.2
AFEC 27◦ 15.2 kWp/1.9 kVA/0 kW/20.4 kWh CC 6.15. 63,747 0.23
RCC 20º 14.44 kWp/1.9 kVA/0 kW/15.3 kWh LF 9.88 48,455 0.18
RCC 20º 15.2 kWp/1.9 kVA/0 kW/20.4 kWh CC 9.88 53,461 0.19
RCC 27º 14.44 kWp/3.8 kVA/3.32 kW/5.1 kWh LF 6.15 57,162 0.2
1 AFEC = average full equivalent cycles. RCC = rainflow cycle counting.; 2 PV power (kWp)/Diesel generator power
(kVA)/Wind turbine power (kW)/Battery bank capacity (kWh); 3 LF = load following. CC = cycle charging.

It is observed in the results of Table 7 that even with the most pessimistic model, the NPC and
LCOE are much lower than those of lead–acid battery optimizations using the realistic Schiffer model
(Table 6), leading to the conclusion that lithium batteries are suitable for this case.
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4. Discussion

In this work, different models and battery technologies have been compared in the optimization
of a hybrid microgrid. The classic lead–acid battery aging models used by various researchers, such as
the equivalent cycle model and the Rainflow cycle counting model, generally tend to overestimate
the battery’s lifespan up to three times its actual duration. However, Schiffer et al.’s [13] weighted
model has shown better results since their predictions are closer to the real ones. The results from
the different optimizations show that lower net current costs (NPC) and lower LCOE are obtained
for both lead–acid and lithium battery models; therefore, it is concluded that the current system is
not optimized.

As for LiFePO4/graphite lithium–ferrophosphate batteries, Groot et al.’s [17] model presents
more realistic results than Wang et al.’s [16] model, mainly due to temperature increases. Conversely,
Saxena et al.’s [18] model showed the same results despite the variation in temperature, since the
model is based on the SOC. Finally, comparing the two technologies (lead–acid vs. lithium), the results
show lower NPC and LCOE costs for the case of lithium (compared to the realistic Schiffer model
for lead–acid), which allows more optimistic insight into the exploration of new aging models for
emerging technologies such as lithium batteries, as they represent an alternative storage technology
for hybrid microgrids.

5. Conclusions

The most relevant conclusions of this work are as follows:

1. Optimal dimensioning and management of the elements that make up a microgrid give rise to
significant energy and economic benefits.

2. Classic models for estimating battery life provide results that are too optimistic, so it is advisable
to use models that are more realistic.

3. The effect of temperature in the estimation of battery life can be significant, so models that
consider this parameter should be used.

4. Lithium-ion batteries are suitable as storage systems in a microgrid since they give rise to a lower
cost throughout the life of the installation due to a longer lifespan than lead–acid batteries and a
lower maintenance cost.

These conclusions allow us to state that it is necessary optimize the designs of microgrids not
connected to the electricity grid since the economic benefits can be significant. An adequate design
will allow for better use of renewable generation, and even take advantage of the surplus energy that
can be used in electric vehicles, or in the case of islands, for water desalination. Furthermore, it is
necessary to be open-minded and use other storage technologies, in addition to lead–acid batteries,
since a lower initial cost does not imply that the total cost, throughout the life of the installation, will
be low. Therefore, the use of other generation technologies, such as lithium-ion batteries, should be
considered in the design, although their initial cost may be higher.
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Nomenclature and Abbreviations

a, b, C, d, e, f adjustment constants
AFEC Average Full Equivalent Cycles
Ah amount of charge involved in the charging process since the start of battery operation (Ah)
Bcyc exponential factor
CC Cycle Charging
Ccorr final loss of battery capacity due to continuous corrosion and degradation
Ccorr loss of corrosion capacity
Cd (0) initial normalized battery capacity
Cdeg degradation capacity losses
CFi cycles until failure for interval i
Costfuel annual cost of the fuel used by the diesel generator (€)
CostINST installation cost (€)
Costj acquisition cost of component j (€)
CostO&Mj annual O&M cost of component j (€)
Cn nominal capacity of a battery (Ah)
DOD Depth of Discharge (%)
Eacyc activation energy expressed in J mol−1

EFC Equivalent Full Cycles
Eload annual expected load of the system (kWh/yr)
iHOGA improved Hybrid optimization by genetic algorithms
HOMER Hybrid optimization model for multiple energy resources
I charge rate (A)
IEC International Electrotechnical Commission
Inffuel annual expected diesel fuel inflation (€)
Infgeneral general annual expected inflation (%)

IPSE
Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No
Interconectadas

Ir annual interest rate (%)
Isc PV module short current (A)
LCOE Levelized Cost of Energy
LCOEi,k LCOE (€/kWh) of a combination of components i and control strategy k
LF Load Following
Lifebat battery life (h)
NOCT Nominal operation cell temperature (◦C)
NPC Net Present Cost (€)
NPCi,k NPC (€) of a combination of components i and control strategy k

NPCrepj
sum of the replacement costs of component j during the system lifetime minus the residual
cost of component j at the end of the system lifetime (€)

O&M operating and maintenance costs
PV Photovoltaic
QEOL charge that the battery can deliver in its lifetime (kAh)
Qloss percentage of capacity loss (%)
Qcyc

loss percentage of capacity loss (%)
R gas constant (8.314 J·mol−1

·K−1)
RCC Rainflow Cycle Counting
Schiffer# Schiffer without continuing up to SOC setpoint
SOC State of Charge (%)
SOCmean average SOC (30%–50%)
SOCmin minimum SOC allowed
SOCst SOC at which the battery is stored (%)
t elapsed time, in hours
T temperature (K, ◦C)
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tm storage time, in months
ty one year of the system lifetime
Voc PV module open-circuit voltage (V)
Zcyc constant with a value close to 0.5
Zi cycle count
ZIEC number of cycles provided by the manufacturer to reach the end of the battery life.
Zn(t) number of complete cycles
γ coefficient to determine the acceleration in aging due to the current (J mol−1 A−1)
α PV module temperature coefficient (%/◦C)
∆SOC variation of the SOC (100%–60%)∣∣∣Idischbat(t)

∣∣∣ absolute value of the discharge current (A)
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