000095919 001__ 95919
000095919 005__ 20210902121651.0
000095919 0247_ $$2doi$$a10.3390/app10010376
000095919 0248_ $$2sideral$$a116934
000095919 037__ $$aART-2020-116934
000095919 041__ $$aeng
000095919 100__ $$0(orcid)0000-0002-0118-3254$$aManyà, Joan J.$$uUniversidad de Zaragoza
000095919 245__ $$aAdsorption performance of physically activated biochars for postcombustion Co2 capture from dry and humid flue gas
000095919 260__ $$c2020
000095919 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095919 5203_ $$aIn the present study, the performance of four biomass-derived physically activated biochars for dynamic CO2 capture was assessed. Biochars were first produced from vine shoots and wheat straw pellets through slow pyrolysis (at pressures of 0.1 and 0.5 MPa) and then activated with CO2 (at 0.1 MPa and 800 C) up to different degrees of burn-off. Cyclic adsorption-desorption measurements were conducted under both dry and humid conditions using a packed-bed of adsorbent at relatively short residence times of the gas phase (12-13 s). The adsorbent prepared from the vine shoots-derived biochar obtained by atmospheric pyrolysis, which showed the most hierarchical pore size distribution, exhibited a good and stable performance under dry conditions and at an adsorption temperature of 50 C, due to the enhanced CO2 adsorption and desorption rates. However, the presence of relatively high concentrations of water vapor in the feeding gas clearly interfered with the CO2 adsorption mechanism, leading to significantly shorter breakthrough times. In this case, the highest percentages of a used bed were achieved by one of the other activated biochars tested, which was prepared from the wheat straw-derived biochar obtained by pressurized pyrolysis.
000095919 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-17R$$9info:eu-repo/grantAgreement/ES/MCIU-ERANET-MED/PCIN-2017-048/MEDWASTE
000095919 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095919 590__ $$a2.679$$b2020
000095919 591__ $$aPHYSICS, APPLIED$$b73 / 160 = 0.456$$c2020$$dQ2$$eT2
000095919 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b38 / 91 = 0.418$$c2020$$dQ2$$eT2
000095919 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b101 / 178 = 0.567$$c2020$$dQ3$$eT2
000095919 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b201 / 333 = 0.604$$c2020$$dQ3$$eT2
000095919 592__ $$a0.435$$b2020
000095919 593__ $$aComputer Science Applications$$c2020$$dQ2
000095919 593__ $$aEngineering (miscellaneous)$$c2020$$dQ2
000095919 593__ $$aProcess Chemistry and Technology$$c2020$$dQ2
000095919 593__ $$aInstrumentation$$c2020$$dQ2
000095919 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ2
000095919 593__ $$aFluid Flow and Transfer Processes$$c2020$$dQ2
000095919 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095919 700__ $$aGarcía-Morcate, David
000095919 700__ $$0(orcid)0000-0001-7125-4997$$aGonzález, Belén$$uUniversidad de Zaragoza
000095919 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000095919 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000095919 773__ $$g10, 1 (2020), 376  [17 pp]$$pAppl. sci.$$tAPPLIED SCIENCES-BASEL$$x2076-3417
000095919 8564_ $$s401826$$uhttps://zaguan.unizar.es/record/95919/files/texto_completo.pdf$$yVersión publicada
000095919 8564_ $$s493645$$uhttps://zaguan.unizar.es/record/95919/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095919 909CO $$ooai:zaguan.unizar.es:95919$$particulos$$pdriver
000095919 951__ $$a2021-09-02-09:06:46
000095919 980__ $$aARTICLE