000095928 001__ 95928
000095928 005__ 20201026143852.0
000095928 0247_ $$2doi$$a10.3390/mi10120799
000095928 0248_ $$2sideral$$a116320
000095928 037__ $$aART-2019-116320
000095928 041__ $$aeng
000095928 100__ $$0(orcid)0000-0001-9566-0738$$aDe Teresa, J. M.$$uUniversidad de Zaragoza
000095928 245__ $$aComparison between focused electron/ion beam-induced deposition at room temperature and under cryogenic conditions
000095928 260__ $$c2019
000095928 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095928 5203_ $$aIn this contribution, we compare the performance of Focused Electron Beam-induced Deposition (FEBID) and Focused Ion Beam-induced Deposition (FIBID) at room temperature and under cryogenic conditions (the prefix "Cryo" is used here for cryogenic). Under cryogenic conditions, the precursor material condensates on the substrate, forming a layer that is several nm thick. Its subsequent exposure to a focused electron or ion beam and posterior heating to 50°C reveals the deposit. Due to the extremely low charge dose required, Cryo-FEBID and Cryo-FIBID are found to excel in terms of growth rate, which is typically a few hundred/thousand times higher than room-temperature deposition. Cryo-FIBID using the W(CO)6 precursor has demonstrated the growth of metallic deposits, with resistivity not far from the corresponding deposits grown at room temperature. This paves the way for its application in circuit edit and the fast and direct growth of micro/nano-electrical contacts with decreased ion damage. The last part of the contribution is dedicated to the comparison of these techniques with other charge-based lithography techniques in terms of the charge dose required and process complexity. The comparison indicates that Cryo-FIBID is very competitive and shows great potential for future lithography developments.
000095928 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E13-17R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA/FSE$$9info:eu-repo/grantAgreement/ES/DGA/LMP33-18$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2-2-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2018-102627-T
000095928 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095928 590__ $$a2.523$$b2019
000095928 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b23 / 64 = 0.359$$c2019$$dQ2$$eT2
000095928 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b65 / 103 = 0.631$$c2019$$dQ3$$eT2
000095928 592__ $$a0.531$$b2019
000095928 593__ $$aControl and Systems Engineering$$c2019$$dQ2
000095928 593__ $$aMechanical Engineering$$c2019$$dQ2
000095928 593__ $$aElectrical and Electronic Engineering$$c2019$$dQ2
000095928 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095928 700__ $$0(orcid)0000-0002-6087-7467$$aOrús, P.
000095928 700__ $$aCórdoba, R.
000095928 700__ $$aPhilipp, P.
000095928 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000095928 773__ $$g10, 12 (2019), 799 [14 pp]$$pMicromachines (Basel)$$tMicromachines$$x2072-666X
000095928 8564_ $$s830347$$uhttps://zaguan.unizar.es/record/95928/files/texto_completo.pdf$$yVersión publicada
000095928 8564_ $$s473455$$uhttps://zaguan.unizar.es/record/95928/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095928 909CO $$ooai:zaguan.unizar.es:95928$$particulos$$pdriver
000095928 951__ $$a2020-10-26-13:26:22
000095928 980__ $$aARTICLE