000095945 001__ 95945
000095945 005__ 20201026162923.0
000095945 0247_ $$2doi$$a10.3390/nano9121715
000095945 0248_ $$2sideral$$a116332
000095945 037__ $$aART-2019-116332
000095945 041__ $$aeng
000095945 100__ $$aSanz-Martín, C.
000095945 245__ $$aHigh volume-per-dose and low resistivity of cobalt nanowires grown by Ga+ focused ion beam induced deposition
000095945 260__ $$c2019
000095945 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095945 5203_ $$aThe growth of ferromagnetic nanostructures by means of focused-Ga+-beam-induced deposition (Ga+-FIBID) using the Co2(CO)8 precursor has been systematically investigated. The work aimed to obtain growth conditions allowing for the simultaneous occurrence of high growth speed, good lateral resolution, low electrical resistivity, and ferromagnetic behavior. As a first result, it has been found that the competition between deposition and milling that is produced by the Ga+ beam is a limiting factor. In our working conditions, with the maximum available precursor flux, the maximum deposit thickness has been found to be 65 nm. The obtained volumetric growth rate is at least 50 times higher than in the case of deposition by focused-electron-beam-induced deposition. The lateral resolution of the deposits can be as good as 50 nm while using Ga+-beam currents lower than 10 pA. The high metallic content of the as-grown deposits gives rise to a low electrical resistivity, within the range 20-40 µ¿cm. Magnetic measurements confirm the ferromagnetic nature of the deposits at room temperature. In conclusion, the set of obtained results indicates that the growth of functional ferromagnetic nanostructures by Ga+-FIBID while using the Co2(CO)8 precursor is a viable and competitive technique when compared to related nanofabrication techniques.
000095945 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E13-17R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2018-102627-T
000095945 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095945 590__ $$a4.324$$b2019
000095945 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b42 / 103 = 0.408$$c2019$$dQ2$$eT2
000095945 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b89 / 314 = 0.283$$c2019$$dQ2$$eT1
000095945 592__ $$a0.858$$b2019
000095945 593__ $$aMaterials Science (miscellaneous)$$c2019$$dQ1
000095945 593__ $$aChemical Engineering (miscellaneous)$$c2019$$dQ1
000095945 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095945 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, C.$$uUniversidad de Zaragoza
000095945 700__ $$0(orcid)0000-0001-9566-0738$$aDe Teresa, J. M.$$uUniversidad de Zaragoza
000095945 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000095945 773__ $$g9, 12 (2019), 1715 [22 pp]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000095945 8564_ $$s518072$$uhttps://zaguan.unizar.es/record/95945/files/texto_completo.pdf$$yVersión publicada
000095945 8564_ $$s490730$$uhttps://zaguan.unizar.es/record/95945/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095945 909CO $$ooai:zaguan.unizar.es:95945$$particulos$$pdriver
000095945 951__ $$a2020-10-26-14:58:34
000095945 980__ $$aARTICLE