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ABSTRACT

Las Tablas de Daimiel National Park has experienced many hydrological and ecological modifications through out its

history, both of natural as well as anthropogenic origin, which have affected its carbon storage capacity and carbon

fluxes. The study of those variations has been carried out by the analysis of its sedimentary record (geochemistry and

pollen) and historical data. The natural changes have a wider variation range than the anthropogenic ones, show repetitive

patterns and the system reacts readjusting the equilibrium among its components. Anthropogenic effects depend on the

direct or indirect impact on the wetlands of change and its intensity. In addition, the anthropogenic impacts have the

capacity of breaking the natural balance of the ecosystem and the internal interactions.

1. Introduction

One of the main research focuses of the global carbon cycle

(C-cycle) is finding the `missing sink’. Although the uncertainty

associated with each of the known sources and sinks is high, so

that the missing sink may be the cumulative result of estima-

tion errors, several lines of evidence suggest that it is real and

located on land (Scholes et al., 1999). But, where those sinks

and their C budgets are, is still uncertain (Walker and Steffen

1999). The carbon dynamics of the terrestrial biosphere is com-

plex and its detailed understanding is basic because the terrestrial

biosphere plays a major role in the global C-cycle. Also, hu-

man disturbance of the C-cycle not only alters the climate sys-

tem, but also directly affects terrestrial metabolism (Canadell

et al., 2000). However, it is impossible to understand the ter-

restrial biosphere as a whole without prior knowledge of the
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particular dynamics of each ecosystem integrated in it and how

land use changes affect their fluxes through out the different

compartments of an ecosystem. The results of these studies

are necessary to complete and improve current global C-cycle

models.

Research of the C-cycle and human disruption of terrestrial

ecosystems has concentrated mainly on a few ecosystems such

as peatlands (Moore et al., 1998; Turetsky et al., 2002) and

forests (mainly boreal and tropical). Ecosystems such as tem-

perate forests and aquatic-terrestrial environments such as lakes,

reservoirs and wetlands, although all of them have important C

fluxes (Dean and Gorham, 1998) and are under intense human

pressure, have received less attention and are sometimes not in-

cluded in models that simulate future carbon balances. Another

point that is not usually implemented in the models is the possi-

ble feedbacks of wetland desiccation, such as soil decomposition

(Field et. al., 2004).

Our main goal in this paper is to present and compare the

evolution of C storage in a Mediterranean temperate wetland

in response to the modifications that led to the change from
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Fig. 1. Studied area, location of core Cigüela 4 and morphological characteristics (from Alvarez-Cobelas et al., 1996) of the wetland basin. (∗):

human-modified values due to the presence of dams. Topography, drainage network and TDNP boundary information has been provided by the

authorities of the TDNP.

a natural (climate-controlled) system to an intensely modified

(human-controlled) one.

2. Study area

The Las Tablas de Daimiel National Park (TDNP) is a Mediter-

ranean fluvial wetland located in central Spain (Fig. 1). Until

1983, it was fed by Cigüela (sulphated waters) and Guadiana

rivers (carbonated waters) and groundwaters. As result of the

combination of these water supplies and the low slope of this

area the water flow slowed enough as to allow the development

of the wetland with annual renewal of waters (both surface and

groundwaters). Since 1983, Cigüela river waters, rainfall and hu-

man regulated supplies (from wells and channels) are the only

sources of water.

Climate is continental Mediterranean, with an average an-

nual precipitation of 412.6 mm and annual average temperature

of 14.3 ◦C (for the 20th century), with dry and hot summers

and cold winters. The marked seasonality is responsible of the

strong fluctuations actually shown by the water table of the wet-

land. Before 1980s the situation was very different as the con-

stant flow of groundwater at springs allowed more stable water

levels.

The vegetation is dominated by heliophytes, mainly Phrag-
mites australis, Claudium mariscus and Typha domingensis, dis-

tributed across the banks and in some patches inside the wetland,

at the `tablas’(open water zones with depth from centimetres up

to 4 m) appear dense masses of charophytes, and the surrounding

areas are dominated by Tamarix, halophytes and crops composed

mainly by Vitis, Olea and Cerealia.

3. Materials and methods

3.1. Coring and sediments

During December 2002 was made a coring campaign, taking 10

rotation cores and 10 manual PVC, to recover the uppermost part

intact, in five sites (two per site, covering the different sedimen-

tary environments of the National Park), and 10 vibracores for

lithological correlation.

Three representative cores of the present environments of the

wetland were selected for geochemical, isotopic, mineralogi-

cal, sedimentological and pollen analyses. Of these cores, core

Cigüela 4 shows the most complete record and the more evident

changes.

Three major facies are represented in this core (Santisteban

et al., 2004) and they coincide with present day main environ-

ments (Fig. 2). The lowermost materials are gypsum-rich, pale

grey to pale green mud facies (clay to very fine clayey sand).

Gypsum occurs as disperse lensoidal crystals to the top, but forms

centimetric layers of microcrystalline gypsum towards the lower

part. This interval shows the lowest contents in organic and in-

organic C (0.73% and 1.82%, respectively) and N of the whole

core, low P, high Al, and the highest values in S (Table 1). This

facies represents saline wetland environments characterized by

high detrital input and near-surface saline groundwaters.

The following facies is composed by dark grey to black clay-

rich layers with the highest average content in organic C (13.5%)

(Table 1). In addition, this facies shows the highest average con-

tent in Al. S shows its lowest mean values while N and P suffer

a slight increase (Table 1). This facies record macrophyte-rich

wetland environments.

Tellus 58B (2006), 5
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Fig 2. Stratigraphical section of core Cigüela 4 and main geochemical and pollen components with environmental meaning. He: heliophytes; Hy:

hydrophytes; Sp: spores; Ch.-Am.: Chenopodiaceae–Amaranthaceae; AP: arboreal pollen; NAP: non-arboreal pollen; Pi: Pinus and eQ: evergreen

Quercus. Numbers represent main documentary events (Table 3).

Table 1. Average contents of main geochemical elements of each

facies identified in core Cigüela 4

Gypsum-rich Charophyte
facies Organic-rich facies layers

Inorg. C 1.82% 1.44% 6.97%

Org. C 0.73% 13.53% 9.77%

Al 3.85% 5.06% 0.41%

S 8.86% 0.88% 2.31%

N 11 ppm 17 ppm 67 ppm

P 146 ppm 176 ppm 197 ppm

Lithologically the transition to the upper facies is marked by a

neat change from apparently massive dark clays with fragments

of gastropods and charophytes to an interbedding of charophyte

and vegetal (mainly leaves) layers.

The uppermost deposits, which are the focus of this paper,

are charophyte muds and sands of cream colour that, towards

the bottom of the interval, alternate with dark green to dark

brown vegetal-rich (mainly leaves) laminae. Occasionally, the

organic sediment contains high amounts of charcoal. Near the

bottom, the organic layers can be tens of millimetres thick, but

they always contain carbonated material. The main bioclastic

components are fragments of charophyte stems and oogonia,

sparse, but well preserved, gastropod shells, and scarce wood

fragments. The siliciclastic fraction consists of sand to silt-sized

quartz grains. Clay is almost absent. C content rises to around

17%. Inorganic C reaches its highest averaged value and or-

ganic C shows the maximum local values. Despite organic C

mean value is lower than for the organic-rich facies, total C

in this zone is a little higher (Table 1). Al shows its minimum

values and S values are low, but not the lowest of the core. N

and P show their highest mean values but their variation ranges

are also the greatest. This facies represents the open wetland

environments.

3.2. Geochemical and pollen analysis

The core was sampled continuously with an average thickness

of 0.7 cm and for geochemical and pollen analyses in each sam-

ple. Samples for geochemistry were analyzed for major, minor

and trace elements (ICP-MS and ICP-AES), total C and S con-

tent (Leco c carbon and sulphur analyser), inorganic C (CO2

coulometry) and organic C (calculated as the difference between

total and inorganic C), at ALS Chemex laboratories in Vancouver

(Canada), N was determined as extractable N (NH4, and NO3,

colorimetrically) at ALS Environ Labs (Vancouver, Canada).

Tellus 58B (2006), 5
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Samples for pollen were extracted by flotation on Thoulet´s solu-

tion (Goeury and Beaulieu, 1979) without acetolysis (Gil Garcı́a

et al., in press). Pollen data are presented as the relative pollen

frequency of each taxon.

3.3. Dating and age model

AMS 14C dating of samples (four samples) was made at the

GADAM Centre (Gliwice, Poland) and 239,240Pu (16 sam-

ples) and 210Po (20 samples) at the Centro de Investigaciones

Medioambientales (CIEMAT, Madrid, Spain).

Bulk samples were used for AMS dating, as there are no proofs

of contamination and all the C sources are biological (vegetal

remains and bioinduced carbonates). Samples were selected ac-

cording to their stratigraphical position in parts of the core with-

out traces of contamination. For calibration we used CALIB v.5

(Stuiver and Reimer, 1993; Stuiver et al., 2003) using Reimer

et al. (2004) calibration dataset (Table 2).

For 210Po (used to measure the 210Pb) and 239,240Pu analy-

ses, the uppermost 15 cm of a PVC core were used, prepared

and measured by high-resolution alpha-spectrometry. The ob-

tained CIC-model rates (0.184 ± 0.022 cm yr−1) fitted with

the artificial maximum plutonium peak in 1963 and the be-

ginning (estimated in 1952) of its incorporation to the sedi-

ment (Fig. 3a). Additionally, the 210Pb profile confirmed that

there was no evident mixing of sediment or hiatuses in the up-

per part of the core, which coincides with the visual inspection

(Fig. 3a).

With all these data, an age-depth model was constructed by

linear interpolation of ages between dated samples. The inter-

polation for the upper 73 cm (charophyte layers with vegetal

remain layers) was extended down to the facies boundary as-

suming that there were no noticeable changes in the lower 2 cm.

For the remaining layers (organic-rich and gypsum-rich muds) a

linear interpolation between the boundary interpolated age and a

sample inside the gypsum-rich muds (0.99 m in depth) was used,

discarding the lowermost dated sample as the age is considered

to be too old probably due to contamination. Consequently, for

Table 2. AMS radiocarbon samples raw and calibrated data. Calibration was performed with CALIB v.5 (Stuiver and Reimer, 1993; Stuiver et al.,

2003) using calibration data from Reimer et al. (2004)

95.4% (2 σ ) Relative area under

Depth (m) Sample Material Lab. code 14C yr BP cal AD/BC (cal BP) age ranges probability distribution

0.56 4-2-79 Charophyte sand GdA-308 521 ± 37 1318-1352 (598–632) 0.195

cal AD 1390-1445 (505–560) 0.805
0.73 4-2-101 Vegetal layer (charophyte layers) GdA-309 1098 ± 39 832-836 (1114–1118) 0.002

cal AD 869-1021 (929–1081) 0.998
0.99 4-2-132 Grey mud with gypsum GdA-306 2699 ± 53 974-955 (2904–2923) 0.030

cal BC 942-792 (2741–2891) 0.970
1.12 4-2-141 C-poor, gypsum-rich grey mud GdA-353 7700 ± 50 cal BC 6634-6459 (8408–8583) 1.000

the lowermost layers, the preliminary age model is an average

of the two facies (Fig. 3b).

The age model was tested against documented local events

(documentary data for the last millennium, Table 3) likely to

have been recorded in the sediments. In this sense, we consider

a documentary event recorded in the sediments, when an anoma-

lous, sudden or local disruption in the trends or relations among

the geochemical or pollen components of the sediments ap-

pears, and the interpretation of this `rupture’ is consistent

with the effects of a documented event in a chronological

position near the interpolated age of the geochemical/pollen

anomaly.

The obtained final recalibrated model (Fig. 3b) assumes a

0.184 cm yr−1 sedimentation rate for the last 100 yr.

4. Climate and human evolution of the last
millennium

4.1. Regional climate

Carbon accumulation in wetlands is mostly controlled by the ex-

tension of the water table and the biological productivity. Also,

the range of the water table fluctuations and length of the hydro-

logical cycle determines the final budget at different timescales.

In the case of the TDNP, the annual cycle of water renewal

points to a clear dependence on rainfall (both for surface and

groundwaters). Despite the importance of the hydrological cycle,

many climate reconstructions for the last millennium focus on

the temperature variations of global or hemispheric range (Mann

et al., 1998; Moberg et al., 2005). It is recognized that in the long-

term such variations are correlated to rainfall trends, but this is

not valid for short timescales.

Thus, in order to understand the dynamics of this wet-

land, we have compared rainfall series from southern Spain

(Rodrigo et al., 1999, 2000) and our own data coming from

the comparison of instrumental and documentary sources (roga-

tion ceremonies), covering in the two last cases around the last

500 yr, with pollen ratios indicative of climatic or hydrological

Tellus 58B (2006), 5
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conditions (Gil et al., in press), covering the last millennium

(Fig. 4).

In the overall, there is good agreement among the reconstruc-

tions from documentary and instrumental data of Spain and the

pollen interpretation of the record, taking into account the dif-

ferent geographical setting of both areas.

The first recognized climatic period is only recorded in our

core and cannot be compared with the other reconstructions. It

is characterized a low evergreen Quercus/Pinus (eQ/Pi) ratio,

dominance of emergent against submerged vegetation, decreas-

ing values of Chenopodiaceae–Amaranthaceae and increasing

values of the arboreal/non-arboreal pollen (AP/NAP). These ra-

tios can be interpreted as cool and relatively dry conditions, but

with a trend to wetter conditions, during the 9th and early 10th

centuries AD. Such conditions are similar to those described by

Desprat et al. (2003) who attribute them to the transition from

the Dark Ages to the Medieval Warm Period. However, as dur-

ing this period the area was the border between Christians and

Muslims, it is not possible to discard the influence of man as it

has been interpreted by Riera et al. (2004) in NE Spain for this

period.

From 11th to 14th centuries AD, the eQ/Pi ratio, the AP/NAP

ratio as well as the hydrophytes and spores against the helio-

phytic vegetation increase. On the other hand, Chenopodiaceae–

Amaranthaceae decreases to recover slightly to the top. These

changes record warmer and wetter conditions and an expanding

water table but with a trend to more arid conditions in time, iden-

tified as typical Mediterranean climate by Dorado et al. (2002).

Such conditions are comparable to the Medieval Warm Period as

described by Desprat et al. (2003), Juliá et al. (1998) and Riera

et al. (2004) for NW and NE Spain.

From the 15th century AD onwards, our record is character-

ized by highly fluctuating conditions and slightly cooler temper-

atures. These characteristics suggest that this period represents

Tellus 58B (2006), 5
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Table 3. Documentary events recorded in the sediments and their duration. For their `physical’ location see Fig. 2.

Event Year or period Record

1 Christians conquer Toledo and the Christian–Muslim border 1085 AD Anomalous AP/NAP ratio (deforestation?).

moves to the Guadiana river.

Continuous battles in the region 12th to early 13th

centuries

2 Partial draining of the wetland and lowering of the mill dams. Decrease in water salinity (sudden drop in S values) as runoff

Azuer-Guadiana channel was built to diminish the flooding 1751–1780 AD and Guadiana waters flow improved.

of the area but increased freshwater input to the TDNP.

Cleaning of water courses. 1812 AD

3 Mendizabal’s and Madoz’s land privatization. Changes in the 2nd half of the Al increase (soil erosion) not related to salinity changes (S or

extension of land pieces. 19th and early Chenopodiaceae–Amaranthaceae) followed by a sudden drop.

20th centuries Anomalous AP/NAP and aquatic/emerged vegetation ratios.

4 Demolition of some water mills and wetland desication. 1937 AD Local drop of inorganic C.

5 Changes in the traditional techniques. Machinery 2nd half of the Anomalous increase in N and P.

and fertilizers begin to be used in agriculture. 20th century

6 Draining works inside the wetland, demolition of water mills. 1966–1971 AD Sudden S and Chenopodiaceae -Amaranthaceae

increase and AP/NAP and organic C drop.

7 The natural springs dried out as result of water 1980 AD Sudden drop of inorganic C.

overexploitation.

Puente Navarro dam was finished. 1985 AD

8 Artificial water supply starts. 1987 AD Decrease in water salinity (S).

Inner dam is built. 1988 AD
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the Little Ice Age, also identified by Desprat et al. (2003), Julià

et al. (1998) and Riera et al. (2004) in other records in Spain.

Three periods can be identified and compared with the complete

set of reconstructions.

From 15th to late 17th centuries AD the record is charac-

terized by lower, but still representative, eQ/Pi and still high

submerged/emergent vegetation ratios and AP/NAP ratio im-

plying a wet and mild climate on the average but with a marked

interannual variability. These coincide with the all the rainfall re-

constructions that show a trend to more humid conditions with a

wetter episode around the beginning of the 17th century AD that

is also recorded in the Chenopodiaceae–Amaranthaceae record

and in the AP/NAP and submerged/emerged vegetation ratios.

Despite the drop in eQ/Pi ratio around middle 17th century

AD, what places the next period (late 17th to middle 19th cen-

turies AD) is the rise in Chenopodiaceae–Amaranthaceae and the

expansion of emerged against submerged vegetation to recover

the initial conditions from around late 18th century AD onwards.

These changes point to drier and colder conditions. These con-

ditions are clearly reflected in our rainfall reconstruction but are

less evident in the southern Spain record.

The last period (from middle 19th century onwards) begins

with very high and local eQ/Pi values and an anomalous rise in

the AP/NAP ratio and sudden expansion of the emerged veg-

etation. After them, there is an increase in Chenopodiaceae–

Amaranthaceae, expansion of submerged vegetation and drop

in the AP/NAP and eQ/Pi ratios almost until today. These val-

ues should be interpreted as a cooling trend until the end of the

20th century and a progressive increase in aridity coeval with

expansion of submerged vegetation. These anomalies and the

absence of coincidence with the instrumental record points to

those values are not reflecting the climate but other factors.

4.2. Recent human stresses on the wetland

The historical records reveal that this area has been under rel-

atively low human pressure until two centuries ago when illus-

trated governments attempted to improve the living conditions

of farmers and small towns (Table 3). The first significant trans-

formation (late 18th century) was the attempt of draining the

wetland in order to prevent floods and epidemics. To achieve

this, main channels were cleaned and an artificial channel was

carved to join the Azuer and Guadiana rivers. As a consequence,

surface water flow improved and caused an increase in the sup-

ply of freshwaters causing a drop in the salinity of the wetland

waters (Fig. 2, Table 3).

The following human action with evident consequences for

the wetland (middle 19th to early 20th centuries) was a land re-

distribution (Mendizabal and Madoz’s land privatisation) with

the aim of increasing land productivity (Fig. 2, Table 3). This

led to an increase in the size of the land fields and the aban-

donment of the traditional alternating cycles of cultivation and

non-cultivation and, as a consequence, an increase in ploughing.

However, the most intense change occurred in the second half

of the 20th century as introduction of new farming techniques

(machinery, pumps, fertilizers, new cultivations, etc.) allowed in-

tensive farming and, therefore, land and water demand increased.

Two main human actions impacted the wetland: (1) a desicca-

tion attempt that almost drained the wetland (1965–1971) and

(2) a continuous increase in irrigation that caused the water table

to drop several meters. As a consequence, the wetland surface

decreased by more than 85% (100 km2 in 1937, 60 km2 in 1965

and 15 km2 in 1971) and, now, it only exists by an artificial

water supply Those changes leave their imprint in sediments by

means of variations in their bulk composition and trends (Figs. 2

and 5).

5. Discussion

5.1. The `quasi-natural state’

Until the 18th century, human-wetland interactions were mainly

related to the usage of the wetland as a source of energy (wa-

ter mills), primary products for handcrafts (reed, cattail, etc.),

fishing, and hunting. The importance of shepherding and for-

est ownership was also a factor that determined the equilibrium

between human activity and the wetland. Thus, human impacts

were of low intensity, and wetland dynamics was mainly gov-

erned by natural factors.

Figure 2 shows the main chemical composition interesting

elements in core Cigüela 4 for the last 1100 yr (Al, S, or-

ganic and inorganic C, N). The main trends shown in this figure

reveal a negative relation between inorganic C and organic C

and N, and a positive relation between inorganic C and the

(hydrophytes+spores)/heliophytes ratio. But a detailed obser-

vation reveals trends or relations of different orders.

(1) Short-scale relations. For the lower half of the core, the

increases of Al, S, organic C and N are directly correlated (in po-

sition but not necessarily in magnitude) and are reversely related

to the inorganic C. This, in turn, can be correlated to the evolu-

tion of the submerged/emerged vegetation ratio. For the upper

part of the core this relation can be occasionally observed but is

partially masked by the drop in the range of their values (Fig. 2).

The logical relation of inorganic C (mostly charophyte stems and

oogonia) with the evolution of the aquatic vegetation serves to

use this parameter as an indicator of the local water table extent,

as the charophytes are light limited and do not expand in areas

with emergent vegetation. Consequently, its inverse relation to

organic C (mostly derived from vegetal remains –Typha, Cla-
dium and Phragmites leaves) results from their competition for

light and it is depth controlled as Typha, Phragmites and Cla-
dium are depth limited (despite they tolerate episodic flooding).

Therefore the correlative increment of organic C, N, Al and S

record episodes of low waters and, as it derives from the relation

of rainfall with water table extent (Fig. 4), they represent arid
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Fig. 5. Annual temperatures and rainfall (Martı́nez-Santos et al., 2004) and flooded surface for the 20th century. Geochemistry and pollen record for

the last 200 yr.

periods with gypsum nucleation in the surface and soil degra-

dation (increase in Al). These relations reverse during periods

of rising water table (wetter). Such trends have been studied

in the TDNP by Sánchez-Carrillo et al. (2004) during a 5 yr

period.

(2) Long-term trends. On a longer scale the relations among

elements change considerably and depend on the climatic pe-

riod considered. During the Medieval Warm Period (around

55–72 cm in depth, Fig. 2) the relations are similar to those

for the humid short-scale relations, high inorganic C values re-

lated to high submerged/emerged vegetation ratios and moderate

to low contents in organic C, N, S and Al with local excursions.

For this period the water table should be in its maximum extent,

as it derives from the pollen ratios, and the low variability during

this period could be responsible of such sustained values. How-

ever, for the first part of the Little Ice Age (from around 32 to

55 cm in depth, Fig. 2) the values of S show an increasing trend

which is followed by the increase of the background values of

inorganic C while the upper boundary values of the organic C

and N decrease. On the average, there is also an increase trend

in Al, but it is not as evident as for the other elements. For this

period, the climate was very fluctuating but conditions were rel-

atively humid and mild. These conditions should have improved

faster oscillations of the water table and of greater range which

could have conduced to an increase of the number and length

of periods of emersion and, in consequence an increase in gyp-

sum formation. As salts became preserved in the soil, emergent

vegetation had difficulties to develop, while charophytes (living

in the aquatic media and more tolerant to salts) increased their

representation in percentage.

5.2. Disturbances of the natural system

The more obvious change to the top of the sediments is the dis-

appearance of the previous relations among elements and among

them and climate (Fig. 2, Fig. 5 upper).

The first evidence of change is observed during the second

part of the Little Ice Age (around 23–32 cm in depth, Fig. 2)

when the values of S suddenly fall to their minimum average.

This sudden change is not recorded in any other element and,

on the other hand, Chenopodiaceae–Amaranthaceae (saline soil

taxa) increases noticeably its values. The rest of the elements

follow the trend of the previous stage and narrow their range

of variation, except for the Al. Additionally, for this period the

climate became drier. Such alterations are not consistent with a

climate driven change and therefore an alternative explanation

must be found. During the second half of the 18th century and

up to the beginning of the 19th century, there were many works

on the channels feeding the wetland, one of the most important

the channel to connect the Azuer river to the Guadiana river

that is the present river channel (Table 3), in order to prevent

flooding and epidemics. As a result, the surface water supply of
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freshwaters was enhanced but also the residence time of the wa-

ters diminished as consequence of the better drainage conditions.

Probably, the decrease in S (gypsum formed inside the wetland)

records this decrease in water salinity centred in the wetland.

In contrast, the increase in Chenopodiaceae–Amaranthaceae,

which uses groundwaters and it is a prairie group (external

to the wetland), records the drier climatic conditions that pro-

moted the development of saline soils in the surroundings of the

wetland.

The following level (around 17–23 cm in depth) is character-

ized by a sudden and important rise of Al, while the rest of ele-

ments remain almost unchanged, and a noticeable increase in the

AP/NAP ratio (Fig. 2) coincidental with a decrease in grasses and

increases in evergreen Quercus and Oleaceae. Chenopodiaceae–

Amaranthaceae almost disappears and, in the aquatic domain,

emergent vegetation (heliophytes) spread whereas submerged

taxa (hydrophytes) almost disappeared (Fig. 5). Additionally,

instrumental records show that this period was relatively wet

and, consequently, we cannot argue soil degradation related to

arid conditions.

During the second half of the 19th century there were two

land privatisation processes (“Desamortizaciones de Madoz y

Mendizábal”, Table 3) in order to farm (notice the increase in

Oleaceae and later increase in Cerealia in Fig. 5 lower) an im-

portant extension of land owned by the church, military orders,

town councils and the nobility. This led also to a reorganiza-

tion of land property by concentration of lands (increasing the

size of the farming pieces). As a consequence, during a certain

period, soil remobilization by ploughing and clearance of lands

(grasses removal) increased the amount of siliciclastics reaching

the wetland (Al increase). This caused the almost disappearance

of the submerged vegetation as water turbidity increased and the

artificial increase in emerged vegetation.

From 5 to 17 cm in depth (Fig. 2, early 20th century to 1960s

in Fig. 5), there is a sudden decrease in Al together with a re-

covery of the `normal’ values of the vegetation (Fig. 5 upper).

There is an increase in grasses that correlates with the rise in

Chenopodiaceae–Amaranthaceae but opposite to the decreasing

trend in S. Organic C increases slightly, reversely to inorganic

C. Oleaceae is substituted by Cerealia. This record points to

a slightly decreasing water table, increasing organic C against

inorganic C confirmed by the decrease in submerged vegetation

towards the top. Water salinity drop (decrease in S) but salinity of

soils in the surrounding areas increase (rise in Chenopodiaceae–

Amaranthaceae). The sudden decrease in Al points to a sheltered

area, but the increasing values reveal continuous soil erosion.

With this constraints the best hypothesis points to a stabilization

of farming (cease of land reorganization) and wetland started

to recover developing a well vegetated margin that protected

it from runoff (drop of Al). Increase of irrigation, in number

of wells, and the introduction of mechanical pumps caused the

slow but progressive lowering of the water table and soil saliniza-

tion. However, the slightly increasing rainfall during this period

(Fig. 5 upper) caused the progressive freshening of the incoming

waters inside the wetland (slow drop in S).

Around the 1960s, there was a new change evidenced by a

increase in S together with a break in the increasing trend of

the organic C and followed later by a decrease in inorganic C

and increase in N (Fig. 5 upper). In the vegetation, the most

evident change was the noticeable increase in Chenopodiaceae–

Amaranthaceae together with a decrease in trees and shrubs fol-

lowed a little later by a decrease in heliophitic (emerged) wetland

taxa (Fig. 5 lower).

This was the result of a drop in the water table that corre-

sponds to the desiccation attempt of the 1960s causing saliniza-

tion both in the wetland and in the surrounding emerged areas.

These changes coincide with the sudden drop of the flooded sur-

face of the wetland (Fig. 5, upper). The sustained high values of S

are the result of the definitive disconnection of the groundwaters

to the surface due to increased water exploitation for irrigation

(notice the sudden increase of N values that are related to the

use of fertilizers). The decreasing trend of S in the uppermost

part of the record is due to the artificial supply of surface waters,

but despite this, salinization of surrounding soils (as recorded

by the high values of Chenopodiaceae–Amaranthaceae) became

permanent. The decrease of inorganic C values was noticeable,

but organic C values did not change and as a result the local C

storage rate did not decrease.

5.3. Qualitative valuation of C budget evolution.

Until now, we have exposed how the system has reacted to hy-

drological climate-driven changes and man-induced hydrologi-

cal and land-use changes for a single location. In first instance,

analyzing Fig. 2 it could be said that C storage has not decreased

through time as total C remains almost constant.

But in order to have an estimate of the `real’ wetland storage

variation, it is necessary to analyze spatially the evolution of

C-rich facies.

Figure 6 (upper) shows a sketch of the distribution of the main

facies of the wetland that is controlled by the morphology of the

wetland basin. Its elongated shape, related to its fluvial origin,

and the presence of internal islands determines a NE–SW facies

pattern with the siliciclastic-rich facies to the NE changing to the

inner wetland, protected by islands, where the open waters are

encountered (the charophyte-rich `tablas’, shallow and open wa-

ter bodies). Towards the SW and E, in relation to the Guadiana-

Azuer rivers, peat was the main deposit as the increased speed of

the waters was not favourable for the development of charophyte

stands.

The correlation of cores following this facies distribution

(Fig. 6, lower) reveals that the maximum thickness of the

C-rich facies increases towards the SW (correlation of vibra-

cores 5, 6, cores 2 and 4, vibracore 2 and core PN-1) while

in a NW–SE direction the thickness remains almost unchanged

(correlation of cores 4 and 1).
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Fig 6. Upper: main lithological

(environmental) domains in the TDNP;

lower: correlation of cores (calibrated ages)

showing the expansive character of the C

producer environments until recent times.

Data of core PN-1 are from the Department

of Geology of the University of Alcalá

(Spain) research project `Analysis of the

environmental impact of peat exploitation in

the peat bogs related to the Guadiana river in

the nearby area to the Llanura Manchega

groundwater discharge area and the interest

of their preservation’.

Additionally, dates of cores reveal that the C-rich facies have

been expanding from SW towards NE for most of the last mil-

lennium. Thus, core PN-1 shows more than 3 m of C-rich facies

(charophyte layers, black C-rich clay and peat) with two dated

peat levels providing ages from around 3rd to 6th centuries AD

(lower) and 7th to 10th centuries AD (upper). Vibracore 2 shows

more than 2 m of C-rich facies (peat and charophyte layers)

and cores 4 and 1 show the transition from the low-C facies

(gypsum-rich clays) to the C-rich facies to the charophyte-rich

layers around the 9th to 11th centuries AD. At the following core

to the north (core 2), the transition is placed around the 15th cen-

tury AD. At vibracore 6 the charophyte layers are represented

at the uppermost 7.5 cm. Finally, vibracore 5 only shows low-C

facies.

Consequently, the C-rich facies have been expanding up-

stream replacing the low-C bearing clayey facies (gypsum-rich

facies) and, consequently, the volume of C stored in the sys-

tem has been continuously increasing during most of the last

millennium.

This situation changed drastically during the 20th century. In

Fig. 7 we can observe the evolution of the wetland under differ-

ent situation. In 1956, the wetland remained as an open system.

No dams closed the flow of waters and these were supplied both

by groundwaters and by the Cigüela and Guadiana rivers. The
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Fig. 7. Aerial orthophotographs of the TDNP corresponding to different periods during the 20th century. 1956: before the draining of the wetland;

1977: after the draining and before the overexploitation of the groundwaters; 1984: after the disconnection of the groundwaters to the surface; 1991:

after the construction of the dams and the human regulated supply of water. Orthophotographs have been provided by the TDNP authorities.

Guadiana thalweg was filled by peat deposits both before and

after entering the TDNP. Also the Cigüela river was flooded

constantly. The `quasi natural’ state of the wetland can be con-

firmed by the presence of straight reaches of the channels coming

from previous attempts of draining the wetland.

After the desiccation works (Fig. 7, 1977) the wetland re-

mained crossed by artificial channels and it is evident the inva-

sion of the Guadiana peat areas by crops. Also, to the north, the

Cigüela thalweg is occupied by crops. After the disconnection

of groundwaters to the surface the authorities tried to stop the

degradation of the wetland by ceasing the canalization works

and making the declaration of protected area.

Despite this, in Fig. 7 (1984) is evident that the degradation

of the wetland continued. The peat area continued falling both

in the channels and in the southern part of the wetland and the

flooded areas reduced to the deepest parts of the central area. The

apparent recovery of wetland to the north was due to farming

abandonment as the soils were too saline to be productive.

In 1985 the Puente Navarro dam was finished as a measure

to retain the waters, but despite this, the high evapotranspiration

rates and infiltration made this measure insufficient to allow a

relatively seasonal water table. As consequence, since the late

1980s, the TDNP is sustained mostly by water supply from the

Tagus-Segura channel. In Fig. 7 (1991) it can be seen how the
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dams have allowed the retention of waters and partial restoration

of the southern part of the wetland and the. However, it is also

evident that the upper reach of the Cigüela and Guadiana rivers

have been definitively lost.

This lost implies a change from around 100 km2 of flooded

area in 1937 to a maximum flooded area of 18.4 km2 in the period

1979–2006, what means that more than 82.6% of accumulation

surface has been lost (without taking into account the oxidation

of peat and its shelf-combustion, relatively frequent in the area).

6. Conclusions

The comparison of changes during `natural’ and `anthropogenic’

periods allows the characterization of changes in C storage in

the environment. `Natural’ C changes show a greater range of

variation (Fig. 2) than human-induced changes and they can be

directly related to climate fluctuations (Figs. 2 and 4).

But the main difference between natural and human-induced

changes is the ability of the system to recover from changes.

Climate-driven changes show how the different parts of the sys-

tem interact among them to sustain a balance both in the short

and in the long-term (Fig. 2). On the other hand, land-use and

technological human events are short-term and usually sudden

changes or events without a clear recovery trend (Fig. 5).

Changes linked to human activity depend on the location (di-

rect or indirect impact) and intensity of the impact. During the

land-use changes of the late 19th century, activity was external

to the area of the wetland (indirect impact) and its intensity was

medium, so the system was able to recover in about 50 yr. The

wetland was mainly affected by collateral effects of this activity

(debris carried to the wetland by runoff), but its internal mecha-

nisms were able to react in some way to recover previous levels of

C storage. In addition, the flooded surface was scarcely affected

and, therefore, total C storage was not substantially modified.

However, draining and water overexploitation in the latter part

of the 20th century broke the hydrological balance of the wetland

in less than 30 yr and there is still no signal of recovery. Under

those circumstances, despite human actions to prevent total des-

iccation, the loss of the flooded surface and salinization caused

a dramatic drop in the volume of stored C in the system.

In any case, water availability (via temperature/rainfall or wa-

ter exploitation changes) is the true limiting factor on the equi-

librium of this environment and, due to the human demand of

water, the role of water availability must be stressed in future

projections of the C-cycle on the terrestrial domain.
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