000095966 001__ 95966
000095966 005__ 20210820090347.0
000095966 0247_ $$2doi$$a10.3390/e21090873
000095966 0248_ $$2sideral$$a116656
000095966 037__ $$aART-2019-116656
000095966 041__ $$aeng
000095966 100__ $$0(orcid)0000-0003-0702-733X$$aValero, Antonio$$uUniversidad de Zaragoza
000095966 245__ $$aThermodynamic Rarity and Recyclability of Raw Materials in the Energy Transition: The Need for an In-Spiral Economy
000095966 260__ $$c2019
000095966 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095966 5203_ $$aThis paper presents a thermodynamic vision of the depletion of mineral resources. It demonstrates how raw materials can be better assessed using exergy, based on thermodynamic rarity, which considers scarcity in the crust and energy requirements for extracting and refining minerals. An exergy analysis of the energy transition reveals that, to approach a decarbonized economy by 2050, mineral exergy must be greater than that of fossil fuels, nuclear energy, and even all renewables. This is because clean technologies require huge amounts of many different raw materials. The rapid exhaustion of mines necessitates an increase in recycling and reuse, that is, a “circular economy”. As seen in the automobile industry, society is far removed from closing even the first cycle, and absolute circularity does not exist. The Second Law dictates that, in each cycle, some quantity and quality of materials is unavoidably lost (there are no circles, but spirals). For a rigorous recyclability analysis, we elaborate the exergy indicators to be used in the assessment of the true circularity of recycling processes. We aim to strive toward an advanced economy focused on separating techniques and promoting circularity audits, an economy that inspires new solutions: an in-spiral economy.
000095966 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2017-85224-R
000095966 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095966 590__ $$a2.494$$b2019
000095966 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b33 / 85 = 0.388$$c2019$$dQ2$$eT2
000095966 592__ $$a0.527$$b2019
000095966 593__ $$aElectrical and Electronic Engineering$$c2019$$dQ2
000095966 593__ $$aPhysics and Astronomy (miscellaneous)$$c2019$$dQ2
000095966 593__ $$aInformation Systems$$c2019$$dQ2
000095966 593__ $$aMathematical Physics$$c2019$$dQ3
000095966 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095966 700__ $$0(orcid)0000-0003-3330-1793$$aValero, Alicia$$uUniversidad de Zaragoza
000095966 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000095966 773__ $$g21, 9 (2019), 873 [14 pp]$$pEntropy$$tENTROPY$$x1099-4300
000095966 8564_ $$s273189$$uhttps://zaguan.unizar.es/record/95966/files/texto_completo.pdf$$yVersión publicada
000095966 8564_ $$s477918$$uhttps://zaguan.unizar.es/record/95966/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095966 909CO $$ooai:zaguan.unizar.es:95966$$particulos$$pdriver
000095966 951__ $$a2021-08-20-08:38:25
000095966 980__ $$aARTICLE