Analysis of public datasets of power quality distortions
Resumen: Automatic classification of power quality distortions has gained interest in research due to the proliferation of distributed power systems with renewable sources. To train and test a classification system, data with power quality distortions are required. Most studies generate synthetic data from mathematical equations, since real distortions are difficult to record. A possible alternative is to use public datasets of real disturbances. However, there are strong differences among public datasets. In this paper, existing datasets of power quality distortions were compiled and their main features were analysed and compared. To the best of our knowledge, this is the first work reviewing these datasets. To identify the datasets, the most cited papers on this topic were surveyed. In addition, systematic searches were conducted in four popular scientific repositories. As a result, four available datasets were identified. They included a limited number of samples (20- 44) and types of distortions. Sampling frequencies and recording conditions were appropriate and the two main fundamental grid frequencies (50 and 60 Hz) were also considered. Although these datasets are appropriate for partially testing automatic classifiers, a remaining research effort is to provide comprehensive datasets with hundreds of samples and several types of distortions.
Idioma: Inglés
DOI: 10.24084/repqj18.317
Año: 2020
Publicado en: Renewable Energy and Power Quality Journal 18 (2020), 321-326
ISSN: 2172-038X

Factor impacto SCIMAGO: 0.136 - Electrical and Electronic Engineering (Q4) - Renewable Energy, Sustainability and the Environment (Q4) - Energy Engineering and Power Technology (Q4)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/T49-17R
Financiación: info:eu-repo/grantAgreement/ES/MECD/CAS18/218
Financiación: info:eu-repo/grantAgreement/ES/UZ/IT1-19
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Tecnología Electrónica (Dpto. Ingeniería Electrón.Com.)
Área (Departamento): Área Ingeniería Eléctrica (Dpto. Ingeniería Eléctrica)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2023-11-16-12:00:12)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-11-13, última modificación el 2023-11-16


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)