Microservice chatbot architecture for chronic patient support

Roca, Surya (Universidad de Zaragoza) ; Sancho, Jorge (Universidad de Zaragoza) ; García, José (Universidad de Zaragoza) ; Alesanco, Álvaro (Universidad de Zaragoza)
Microservice chatbot architecture for chronic patient support
Resumen: Chatbots are able to provide support to patients suffering from very different conditions. Patients with chronic diseases or comorbidities could benefit the most from chatbots which can keep track of their condition, provide specific information, encourage adherence to medication, etc. To perform these functions, chatbots need a suitable underlying software architecture. In this paper, we introduce a chatbot architecture for chronic patient support grounded on three pillars: scalability by means of microservices, standard data sharing models through HL7 FHIR and standard conversation modeling using AIML. We also propose an innovative automation mechanism to convert FHIR resources into AIML files, thus facilitating the interaction and data gathering of medical and personal information that ends up in patient health records. To align the way people interact with each other using messaging platforms with the chatbot architecture, we propose these very same channels for the chatbot-patient interaction, paying special attention to security and privacy issues. Finally, we present a monitored-data study performed in different chronic diseases, and we present a prototype implementation tailored for one specific chronic disease, psoriasis, showing how this new architecture allows the change, the addition or the improvement of different parts of the chatbot in a dynamic and flexible way, providing a substantial improvement in the development of chatbots used as virtual assistants for chronic patients.
Idioma: Inglés
DOI: 10.1016/j.jbi.2019.103305
Año: 2020
Publicado en: Journal of Biomedical Informatics 102 (2020), 103305 1-9
ISSN: 1532-0464

Factor impacto JCR: 6.317 (2020)
Categ. JCR: MEDICAL INFORMATICS rank: 3 / 30 = 0.1 (2020) - Q1 - T1
Categ. JCR: COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS rank: 13 / 112 = 0.116 (2020) - Q1 - T1

Factor impacto SCIMAGO: 1.056 - Health Informatics (Q1) - Computer Science Applications (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/T31-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/BES-2017-082017
Financiación: info:eu-repo/grantAgreement/ES/MINECO/TIN2016-76770-R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Ingeniería Telemática (Dpto. Ingeniería Electrón.Com.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2021-09-02-08:40:46)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-11-13, última modificación el 2021-09-02


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)