
Submitted to Journal of the European Ceramics Society on 23th July 2019/ Revised 18th Oct/ Accepted 29th Oct.  

 1

 

Medium infrared transparency of MgO-MgAl2O4 directionally solidified 

eutectics 

 

Bibi Malmal Moshtaghioun a*, Jose I. Peña a, Rosa I. Merino a 
aInstituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, 50018 Zaragoza, 

Spain 
 

Abstract 

MgAl2O4-MgO eutectic ceramics have been fabricated by the laser floating zone method. 

Increasing growth rates from 10 to 50 mm/h, the microstructure transformed from irregular MgO 

rod-to-lamellae phase and it approached to almost homogeneous rod morphology. At the highest 

used velocity of 750 mm/h, the cell structure was completely dominant and the samples were 

free from transversal cracks. Although the highest flexure strength was found at 750 mm/h 

growth rate, the maximum optical transmittance in the medium-infrared range was obtained for 

50 mm/h growth rate and for 1mm thick samples reached values higher than 75% in the 

wavelengths between 4 and 5.3µm.The enhanced transmittance for the sample with 50 mm/h 

growth rate can be explained in terms of the close refraction indexes of the component phases 

and the characteristic lengths of the resulting microstructure showing fully dense ceramics with 

the finest and almost homogeneous microstructure. 
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1. Introduction 

Ceramics composed of several phases are studied in the frame of many different 

applications. Frequently it is for structural purposes (better mechanical properties), but this 

comes usually combined with other functional properties rendered to the material by the 

appropriate properties combination of the components, as thermal or electrical conductivity, 

optical activity, electronic or magnetic properties, etc. In particular, examples of ceramics for 

optical applications in which it is required or take advantage of multiple phases or gradient in 

composition are light guiding materials[1], hosts for selective doping or multiple active ions in 

lasers [2,3], phosphors or scintillators [4], selective emitters with low emissivity in the IR [5,6], 

or metamaterials [7-9] etc .An approach- for creating multiphase composites, exhibiting useful 

microstructure/texture patterns, is the directional solidification of eutectics (DSE)[10,11]. One of 

the techniques most used -for DSE work, especially in the case of systems from which 

transparency may be expected- is the laser floating zone (LFZ) method [10 ,11]. LFZ is an 

excellent method among the different directional solidification procedures to grow ceramic 

oxides from the melt, as the large thermal gradients at the liquid/solid interface achieved with 

this method allow high growth rates to be used. Actually, a CO2 laser is focused on the molten 

zone and a precursor is brought into the focused laser beam. Growth starts by moving the 

precursor and mass conservation dictates that the diameter can be reduced as the square route of 

the feed rate-pull rate ratio. Moreover, the control of the crystal microstructure is possible by 

means of growth rates. Let us note that the LFZ can generate pores free parts- a feature critical in 

the case of transparent ceramics [10, 11]. 

One of the systems, that may be of interest for DSE processing (LFZ variant), is the 

spinel-MgO eutectic. From both components monolithic bulk parts of high transparency were 
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already obtained by powder- sintering [12-25]. They are high melting point materials, have 

relatively large thermal conductivity [26] with transparency window extending deep into the IR 

(5.3 m for MgAl2O4 and 6.8 m for MgO) [27].In both cases, fully dense ceramics can only be 

fabricated at high sintering temperatures coupled with high pressure. Therefore, high isostatic 

pressure (HIP) and spark plasma sintering (SPS) are the most efficient techniques, so far [12-25].  

Advances in the manufacture of both materials have been made, and results can be found 

in the literature [15,19,20,25], optimizing powder characteristics with impurity level to ppm 

range and particle size of less than 100 nm, rigorous compaction and sintering schemes by HIP 

and/or SPS to obtain fully dense ceramics with nanograin retention, or post annealing treatment 

to avoid color-center formation. Therefore, large pieces of thickness in the mm range with in-line 

transmittance up to 80 % in the visible range can be obtained.  

Some preliminary studies- regarding the fabrication, by LFZ, of bulk pieces, from 

the  spinel-MgO eutectic- have been already effectuated. It was observed that 

specimens  strength is larger when high pulling rates are used[28- 32];the studies also showed 

that solidification , at pull rates lower than 50 mm/h causes - owing mostly to  the thermal 

expansion mismatch of the two phases- cracking, thus severely reducing strength[29,30,32]. 

Further work is needed in order to fully master the LFZ fabrication of parts,from the 

spinel-MgO eutectic. In this context, the purpose of this workis to study the relative in-line 

transmittance of the MgO-MgAl2O4 eutectic ceramics, which were solidified by LFZ and the 

effects of variable growth rates on the in-line transmittance and microstructure of the MgO-

MgAl2O4 eutectic ceramics were investigated and correlated. 
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2. Experimental procedure 

The starting materials were commercially available Al2O3powder (Sigma-Aldrich, 

99.99%) and MgO powder (Sigma-Aldrich,>99%). MgO powder was dried in a furnaceat 1200 

ºC for 12 h to remove the possible moisture absorption from outside air [33].The eutectic point of 

MgO and MgAl2O4appears at 55wt% Al2O3 and 45 wt% MgO and its melting temperature is 

around 2000 ºC [34]. Two general approaches using lasermelting techniques were studied for the 

possible fabrication of this eutectic ceramic with dense and fine microstructure retention.  

The first was solidification of the eutectic rods by directional solidification from the melt 

using the laser-heated floating zone (LFZ) method with a CO2 laser [10]. Precursor rods of ~ 3 

mm in diameter and up to 5 cm in length were prepared by cold isostatic pressing for 5 min at 

200 MPa followed by pre-sintering in a furnace at 1500 ºC for 12 h. The pre-sintered rods were 

then grown by LFZ in air, in all cases using two steps of diameter reduction at a pulling rate of 

300 mm/h. These two first steps were performed in counter-rotation of the crystal and precursor 

with 50 rpm which provided fully dense rods grown from the melt without residual porosity.  

The last (third)step, however, was performed without rotation and the solidified rod being pulled 

downwards using growth rates between10 and 750 mm/h to evaluate its effect on the 

microstructure, average grain size, relative in-line transmittanceand strength of the resulting 

MgAl2O4-MgO eutectic ceramics. A nominal laser output power of 40-50W has been used in the 

last step to maintain a constant feed and very small molten zone and the temperature of the melt 

was estimated as 2200 ºC by digital laser pyrometer. Eutectic rods of ~1 mm were fabricated.  

Later on, the transverse cross-sections of the grown eutectic rods and plates were first cut, 

ground and polished to a 0.25 µm finish. Additionally, all were characterized microstructurally 

by a field emission scanning microscopy(FE-SEM)(model Merlin, Carl Zeiss, Germany) with an 
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EDS microanalysis system INCA350 from Oxford Instruments or a SEM (model 6400, JEOL, 

Tokyo, Japan). Microstructure observations were done from both transverse and longitudinal 

sections using the back-scattered emission (BE) mode on carbon coated-polished surfaces.  

In-line transmission spectra were measured in the VIS-NIR range with a Cary 5000 UV-

Vis-NIR spectrometer from Agilent and in the MIR range with a Spectrum 100 FTIR 

spectrophotometer form Perkin-Elmer. The instruments overlap in the 2.5 to 3.0 microns 

wavelength range, but the transmittance was not coincident on all samples, most probably due to 

different optical arrangement and apertures. Therefore, the short-wavelength (VIS-NIR) spectra 

were scaled to match the measurements in the MIR range. Calculation of transmission spectra of 

Mie-scattering [35] of spheres was made using Scott Prahl´s software [36]. 

Finally the strength of rods in longitudinal direction for the highest grown velocity was 

measured by flexural tests carried out in a three-point bending test fixture with 10 mm loading 

span in Instron testing machine (Instron 5565). Eight tests were performed at constant crossheads 

speed of 0.05 mm/min. 

 

3. Results and discussion 

Directional solidification by the laser assisted floating zone method (LFZ) is frequently 

performed counter-rotating feed rod and pulling crystal as this better homogenizes the heating 

flux around the melt. Often, this also adds instabilities in the melt that lead to the formation of 

bands associated to the rotation period, that is, periodic changes in the microstructural size of the 

eutectic preferential solidification of one of the phases of the eutectic. Perturbation of the 

microstructure in composites leads to perturbation in the diffusion of light in the material. 
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Therefore we have solidified the samples without rotation and compared when necessary with 

the composite solidified with counter-rotation [29]. 

 

3.1. Microstructure of LFZ processed eutectic MgAl2O4-MgO 

Fig. 1 compares representative transverse cross section images of the MgAl2O4-MgO 

eutectic ceramics grown at different velocities without rotation. In Table 1 the microstructural 

properties obtained from the analysis of the SEM images are summarized.By EDS analysis, the 

bright matrix was detected to be spinel and dark embedded phases were MgO. It is worth 

knowing that transverse cracks were present for those samples solidified at a pulling rate lower 

than 100mm/h. In the areas with coarser microstructure, microcracks tend to appear, which lead 

to poor mechanical resistance [29]. At the lowest growth rates of 10 and 25 mm/h, the 

microstructure consisted of irregular MgO rod-to-lamellae phase in a continuous MgAl2O4 

matrix (Figs. 1(A) and (B)). The transverse size of MgO phase was estimated from 

<width+length>/2 and are around 4.3 µm (Fig. 1(A), inset) and 3.2 µm (Fig. 1 (B), inset), 

respectively. Increasing the growth rate to 50 mm/h, a mixed microstructure was observed that 

indicates transition from rod-to-lamellae to rod morphology (Fig. 1(C)). At this velocity,MgO 

rods with triangular section with size of 0.8 µm(Fig. 1(C), inset)and rod-to-lamellae MgO 

structure with size of 1.9 µm was distinguished. Approaching 100 mm/h growth rate, therod-to-

lamellae microstructure was almost transformed and the solidification suffered a transition to the 

formation of cells especially in the center (core of 380 m diameter) of the solidified ceramic 

(Fig. 1(D)) which was surrounded by MgO fibrous microstructure in the approximately 250 m 

thick outer shell of the sample. At this velocity, cells with a diameter of ~35µm and a boundary 

of ~13 µm in thickness were found. MgO fiber size was estimated about 0.9 µm(Fig. 1(D), inset) 
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and 7.1 µm inside and in the boundaries of the cells. While in the outer shell, the equivalent 

diameter of MgO fibers reached to 2.25 µm. The volume fractions for these three microstructure 

categories can be estimated to 32, 32 and 36 %, respectively. At the highest used velocity of 750 

mm/h, the cell structure was completely dominant with a cell diameter about 27 µm and a 

boundary of ~7 µm in thickness(Fig. 1(E)). MgO fibers were found to size0.34 µm and 2.1 µm 

and with almost the same volume fraction inside and in the boundaries of the cells, respectively 

(Fig. 1E, inset). In the core (center) region of the samples solidified at 750 mm/h, two more 

features appear. A third bright phase was observed at the cell boundaries in the sample solidified 

at this rate (Fig. 1(E)). EDS microanalysis showed it contains O, Ca, Al, Si and Mg, suggesting it 

is consequence of the segregation of impurities towards the melt upon solidification. 

Occasionally some dendrites of MgO were observed, too. 

 

3.2. In-line transmittance 

MgO and MgAl2O4 are transparent materials, with a common transparency window from 

360 nm to 5400 nm. Their refractive index of the pure compounds [37-39] is not much different 

from one another. The ratio nMgO/nMgAl2O4 lies between 1.011 and 1.028 in this wavelength 

range, and therefore fully dense composites mixing both materials are expected to show small 

scattering and with the appropriate microstructure could show even transparency. Except for 

microcracking, the above given microstructures (Table 1) consist of approximately 25 % volume 

MgO phase disperse into the MgAl2O4 matrix, with transverse dimension of the MgO particles 

between 0.4 and 7 microns. Along the pulling direction the dispersed phase will show elongated 

shape, as corresponds to the directional solidification process. 
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Figure 2 shows the in-line transmittance of 1 mm thick transverse slices of the composite 

solidified without rotating feed- and grown-rods in order to avoid excessive coarsening of the 

microstructure. All the samples show some degree of transparency in the medium infrared 

(MIR), which is larger in the sample solidified at 50 mm/h. Slower or faster pulling rates result 

in smaller in-line transmittance. At wavelengths larger than 5.5 µm absorption by phonon 

excitation in the component materials takes place, and the transmittance decreases. At low 

wavelengths, extinction is due scattering by the material microstructure. 

Maximum in-line transmission occurs along the solidification direction and when 

perturbation of the solidification process is avoided. This can be seen in Figs.2 (upper curves) 

and 3. Figure 2 (upper curves) shows the measured transmittance of two pieces solidified at 50 

mm/h. The dotted-line curve corresponds to a sample that was mounted with better parallelism of 

the solidification direction and in-line transmission axis, together with a smaller diaphragm so 

that the central region of the sample is explored with the measuring light beam. Misalignment of 

the sample upon cutting the transverse cross section or due to curvature of the solid-liquid 

interphase causes the measured transmission to decrease (continuous versus dotted orange 

curvesin Fig. 2). Figure 3 shows in-line transmission curves of transverse and longitudinally cut 

slices with counter-rotation. That is, in-line transmission is measured along the solidification 

direction or perpendicular to it, respectively. It is evident that across the solidification direction 

the samples show smaller in-line transmittance at both pulling rates. 

The fact that the samples solidified at 50 mm/h show the largest transmittance can be 

rationalized taking into account the microstructure of the samples. Low pulling rates (10 mm/h to 

50 mm/h) tend to show coupled growth with homogenous microstructures with smaller 

microstructural features as pulling rate increases. At 50 mm/h pulling rate the microstructure 
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shows signs of departure from coupled growth and incipient cell formation, but still not well 

developed. An average transverse particle size can be used to describe the transverse size of the 

MgO dispersed phase (see Table 1). At even larger pulling rates, the formation of cells is evident 

in part (100 mm/h) or all the sample cross-section (750 mm/h). This leads to transverse size of 

the MgO particles which is finer inside the cells and coarser in the inter-cell areas. Light 

scattering is expected to be smaller when the microstructure is finer and more homogeneous, and 

this happens in the samples solidified at 50 mm/h, mostly when banding is avoided.  

We have not attempted to calculate the theoretical transmittance in this material, which at 

minimum would require modelling the anisotropic sample microstructure in a way that is 

simultaneously representative of the samples microstructure and tractable computationally. 

Instead, to serve as a guide for the analysis of in-line transmittance results, we have performed a 

simple calculation consisting of the calculation of scattering cross-section of spheres of MgO 

embedded in MgAl2O4. Each component material is characterized by its refractive index given in 

references 37, 38 and 39. The sphere diameters used in the calculations are the equivalent 

diameter of the MgO particles sizes taken from relevant transverse cross-section SEM 

micrographs. When the sample microstructural features have clearly distinguishable populations, 

a volume percentage and equivalent size was assigned to each microstructure. To estimate an 

extinction coefficient, the number of particles per unit volume was calculated using this filling 

ratio of MgO, that was taken as f = 0.245 [29]. The volume fraction is large enough so that 

multiple scattering and particle interaction could be contributing to the scattering. We did not 

take this into account. Although the density of particles is large, we expect trends in this simpler 

calculation to mimic the trends in the overall behavior of the material transmission. The reason is 

that the refractive index contrast is small, so that the scattering strength is also small in the NIR. 
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For example, at= 4.5 µm, the predicted extinction length for 2 µm diameter spheres is 1.6 mm 

(corresponding to particle extinction efficiency 0.00335 with 0.0585 particles per µm3).  

Figure 4 shows the result of the calculations. Reflection at the surfaces of the slices has 

also been taken into account. Transmission is moderate with MgO spheres of 4.3 m diameter 

(black curve), and increases as the diameter of the MgO particle decreases (red, brown and 

orange curves). The simulation to the 100 mm/h sample calculates the transmittance as a 

weighted average of the transmittance estimated for different sized spheres, as suggested by the 

microstructure. Therefore, although the microstructural size inside the cells is smaller, the 

transmittance decreases because of the populations with larger microstructural features, as is also 

observed experimentally. Overall, the microstructural sizes of the sample solidified at 750 mm/h 

is smaller, and thus the calculated transmittance increases again, contrary to what is observed 

experimentally. Most probably, the presence of other phases at the inter-cell areas should be 

blamed for the discrepancy. Segregation of impurities can be avoided with starting products with 

higher purity but the occasional formation of MgO dendrites is growth instability of much 

uncertain avoidance. 

 

3.3. Flexural strength 

Three-point bending tests were just performed forthe grown rods with the rate of 750 

mm/h which were free from transverse cracks to go into their flexural strength behaviour. No 

plasticity was observed. A strength value of ~445 MPa was obtained. This is around twofold 

greater than those (150-200 MPa) of conventional MgAl2O4ceramics [13,14] and nearer to the 

values reported for fine-grained SPS´ed Spinel [40]. Furthermore, mild improvement of strength 

was found compared with its counterpart grown with counter-rotation under identical 
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LFZconditions (i.e., 345 MPa) [29], which is because better homogeneity of microstructure by 

minimizing possible instabilities in the melt produced by periodic perturbations.  

 

4. Conclusions 

MgO-MgAl2O4eutectic ceramics show light transmission in the MIR. The transmittance 

arises because the fabrication procedure attains fully dense composite material, with small 

refractive index contrast between the component phases. In-line transmittance is maximum when 

the material is solidified at 50 mm/h. Transverse slices 1mm thick have values at or above 75 % 

at wavelengths between 4 and 5.3 m. These are the solidification conditions that attain at the 

same time the finest and still rather homogenous microstructure in the material. Transmission is 

larger along the solidification direction, corresponding to the aligned microstructure. 

Regarding mechanical properties, LFZ rods of around 1mm in diameter and solidified at 

750 mm/h without using counter-rotation of the feedstock and growing crystal found to be the 

optimal condition to get highest flexure strength. This value amounts to 445 MPa and presents 

slightly better flexure strength than its counterpart solidified with counter-rotation. The 

formation of cracks at low solidification rates could not be avoided.  
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Figures 

Figure 1.Representative FE-SEM micrographs (transverse sections) of MgAl2O4-MgO eutectic 

crystal grown by LFZ at (A) 10, (B) 25, (C) 50, (D) 100 and (E) 750 mm/h. For all images, the 

inset shows higher magnification to see MgO morphology.  
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Figure 2.Measured transmission (in-line) of transverse slices of the DSE MgO-MgAl2O4 

solidified without rotation. The slices used for the measurements were approximately 1 mm 

thick, and the shown spectra have been adjusted to this thickness for easy of comparison. 

Different colors correspond to different pulling rates (also indicated in the plot): black (10 

mm/h), red (25 mm/h), orange (50 mm/h), blue (100 mm/h), magenta (750 mm/h). Orange dotted 

line: 50 mm/h measured with smaller diaphragm on a better aligned rod so that light travels 

along the solidification direction. 
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Figure 3.Measured transmission (in-line) of transverse slices of the DSE MgO-MgAl2O4 

solidified with rotation. The microstructure of the samples showed some banding. The slices 

used for the measurements were approximately 1 mm thick, and the shown spectra have been 

rescaled to this thickness for easy of comparison. Different colors correspond to different pulling 

rates: black (50 mm/h), red (100 mm/h). Continuous lines correspond to transverse slices, dotted 

lines correspond to longitudinal slices. The absorption peak at around 5.8 m in one of the 

measurements is due to epoxy-resin used for mounting. 
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Figure 4.Simulated transmission (in-line) spectra calculated from Mie-scattering of non-

interacting spheres of MgO (0.245 vol %) on MgAl2O4 matrix with different sphere diameters. 

Black squares (4.3 m), red circles (3.2 m), orange up-triangles (0.8 m), brown down-

triangles (1.9 m), blue diamonds (0.9 m (32%), 7.1 m (32%) and 2.25 m (36%)), magenta 

stars (0.34 m (50%) and 2.08 m (50%)). 

 



Table 1.Average transverse particle size used to describe the transverse size of the MgO dispersed phase in the samples grown at various rates by 

LFZ method. The transverse size has been determined from equivalent rod diameter in equiaxial MgO sections (rod microstructures or cell 

boundaries); or from <width+length>/2 in rod-to-lamellae microstructures. 

 

Sample Pulling Rate 
(mm/h) 

Transverse size MgO (µm) 
(and volume of sample assumed when applicable) 

Comments 

M10 10 mm/h 4.3 µm   Rod-to-lamellae microstructure 
M11 25 mm/h 3.2 µm   Rod-to-lamellae microstructure 
M12, M16 50 mm/h 1.9 µm 

In rod-to-lamellae 
regions 

0.8 µm 

In rod microstructures 
at the center of the bar 

 Rod (triangular section) and Rod-to-lamellae 
microstructure 

M14 100 mm/h 0.9 µm (32 % vol) 

Core: inside cells. 

7.1 µm (32 % vol) 

Core: cell boundaries. 

2.25 µm (36 % vol) 

Outer shell. 

Cells at the center, fibrous to interpenetrated 
at the outer shell 

M15 750 mm/h 0.34 µm (50 % vol) 

Inside cells 

2.1 µm (50% vol) 

Cell boundaries 

 Cells all across the solidified sample.  

Abundant micro-cracks at cell boundaries. 
Possible third phases.  

 

 



 

 

 

 


