000096083 001__ 96083 000096083 005__ 20220405150414.0 000096083 0247_ $$2doi$$a10.1007/s13348-019-00269-y 000096083 0248_ $$2sideral$$a115463 000096083 037__ $$aART-2020-115463 000096083 041__ $$aeng 000096083 100__ $$0(orcid)0000-0002-8276-5116$$aArtal Bartolo, Enrique$$uUniversidad de Zaragoza 000096083 245__ $$aTriangular curves and cyclotomic Zariski tuples 000096083 260__ $$c2020 000096083 5060_ $$aAccess copy available to the general public$$fUnrestricted 000096083 5203_ $$aThe purpose of this paper is to exhibit infinite families of conjugate projective curves in a number field whose complement have the same abelian fundamental group, but are non-homeomorphic. In particular, for any d=4 we find Zariski (¿d2¿+1)-tuples parametrized by the d-roots of unity up to complex conjugation. As a consequence, for any divisor m of d, m¿1,2,3,4,6, we find arithmetic Zariski ¿(m)2-tuples with coefficients in the corresponding cyclotomic field. These curves have abelian fundamental group and they are distinguished using a linking invariant. 000096083 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E22-17R$$9info:eu-repo/grantAgreement/ES/MICINN/MTM2016-76868-C2-2-P 000096083 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000096083 590__ $$a0.873$$b2020 000096083 591__ $$aMATHEMATICS$$b181 / 330 = 0.548$$c2020$$dQ3$$eT2 000096083 591__ $$aMATHEMATICS, APPLIED$$b207 / 265 = 0.781$$c2020$$dQ4$$eT3 000096083 592__ $$a0.714$$b2020 000096083 593__ $$aMathematics (miscellaneous)$$c2020$$dQ2 000096083 593__ $$aApplied Mathematics$$c2020$$dQ2 000096083 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000096083 700__ $$0(orcid)0000-0003-1820-6755$$aCogolludo-Agustín, José Ignacio$$uUniversidad de Zaragoza 000096083 700__ $$0(orcid)0000-0002-6559-4722$$aMartín-Morales, Jorge 000096083 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología 000096083 773__ $$g71, 3 (2020), 427–441$$pCollect. math.$$tCollectanea Mathematica$$x0010-0757 000096083 8564_ $$s225615$$uhttps://zaguan.unizar.es/record/96083/files/texto_completo.pdf$$yPostprint 000096083 8564_ $$s31087$$uhttps://zaguan.unizar.es/record/96083/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000096083 909CO $$ooai:zaguan.unizar.es:96083$$particulos$$pdriver 000096083 951__ $$a2022-04-05-14:35:59 000096083 980__ $$aARTICLE