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Abstract

The optimization of polygeneration systems considering hourly periods throughout one year is a 
computationally demanding task, and, therefore, methods for the selection of representative days are 
employed to reproduce reasonably the entire year. However, the suitability of a method strongly 
depends on the variability of the time series involved in the system. This work compares the methods 
Averaging, k-Medoids and OPT for the selection of representative days by carrying out the optimization 
of grid-connected and standalone polygeneration systems for a building in two different locations. The 
suitability of the representative days obtained with each method were assessed regarding the 
optimization of the polygeneration systems. Sizing errors under 5% were achieved by using 14 
representative days, and the computational time, with respect to the entire year data, was reduced from 
hours to a few seconds. The results demonstrated that the Averaging method is suitable when there is 
low variability in the time series data; but, when the time series presents high stochastic variability (e.g., 
consideration of wind energy), the OPT method presented better performance. Also, a new method has 
been developed for the selection of representative days by combining the k-Medoids and OPT methods, 
although its implementation requires additional computational effort. 

Keywords: Representative days, Renewable energy, polygeneration systems, MILP.

1. Introduction

Nowadays it is imperative to search for strategies for the rational use of energy. In this sense,  
polygeneration systems are a suitable alternative because of the more efficient use of available natural 
resources, reduction in CO2 emissions and economic savings in comparison to separate production [1]. 
To this end, the synthesis of the system configuration (installed technologies and capacities) and 
operation planning (operation strategy of equipment) must be considered in the design of polygeneration 
systems [2,3].

The optimal design of polygeneration systems for buildings is a challenging task, due to the wide variety 
of energy resources, available technologies, and significant diurnal and seasonal fluctuations in energy 
demands and tariffs [4]. The incorporation of renewable energy technologies can further increase the 
complexity of the system design. Some renewable energy technologies, such as wind turbines, 
photovoltaic panels, and solar thermal collectors, present intermittent behavior due to the non-
manageable nature of the availability of the energy resource. Moreover, very often there is non-
simultaneity between production and consumption. The integration of energy storage (electrical and/or 
thermal) enables the decoupling of production from consumption and further increases the complexity 
of the system design.

Mixed Integer Linear Programming (MILP) is widely utilized for the design of polygeneration systems 
[2,5,6]. Ideally, the optimization of an energy system should consider hourly or sub-hourly periods 
throughout one or more years. Nonetheless, the solution of MILP problems can easily become 
intractable as the computational effort increases with the size of the problem, and more specifically with 
the number of binary variables, which are widely used in synthesis problems and to model the 
performance of components. The size of the problem is proportional to the number of time series (e.g. 
number of energy demands or renewable energy production considered, among others), and 
consequently the system complexity increases as more time series are included.
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A viable approach to reduce the complexity of the optimization problem is to reduce the number of time 
periods by employing of typical or representative days, which enables the reasonable reproduction of 
the behavior of the system throughout long time periods such as months, or one or several years, 
reducing the computational effort significantly. There are several methodologies for the selection of 
representative days, such as graphical methods [7], statistical methods [8], aggregation methods [9,10], 
and the OPT method [11]. Aggregation methods such as the Averaging, k-Means, k-Medoids, and 
hierarchical clustering, could be considered the most common alternatives for the design of energy 
systems [9]. For instance, an aggregation method has been utilized along with a first-order Markov 
model, to generate synthetic daily horizontal irradiation to design photovoltaic systems [12,13]. Within 
the aggregation methods, k-Medoids is considered as the most reliable [9,10]. However, the variability 
of the original time series is smoothed when aggregation methods are employed to obtain representative 
days [10]. Despite not being an exact method, the OPT method has also been applied to select 
representative days for a system that encompasses time series with high variability such as electricity 
demand, photovoltaic and wind energy production [11]. Aggregations methods have been previously 
compared [9,10], but non-exact methods, such as the OPT, have not been included to date in the 
comparison of methods for the selection of representative days.

In this sense, the objective of the work presented herein is to show the advantages and disadvantages of 
some methodologies for the selection of representative days, namely the Averaging, k-Medoids [14] 
and OPT [11] methods. Considering that tackling a high number of attributes is challenging when 
optimizing polygeneration systems, this work has considered up to seven attributes: three hourly energy 
demands (heating, cooling and electricity), three renewable energy production technologies 
(photovoltaic PV, solar thermal ST and wind turbine WT), and hourly CO2 emissions associated with 
the electricity from the grid. Some of these attributes, present stochastic behavior, e.g., wind turbine 
production, which affects the selection of the method employed to obtain representative days for the 
design of polygeneration systems. This study aims to provide general guidelines for the selection of a 
suitable method for the selection of representative days, to address the design of polygeneration systems 
appropriately, according to the nature of the attributes considered. Moreover, a procedure that combines 
the k-Medoids and OPT methods is presented as an alternative to overcome some limitations of these 
methods.

Zaragoza and Gran Canaria were selected to evaluate the suitability of each method regarding the 
optimization of a polygeneration system for a residential building. These Spanish locations present very 
different climatic conditions and available local energy resources, leading to the consideration of 
different scenarios with richer variability, and the obtainment of more general conclusions than those 
obtained for a single location. Zaragoza presents significant heating demands which can result in the 
installation of a natural gas-fuelled cogeneration system (manageable resource). Gran Canaria, in turn, 
presents high wind energy resources, which are non-manageable and present a significant stochastic 
behavior. Therefore, in this case, the installation of wind turbines can be an attractive solution in the 
optimal configuration. In both locations, two systems with important different features were considered: 
grid-connected and standalone. Similarly to previous works [9,10], twelve representative days were 
selected from each method to represent the entire year. Polygeneration systems were optimized using 
the results obtained from each method, which were compared to those obtained using whole hourly year 
data. The Quality Function Deployment (QFD) was applied to evaluate the suitability of each method 
in different systems.

2. Materials and Methods
2.1 Methods for the selection of representative days
This section presents the Averaging, k-Medoids and OPT methods. Also, a combination of the k-
Medoids and OPT methods is proposed. Time series henceforth are referred to as attributes. Values for 
each attribute c corresponding to a time period t (1-8760 hours) or a day d (1-365 days) and hour h (1-
24 hours) can be represented as  or .�'�,�  �'�,�,ℎ
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2.1.1 Averaging method
This method has been employed previously in several works [9], usually by averaging hourly data for 
each month. The model can be described as:

                              (1)��,
,ℎ = ∑�� = �0�'�,�,ℎ�

where:

: average value of the attribute c for each month m at each hour h.��,
,ℎ
: value of the element in the time series  corresponding to the attribute c in day d and hour h for �'�,�,ℎ �'

each month m.  

: starting day of month m.�0
: final day of month m. �
 number of days in each month m, hence, it is the weight of the respective representative day.�
:

An advantage of this method is that the typical days obtained have a clear order. Nonetheless, the 
aggregation is based on the original sequence of the days and not on the similarity between days [10].  

2.1.2 k-Medoids method
This method aims to group the days of the year into clusters so that the cluster members are as similar 
as possible. The cluster is then represented by a single day, which is the medoid in this case. Fig. 1 
shows the graphic representation of this method.

When different attributes with different scales are taken into account, the input time series must be 
normalized, so it is evaluated on the same scale [10].

                                                   (2)��,� = �'�,� ― min �'�max �'� ― min �'� , ��,� ∈ [0,1]
The k-Medoids method for the selection of representative days is based on the optimal plant location 
problem. In the location problem, k plants must be located in n cities in such a way as to minimize the 
total distance from the plants to the n cities they supply. In the k-Medoids method, the location of a 
plant is interpreted as the selection of a medoid, and the distance between each city and the nearest plant 
is interpreted as the dissimilarity dis between an object and the representative object of the cluster to 
which it belongs [14]. Therefore, the first step is to define the matrix Ψ that contains all the attributes, 
in which the number of columns is defined by the product of the number of time steps Nh (usually 24 
hours for each attribute) and number of attributes Nc, and the number of rows corresponds to the number 
of periods Ni (usually 365 days).

                                       (3)� = [�1,1,1 ⋯ �1,�ℎ,1⋮ ⋱ ⋮�1,1,�� ⋯ �1,�ℎ,��
  �2,1,1 ⋯ ���,�ℎ,1⋮ ⋱ ⋮    �2,1,�� ⋯ ���,�ℎ,��]
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Fig. 1. Graphic representation of the k-Medoids method
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The second step is to define the dissimilarity matrix D, which is composed of the distance (dissimilarity) 
between two elements p and q of the matrix Ψ, and every element is calculated by the Euclidean 
distance:

                             (4)��!(#,$) = (∑�ℎℎ = 1|�#,ℎ ― �$,ℎ|2)1/2
In this way, the matrix D is defined as:

                (5)( = [ 0 ��!(1,2)  ⋯ ��!(1,��)⋮ 0 ⋮!�
 ⋯ 0 ]
The MILP model for the k-Medoids method is:

                                                                       (6)   )*+*,*-. ∑��� = 1∑��/ = 1��!(�,/) ∙ 1�,/
Subject to:

               (7)∑��� = 11�,/ = 1, ∀ / ∈ 1,2,..,�� 
                (8)1�,/ ≤ 5�,  ∀ � ∈ 1,2,..,�� 

               (9)∑��� = 05� = �6 
             (10)5�,1�,/ ∈ {0,1} 

 is a binary variable equal to 1 if and only if object j is assigned to the cluster of which i is the 1�,/
representative object (medoid). The number of clusters Nk is defined by the user. The representative day 
is selected when =1, and its weight  corresponds to the number of days in each cluster k calculated 5� 9�
by:

                           (11)9� = ∑��/ = 11�,/
             (12)∑��� = 19� = ��

The reproduction of the series from representative days does not necessarily preserve the original days, 
and, therefore, a scale factor is calculated a posteriori.

             (13):�� = ∑��/ = 1∑�;; = 1��/,;9�∑�;; = 1���,;
The scale factor is applied considering that the extreme values of the original time series are not 
exceeded.

             (14)��!�<=>�,�,; = 
�?[:�� ∙ ���,;,max (@�)],���,; ∈ @�
The aforementioned methods are types of aggregation methods that lead to smooth representative days, 
which underestimate the variability of the original time series [10].

2.1.3 OPT method
This method was proposed by K. Poncelet [11] and consists of fitting the data duration curve obtained 
from representative periods (DCrep) to the duration curve of the original time series (DC). The procedure 
for selecting the representative days is: i) Similarly to the k-Medoids method, input time series must be 
normalized to be evaluated on the same scale; ii) Normalized duration curves (NDC) are computed from 
the normalized time series; iii) Normalized duration curves are divided in b bins in the ordinate, in our 
case a set of 10 bins of length 0.1, each corresponding to an interval s. A parameter Λ that expresses if 
data from the original time series c in day i belong to a specific interval, is defined, and iv) each interval 

is approximated by the expression , where ωi is the weight of the representative day i (in ∑��� = 19��� ∙ A�,!,�
other words, ωi is the number of times that the day i must be repeated to approach the original NDC); 
Ni is 365 in the case of representative days for a year (Fig. 2).
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The difference between the length Ls and , in each interval s is taken as an error metric ∑��� = 19��� ∙ A�,!,�
(errorc,s). The optimization model minimizes the sum of the error terms, for all attributes c considered 
in every interval s, by selecting a single set of representative periods with their corresponding weights 
ωi. The MILP model for this method is written as:

                                         (15))*+*,*-. ∑�∑!>BBCB�,!
Subject to:

             (16)>BBCB�,! = |D�,! ― ∑��� = 1∑�;ℎ = 19��� ∙ A�,!,�,ℎ| 
             (17)∑��� = 15� = �6

             (18)9� ≤ 5� ∙ �� 
                (19)∑��� = 19� = ��

               (20)5� ∈  {0,1};  9� ∈  ℝ+0
One of the drawbacks of the OPT method is that the global optimum is challenging to reach. The work 
of Poncelet [11] managed three attributes (photovoltaic production, wind production, and electricity 
load) to select two representative days. The optimization process was stopped after six hours, obtaining 
good results. However, when dealing with six or more attributes it is more difficult to reach good results 
in a reasonable time, especially to preserve the area under the curve of each attributes. A scale factor, 
similar to the procedure described for k–Medoids method, has been applied to address this issue. All 
runnings that applied the OPT method (results are presented in section 3), were stopped after six hours 
as well. 

2.1.4 Mix kM-OPT method
As already explained, aggregation methods lead to smoothed typical periods that underestimate the 
variability of the original time series [10], and the OPT method has the disadvantage that the  global 
optimum is difficult to reach. Therefore, a combination of the k-Medoids and OPT methods is proposed 
to tackle these downsides, reducing the smoothing of typical periods and reaching the global optimum, 
improving the optimization results for optimization of polygeneration. The new procedure is described 
as follows:

The k-Medoids and OPT models are combined in a single model Mix kM-OPT. The function to be 
minimized in the OPT method is converted into a variable errorOPT, defined as: 

                                      (21)>BBCBHIJ = ∑�∑!>BBCB�,!
The model is optimized as k-Medoid method. This means minimizing the distance of each component 
of the cluster with respect to the medoid. Simultaneously, errorOPT is calculated, obtaining an errorkM-
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OPT value, which indicates how close the representative duration curves are to the original curves, by 
applying the original k-Medoid method. 

The lower the errorOPT value is, the closer the duration curves from representative days are to the 
original curves. Therefore, the model can be optimized again, with a new restriction:

                (22)>BBCBHIJ ≤ D�
HIJ
Where LimOPT is a value defined by the user, lower than errorkM-OPT. The lower the LimOPT, the 
global optimum becomes more difficult to reach. A trade-off value must be found to improve the 
original models without entailing in excessive computational time. Herein,  is approximately D�
HIJ
90% of errorOPT.

2.1.5 Metric for the evaluation of representativeness
The accuracy of using representative days can be evaluated by defining a metric to estimate how close 
the set of representative periods are with respect to the reference case, in which hourly (8760 periods) 
entire year data were considered. In this work, the Root-Mean-Square Error (RMSE) was selected to 
evaluate the set of representative days obtained from different methods. RMSE expresses the similarity 
of the distribution of values and their frequency of occurrence for every representative duration curve 
with respect to the original ones. The lower the RMSE, there is a better fit with the original 
representative duration curve.  

                  (23)KLMN� = 18760 ∙ ∑8760ℎ = 1((R�,ℎ ― (RB>#�,ℎ)2max ((R�) ― min ((R�)
2.2 Case studies
A multifamily building composed of 40 dwellings, 102.4 m2 each with average occupancy of three 
people per dwelling, is studied for two locations in Spain with different natural resources and weather 
conditions: Zaragoza and Gran Canaria. In both locations, two different configurations grid-connected 
and standalone systems have been studied. Energy demands and renewable energy production are the 
attributes considered for the optimization of the polygeneration system. In the grid-connected system, 
the CO2 emissions from the grid are considered as an additional attribute to estimate the environmental 
impact associated with the purchase of electricity from the grid.

2.2.1 Energy demands

Space heating and cooling demands are estimated from annual demand data [15], daily demand values 
are estimated from the degree-days method, and hourly values are obtained by applying hourly profiles 
[16]. Regarding the application of the degree-days method, base temperatures for space heating and 
cooling were set to 15ºC and 21ºC, respectively. Domestic Hot Water (DHW) is calculated considering 
a reference temperature of 60ºC and the mean monthly temperature of the net water [17]; a monthly 
consumption factor  was applied to obtain monthly distribution of DHW demands [18]. It is assumed 
that every day of each month presents the same consumption and a hourly profile [16] is applied to 
obtain the hourly DHW demand. In the case of electricity, the annual electricity demand for appliances 
[19] is distributed by applying a monthly distribution factor, which is divided by the days of the month 
and distributed following an hourly distribution function [20], which considers different hourly 
consumption for each season. The procedures briefly described above provide the hourly demand data 
series of heating , cooling  and electricity , where the heating demand consists of space heating S� K� N�
plus domestic hot water. In Gran Canaria there is no space heating demand, and therefore the heating 
demand corresponds only to DHW.

2.2.2 Renewable energy production

The hourly photovoltaic energy production per square meter, EPV, is calculated following the procedure 
described by Duffie and Beckman [21], as a function of solar radiation [22] on the PV module [23], 
tilted at 36º for Zaragoza and 26º for Gran Canaria, with azimuth angle 0º. 
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The hourly solar thermal energy production per square meter, EST, is calculated as a function of the solar 
radiation over a tilted surface (36º for Zaragoza and 26º for Gran Canaria) with azimuth angle 0º [22], 
mean difference temperature between the collector temperature and ambient temperature, and 
parameters of the collector (optical efficiency , 1st and 2nd order heat loss coefficients   and ) TC <1 <2
[24]. 

The electrical production of a wind turbine EW, is calculated based on the production curve of the 30 
kW  nominal capacity turbine [25], as a function of the wind speed [22]. Terrain surface roughness, hub 
turbine height, and density correction factor were also considered [26].

2.2.3 CO2 emissions from the grid

For the grid-connected system, hourly operational CO2 emissions from the grid were collected for the 
entire year 2018 [27]. These data are available on a time scale of 10 minutes; however, as the analysis 
is carried out on an hourly basis, average hourly values were utilized herein.

Tables 1 and 2 present a summary of the attributes considered in each location, with respective annual 
and peak values.

Table 1. Annual and peak values for each attribute in Zaragoza

Attribute Annual Value Peak Value
Heating demand (Qd) 166298 kWht 218.8 kWt
Cooling demand (Rd) 46694 kWht 234.3 kWt
Electricity demand (Ed) 117555 kWh 24 kW
Photovoltaic production (EPV) 285 kWh/m2 0.16 kW/m2

Wind energy production (EW) 53991 kWh/ud 39 kW/ud
Solar Thermal Production (EST) 995 kWht/m2 0.79 kWt/m2

CO2 emissions 1815 kgCO2eq/kWh  0.38 kgCO2eq/kWh

Table 2. Annual and peak value for each attribute in Gran Canaria

Attribute Annual Value Peak Value
Heating demand (Qd) 14336 kWht 18.4 kWt
Cooling demand (Rd) 45466 kWht 183.1 kWt
Electricity demand (Ed) 117555 kWh 24.0 kW
Photovoltaic production (EPV) 313 kWh/m2 0.1 kW/m2

Wind energy production (EW) 126677 kWh/ud 39.9 kW/ud
Solar Thermal Production (EST) 1177 kWht/m2 0.73 kWt/m2

CO2 emissions 5627 kgCO2eq/kWh 0.8 kgCO2eq/kWh

2.2.4 Polygeneration system
The superstructure depicted in Fig. 3, considers the candidate technologies and the available energy 
conversions route. For the grid-connected systems, the model enables the selection of the optimal 
contracted power from the grid.  A natural gas network is available in Zaragoza but not in Gran Canaria, 
which employs gasoil instead. Candidate technologies can be divided into three groups: i) renewable 
energy; ii) technologies to produce electricity, heating, or cooling, and iii) energy storage. 

Renewable energy consists of photovoltaic modules PV, wind turbine WT, and solar thermal collectors 
ST. Regarding electricity, heating, or cooling technologies, these are technologies that produce 
electricity from fossil fuels, such as an electric generator GE or a cogeneration module CM, which 
produces heat as well. There are also, heating and cooling technologies, such as a conventional boiler 
GB that consumes fossil fuel to produce heat, a single-effect absorption chiller ACH that uses heat and 
a small quantity of electricity to produce cooling, and a reversible heat pump HP that converts electricity 
into thermal energy (heating or cooling). Regarding energy storage, there is thermal energy storage for 
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heating TSQ and cooling TSR, and Ion lithium (Ion-Li) batteries Bat to store electricity. Equipment can 
modulate up to nominal load, except for non-manageable loads (PV, ST and WT) and batteries. The 
reversible heat pump operates in heating mode assuming a constant coefficient of performance COP, 
and in cooling mode assuming a constant Energy Efficiency Ratio EER, with constant cooling/heating 
capacity ratio β. The performance of the conventional boiler is considered constant. Concerning thermal 
energy storage tanks, the energy stored is calculated in each time step taking into account the energy 
losses by applying a constant factor λ. In the case of Ion-li batteries, the round trip efficiency ηrt, 
determines the energy losses during the charging and discharging process in each time step. A maximum 
depth of discharge DOD is defined for batteries to avoid premature failures. During battery lifetime 
operation, the number of charge-discharge cycles must be lower than the maximum number of cycles 
that cause the failure Nc,failure [28]. Battery capacity models are applied to calculate their dynamic 

behavior [29]. 

2.2.5 Optimization model

Grid-connected and standalone systems are optimized by using different sets of representative days 
(obtained from aforementioned methods). The defined objective function is to minimize the total annual 
cost:

                                                                                                   (24)JC�<= <??5<= �C!� =  RUV + RC#             (25)RUV = (1 + WVJ) ∙ (1 + X�?�) ∙ RKX ∙ ∑/ = �C
#C?>?�R5/ ∙ R<#/ ∙ (1 + X�IW/)(1 + X
/)                                                                                                                                                    (26)RC# = RN + R;
which is composed of the investment annual cost, CIA, of the equipment and the operational annual 
cost, Cop. The investment cost of each component is calculated from the unit cost  and the installed R5
capacity . Installation and maintenance costs are considered by applying the factor . Calculation R<# X

of the fixed annual cost considers a Capital Recovery Factor CRF=0.082 yr-1, which is applied based 
on a lifetime of 20 years for the installation, and an interest rate of 5%. However, components can 
present different lifetimes nr, hence, a net present value factor FNPV is calculated for each component 
to consider the substitutions carried out throughout the lifetime of the installation. The indirect costs 
encompass the application of a factor Find = 0.2. The VAT (Value-Added Tax) is applied to each 
component. The operational annual cost is the sum of electricity costs CE (only for the grid-connected 
system) and the fuel consumption cost . Electricity costs are a function of the contracted power from R;
the grid (there are three possible values of contracted power to select from the grid, Pct1,2,3, which 
depends on the tariff in use) and electricity consumption, plus different taxes and fixed costs. In the 
grid-connected system,  is the cost associated with the natural gas (composed of a fixed part related R;
to the annual natural gas consumption and a variable part proportional to the natural gas consumption), 
plus VAT and meter equipment rental costs. For standalone systems,  only refers to gasoil R;

Heating

Cooling

Electricity

Grid

CM
GB

QHP HPP
[OR] OR
RHP

ACH
Bat

PV

PW

ST

TSQ

TSR

Invertere -r--Charger HP QQHQQH
[[[OOO[O
RRRRHH

HP

Fossil Fuel

E

Q

R

GE

Inverter

Fig. 3. Superstructure which consider candidate technologies for the polygeneration system. Nodes are 
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consumption plus VAT.

The objective function is subject to capacity and efficiency limits, production restrictions, and balance 
equations, among others. Furthermore, the environmental cost constituted of fixed CO2 emissions 
(embodied in the equipment) and operational CO2 emissions (associated with fuel combustion and 
electricity from the grid) are also calculated. Appendix A presents the detailed description of the 
optimization model and Appendix B presents technical, economic and environmental data.

3. Results and discussion

This work evaluates the suitability of using representative days obtained from different methods to 
optimize polygeneration systems. Unlike other works, which have studied, among other things, the 
feasible number of representative days for the optimization of polygeneration systems [10,14], herein a 
fixed number of representative days is considered to compare different methods for the selection of 
representative days. 

Some considerations must be made to guarantee the suitability of the representative days obtained. 
Averaging method, usually one representative day for each month of the year is considered  [2]. In the 
case of k-Medoids, eight to 12 representative days are sufficient and have provided good results in 
previous works [10,14]. In the case of the OPT method, previous works have selected two representative 
days and obtained good results [11], therefore, 12 representative days are considered herein (and 
sufficient to obtain adequate results as well). Two additional days corresponding to peak heating and 
cooling demands are considered to guarantee that energy demands are always met, with the 
corresponding impact on the annual investment cost, but not on the annual operation cost.

After application of these methods for the selection of representative days, the polygeneration system 
is optimized. Optimal results of design and configuration obtained with different sets of representative 
days are compared with the reference case, which considers entire year data. The Quality Function 
Deployment (QFD) methodology is applied to evaluate the suitability of each method.

3.1 Set of representative days, Metrics and Duration Curves
Tables 3 and 4 present the set of representative days obtained from each method, along with the 
respective weights for Zaragoza and Gran Canaria. As aforementioned, one representative day for each 
month was obtained from the averaging method, and different days were obtained from the other 
methods, which do not necessarily match each month.

Table 3. Set of representative days i obtained from each method, with respective weights for grid-connected and 
standalone systems in Zaragoza

Grid-Connected Standalone
k-Medoids OPT Mix kM-OPT k-Medoids OPT Mix kM-OPT

Item i ω i ω i ω i ω i ω i ω
1 37 38 1 39.0 37 36 9 23 1 18.1 21 6
2 62 25 12 4.4 62 27 31 34 19 32.9 37 47
3 112 50 32 35.6 112 44 38 51 25 36.6 116 21
4 116 22 48 29.7 116 24 116 21 58 33.9 136 16
5 175 33 161 19.4 175 37 136 17 123 32.7 147 51
6 208 24 167 56.1 220 22 141 33 166 42.7 158 62
7 221 11 170 2.2 221 14 147 37 182 17.5 166 15
8 241 58 179 11.6 241 50 165 70 186 44.5 175 34
9 287 22 262 32.7 287 25 166 15 231 10.3 240 15
10 291 34 279 67.6 291 37 240 15 290 54.8 300 41
11 339 36 332 54.4 339 35 276 33 310 31.8 339 48
12 352 12 360 12.2 352 14 346 16 362 9.2 352 9
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Table 4. Set of representative days i obtained from each method with respective weights for grid-connected and 
standalone systems in Gran Canaria

Grid-connected Standalone
k-Medoids OPT Mix kM-OPT k-Medoids OPT Mix kM-OPT

Item i ω i ω i ω i ω i ω i ω
1 40 24 31 28.5 40 24 32 21 1 43.1 32 21
2 52 21 45 63.9 52 21 122 22 65 41.5 122 23
3 58 26 67 0.0 58 26 124 36 70 0.0 138 17
4 120 26 89 4.4 120 26 138 17 85 0.2 147 25
5 127 44 121 12.8 127 44 147 25 100 15.7 149 24
6 138 30 122 58.1 138 24 149 23 102 25.0 176 41
7 186 23 152 35.0 186 29 176 42 173 48.0 189 31
8 205 29 219 33.5 226 29 189 31 197 43.0 190 31
9 264 38 227 53.6 264 38 190 31 229 31.0 266 30
10 266 29 289 51.1 266 29 266 30 288 24.4 326 34
11 281 28 362 20.6 281 28 351 28 319 56.8 351 29
12 360 47 364 3.6 360 47 359 59 352 36.2 359 59

Based on the representative days obtained, the corresponding duration curves for each attribute were 
built, followed by the calculation of the respective RMSE and ErrorOPT values.

Tables 5 and 6 present the RMSE values for each attribute and the ErrorOPT values obtained for each 
method. The RMSE values obtained from the Averaging method are higher than those obtained from 
other methods. The wind energy production attribute, EW, presented the highest RMSE value and 
therefore, the Averaging method presents the weakest approach to the original values. The lowest 
RMSE values, in general, were obtained from the OPT method. ErrorOPT represents how close the 
representative duration curves are to the original ones, and RMSE expresses the similarity between the 
distribution of values and their frequency of occurrence for every representative duration curve with 
respect to the original curves. The values obtained from the Mix kM-OPT method are usually 
intermediate values between those obtained from the k-Medoids and OPT methods. This does not occur 
necessarily for all attributes, because ErrorOPT is an absolute value that considers all attributes 
simultaneously (fitting consider the entire set and not individual values).

Table 5. ErrorOPT values obtained for each method and RMSE values for each attribute corresponding to the 
different methods for grid-connected and standalone systems in Zaragoza.

Grid-Connected
RMSE

Method Qd Rd Ed EPV EW EST CO2

ErrorOPT

Averaging 3.2% 2.3% 0.0% 3.7% 20.6% 7.2% 7.2% -
k-Medoids 2.8% 1.8% 1.0% 1.9% 3.7% 1.6% 4.4% 0.83

OPT 1.6% 1.6% 0.6% 1.5% 1.6% 1.6% 1.6% 0.36
Mix kM-OPT 2.7% 1.5% 0.9% 1.6% 3.7% 1.1% 4.2% 0.74

Standalone
RMSE

Method Qd Rd Ed EPV EW EST CO2

ErrorOPT

Averaging 3.2% 2.3% 0.0% 3.7% 20.6% 7.2% - -
k-Medoids 1.6% 1.7% 1.2% 2.1% 2.9% 1.7% - 0.55

OPT 1.3% 1.5% 1.1% 1.0% 1.7% 1.0% - 0.16
Mix kM-OPT 2.7% 1.6% 1.1% 2.1% 2.5% 1.6% - 0.50
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Table 6. ErrorOPT values obtained for each method and RMSE values for each attribute corresponding to the 
different methods for grid-connected and standalone systems in Gran Canaria. 

Grid Connected
RMSE

Method Qd Rd Ed EPV EW EST CO2

ErrorOPT

Averaging 0.0% 1.6% 0.0% 3.0% 16.0% 8.9% 8.9% -
k-Medoids 0.9% 1.3% 0.5% 1.6% 1.7% 2.0% 2.9% 0.62

OPT 1.3% 2.1% 0.6% 2.0% 2.0% 2.2% 1.3% 0.29
Mix kM-OPT 0.8% 1.4% 0.7% 1.6% 1.6% 2.1% 2.7% 0.56

Standalone
RMSE

Method Qd Rd Ed EPV EW EST CO2

ErrorOPT

Averaging 0.0% 1.6% 0.00% 3.0% 16.0% 8.9% - -
k-Medoids 1.0% 1.6% 1.2% 2.0% 2.1% 2.1% - 0.45

OPT 0.6% 1.4% 0.0% 1.7% 1.3% 2.4% - 0.16
Mix kM-OPT 1.0% 1.6% 1.2% 1.5% 2.1% 1.6% - 0.41

Fig. 4 and Fig. 5 depict some duration curves that aid in the visualization of the accuracy of each method 
to reproduce the reference DC (original duration curve). In agreement with the values presented in the 
previous Tables, it is observed that EW and CO2 emissions are not well reproduced by the Averaging 
method because these attributes present the highest variability.
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3.2 Optimization of polygeneration systems
The optimization of the polygeneration systems minimized the total annual cost and used different sets 
of representative days (obtained from different methods). These results were compared to a reference 
case that considered hourly data throughout the entire year (8760 hours). Optimization was carried out 
for grid-connected and standalone systems, yielding an optimal configuration along with its optimal 
operation. Herein, synthesis refers to the selection of technologies to install, design is about of sizing of 
the installed components and operation refers to electricity/fuel consumption.  

Table 7 shows the optimization results obtained for the grid-connected polygeneration system located 
in Zaragoza. Regarding the synthesis, the same technologies (PV, CM, HP, TSQ and TSR) are present 
in the optimal solutions obtained with different sets of representative days. The value of the contracted 
power from the grid is different when the k-Medoids set of representative days was applied. The OPT 
set performed better as only the TSR sizing error was higher than 5% (but still lower than 20%). The 
other sets of representative days presented sizing errors under 20% except for the TSR obtained with 
the k-Medoids set. 

Regarding electricity consumption from the grid, error is below 10% except for the k-Medoids set, 
which was approximately 14%. The error associated with natural gas consumption was under 2% for 
all sets of representative days. The errors associated with the total annual cost and CO2 emissions were 
below 2% for all sets of representative days.

Table 7. Results of the optimization of the grid-connected polygeneration system  in Zaragoza, corresponding to 
the sets of representative days shown in Table 3. The reference case considers 365 days.

 Technology Reference Averaging k-Medoids OPT Mix kM-OPT
Pct [kW] 34.61,2,3 34.61,2,3 31.21,2,3 34.61,2,3 34.61,2,3

CM [kWe] 15.2 14.5 15.7 15.7 15.4
PV [kW] 27.4 29.6 30.3 27.6 29.9

WT [kWe] 0 0 0 0 0
ST [m2] 0 0 0 0 0

HP [kWt] 231.3 232.8 224.1 233.7 237.5
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GB [kWt] 61.4 65.1 69.6 59.2 60.7
ACH [kWt] 0 0 0 0 0
TSQ [kWht] 2.3 2.3 2.3 2.3 2.3
TSR [kWht] 32.7 30.0 46.4 28.3 21.2
Bat [kWh] 0 0 0 0 0

Electricity [kWh] 36630 34028 31649 34133 33076
Natural gas CM [kWh] 250287 241932 248526 258462 247067
Natural Gas GB [kWh] 57611 60544 55213 50943 56352

Total cost [€/yr] 60086 59523 59599 59781 59593
CO2 emissions [kgCO2eq/yr] 74969 73449 73404 74973 73527

Table 8 shows the results of the standalone polygeneration system located in Zaragoza. In this case, the 
set of representative days obtained from the Averaging, k-Medoids, and OPT methods resulted in the 
same optimal configuration composed of CM, PV, WT, HP, GB, TSQ, TSR, and Bat. ST and ACH 
were not included. The utilization of the representative days from the Mix kM-OPT method results in 
the previous configuration but includes ACH (although it could be neglected). 

Regarding design, PV and WT are not well-sized by using the Averaging set of representative days. The 
sizing errors obtained for PV and WT are approximately 6% and 33% for the k-Medoids set, 11% and 
20% for the OPT set, and 6% and 20% for the Mix kM-OPT set. HP and GB sizing errors are below 
10% for all sets of representative days (for the Mix kM-OPT set it was under 5%).

Concerning energy storage, TSQ and Bat are barely considered (and therefore could be disconsidered). 
TSR presented sizing errors below 20% for all sets of representative days. For gasoil consumption, the 
error was approximately 29% for Averaging, 2% for k-Medoids, 5% for OPT and 1% for Mix kM-OPT 
set. 

In terms of total annual cost, all sets of representative days presented errors of approximately 1% except 
for the Averaging set, which presented an error of about 4%. For the CO2 emissions, the Averaging set 
presented an error of approximately 27%, k-Medoids about 2%, OPT about 4% and Mix kM-OPT 
approximately 0.2%. 

Table 8. Results of the optimization of the standalone polygeneration system  in Zaragoza corresponding to the 
sets of representative days  shown in Table 3. The reference case considers 365 days.

 Reference Averaging k-Medoids OPT Mix kM-OPT
CM [kWe] 23.3 18.9 23 23 23.3
PV [kW] 43 25.1 40.3 38.2 45.5

WT [kWe] 8.6 43.7 5.7 6.9 6.7

ST [m2] 0 0 0 0 0
HP [kWt] 167.4 177.4 155.4 153.2 168
GB [kWt] 120.8 126.4 122.6 122.4 125.5

ACH [kWt] 0 0 0 0 1.4
TSQ [kWht] 2.9 1.8 2.8 1.1 5.8
TSR [kWht] 153.2 134.4 175.8 180 170.9
Bat [kWh] 1.3 16.5 1.9 2.3 1.5

Gasoil CM [kWh] 230721 91380 233120 234681 227990
Gasoil GB [kWh] 139568 169887 144578 154499 140700

Total cost [€/yr] 81243 77743 80304 81137 82157

CO2 emissions [kgCO2eq/yr] 115160 84130 117031 120326 114913

Results of the optimization for Gran Canaria are presented in Tables 9 and 10 for grid-connected and 
standalone systems, respectively. For the grid-connected system, all sets of representative days provided 
the same optimal configuration, composed of PV, WT, HP, GB, and TSR. Unlike the reference system, 
each set included ST in the optimal configuration. Regarding contracted power, only the OPT set 
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resulted in the same Pct as the reference case. In terms of design, the Averaging set resulted in sizing 
errors are much higher than 5%, for most technologies, especially for renewable energy based. For the 
k-Medoids, OPT and kM-OPT sets, the sizing errors obtained were below or approximately 20% for all 
technologies. Despite the high sizing errors obtained from Averaging, the total annual cost error was 
only about 2%. This result confirms that, similarly to Zaragoza, the total annual cost error is not 
sufficient to evaluate the suitability of a method. For the other analyzed sets, the total annual cost error 
was about 1%. 

For electricity from the grid, the obtained error was below 5% for all sets of representative days, except 
for the Averaging set, which presented an error above 20%. The gasoil consumption errors for the 
Averaging, k-Medoids, OPT, and Mix kM-OPT sets were approximately 18%, 23%, 7% and 16% 
respectively. In terms of total CO2 emissions errors, for Averaging the error was approximately -21%, 
for OPT approximately -3% and for k-Medoids and kM-OPT, about 1%.

Table 9. Optimization results for grid-connected polygeneration system in Gran Canaria, corresponding to the 
sets of representative days shown in Table 4. The reference case considers 365 days.

 Reference Averaging k-Medoids OPT Mix kM-OPT
Pct [kW] 31.21,2-17.33 34.61,2-17.33 34.61,2-17.33 31.21,2-17.33 34.61,2-17.33

GE[kWe] 0 0 0 0 0
PV [kW] 23.0 14.7 19.1 24.6 21.8

WT [kWe] 8.4 16.2 8.6 7.2 7.8
ST [m2] 0 7 8 7 6

HP [kWt] 158.5 165.6 165.3 159.8 169.1
GB [kWt] 15.5 13.8 12.8 14.1 12.9

ACH [kWt] 0 0 0 0 0
TSQ [kWht] 0 0 0 0 0
TSR [kWht] 61.4 48.0 48.6 59.1 53.4
Bat [kWh] 0 0 0 0 0

Electricity [kWh] 68361 51843 71557 66270 70587
Gasoil GB [kWh] 23458 19276 17950 21865 19734

Total cost [€/yr] 33020 32298 32835 32837 33372
CO2 emissions [kgCO2eq/yr] 56030 44128 56652 54412 56629

For the standalone system in Gran Canaria, the set of representative days obtained from the Averaging, 
OPT and kM-OPT methods result in the same optimal configuration, which included GE, PV, WT, HP, 
GB, TSQ and TSR. A similar configuration was obtained by using the k-Medoids set of representative 
days, but TSQ was not included. Regarding design, the TSQ included was so insignificant it could be 
disconsidered.

When using the Averaging set of representative days, the technology sizing errors were much higher 
than 5%, especially for WT technology, similar to the result obtained for the grid-connected system. 
Using the other sets of representative days, sizing errors obtained were below 20% for all technologies, 
except for the OPT set where the sizing error for WT was about 24%. For gasoil, the errors were below 
2%, except for the Averaging set, which an error of approximately 49%. In terms of total annual cost, 
the obtained error was approximately 1% except for the Averaging set, which presented an error of 
about 15%. In terms of CO2 emissions, the errors obtained were approximately 1%, except for the 
Averaging set, with an error of approximately -45%.

Table 10. Optimization results for the standalone polygeneration system in Gran Canaria, corresponding to the 
sets of representative days shown in Table 4. The reference case considers 365 days.

 Reference Averaging k-Medoids OPT Mix kM-OPT
GE[kWe] 25.6 25.8 25.5 25.3 25.5
PV [kW] 30.5 14.0 26.9 24.4 27.1

WT [kWe] 18.7 38.2 19.9 23.2 20.0
ST [m2] 0 0 0 0 0
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HP [kWt] 158.5 163.2 164.5 164.5 165.1
GB [kWt] 13.9 12.7 15.4 13.1 14.5

ACH [kWt] 0 0 0 0 0
TSQ [kWht] 1.6 2.9 0.0 2.3 0.9
TSR [kWht] 61.4 52.7 50.2 50.2 49.1
Bat [kWh] 0 0 0 0 0

Gasoil GE [kWh] 143270 54827 144171 147134 144685
Gasoil GB [kWh] 45306 42070 46231 44646 46037

Total cost [€/yr] 48166 41086 47861 48783 47985
CO2 emissions [kgCO2eq/yr] 60643 33601 60954 61371 61070

3.3 Qualitative evaluation of methods for the selection of representative days
The QFD technique [30] was applied to evaluate the suitability of each method for the synthesis and 
design of polygeneration systems, estimating which method is useful for each case. To this end, the 
criteria shown in Table 11 (based on the engineering criteria practice) were applied. A score is applied 
to the sizing errors Esz of each component. Capacities with a deviation above 20% are not considered 
acceptable and, therefore receive a score of 0. A deviation between 5% and 20% is considered 
reasonably accurate, receiving a score of 1, and a deviation below 5% is considered good accuracy and 
receives a score of 2. The maximum score that can be reached for each group of technologies is 6 for 
renewable energy technologies, 8 for electricity/heating/cooling production technologies, and 6 for 
energy storage technologies. 

Table 11. Criteria for the evaluation of methods for the selection of representative days by QFD.

Sizing Error (Esz) Score
Esz >|20%|  0
 |5%|<Esz<=|20%| 1
 Esz<=|5%| 2
Group of technologies Max Score
Renewable Energy (RE) 6
Electricity/Heating/Cooling Production Technologies (E/H/C) 8
Energy Storage (ES) 6
Polygeneration system (PS) 20

The QFD results for each system and location are presented in Tables 12-15. For grid-connected 
systems, the maximum score was 34, obtained from the OPT method, followed by Mix kM-OPT and k-
Medoid methods, and for standalone systems, the maximum score was 26, obtained from Mix kM-OPT 
method followed by k-Medoids and OPT methods.

Table 12. QFD results for the grid-connected system in Zaragoza.

Renewable Energy 
E/H/C Production 

Technologies Energy Storage 
Polygeneration 

system

Method PV WT ST
Score 
RE CM HP GB ACH

Score 
E/H/C TSQ TSR Bat

Score 
ES Score

Averaging 1 2 2 5 2 2 1 2 7 2 1 2 5 17
k-Medoids 1 2 2 5 2 2 1 2 7 2 0 2 4 16

OPT 2 2 2 6 2 2 2 2 8 2 1 2 5 19
kM-OPT 1 2 2 5 2 2 2 2 8 2 0 2 4 17
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Table 13. QFD results for the standalone system in Zaragoza.

Renewable Energy E/H/C Production Technologies Energy Storage 
Polygeneration 

system

Method PV WT ST
Score 
RE CM HP GB ACH

Score 
E/H/C TSQ TSR Bat

Score 
ES Score

Averaging 0 0 2 2 1 1 2 0 4 0 1 0 1 7
k-Medoids 1 0 2 3 2 1 2 0 5 2 1 0 3 11

OPT 1 1 2 4 2 1 2 0 5 0 1 0 1 10
kM-OPT 1 0 2 3 2 2 2 0 6 0 1 1 2 11

Table 14. QFD results for the grid-connected system in Gran Canaria.

Renewable Energy E/H/C Production Technologies Energy Storage 
Polygeneration 

system

Method PV WT ST
Score 
RE GE HP GB ACH

Score 
E/H/C TSQ TSR Bat

Score 
ES Score

Averaging 0 0 0 0 2 2 1 2 7 2 0 2 4 11
k-Medoids 1 2 0 3 2 2 1 2 7 2 0 2 4 14

OPT 1 1 0 2 2 2 1 2 7 2 2 2 6 15
kM-OPT 2 1 0 3 2 1 1 2 6 2 1 2 5 14

Table 15. QFD results for the standalone system in Gran Canaria.

Renewable Energy 
E/H/C Production 

Technologies Energy Storage 
Polygeneration 

system

Method PV WT ST
Score 
RE GE HP GB ACH

Score 
E/H/C TSQ TSR Bat

Score 
ES Score

Averaging 0 0 2 2 2 2 1 2 7 0 1 2 3 12
k-Medoids 1 1 2 4 2 2 1 2 7 0 1 2 3 14

OPT 1 0 2 3 2 2 1 2 7 0 1 2 3 13
kM-OPT 1 1 2 4 2 2 2 2 8 0 1 2 3 15

3.4 Reduction of computational effort by using representative days
The purpose of using representative days instead of entire year data is to reduce the computational time 
required for the optimization of polygeneration systems. Table 16 presents data related to the number 
of variables, constraints, and elapsed time for the optimization of a grid-connected system using entire 
year data and using representative days. All runs were performed on an Intel Core i5-6200 CPU @ 2.3 
GHz, with a memory of 8 GB and 64-bit system. Similar results were also obtained for standalone 
systems. It must be highlighted that the global optimum reach using 8760 hours was achieved because 
the optimization model did not consider many technical details such as partial load of equipment. 
Otherwise, calculation time could increase up to several days. However, these results demonstrated that 
there is a remarkable reduction in runtime, of about three orders of magnitude, which is significant when 
a detailed design is required.

Table 16. Number of variables and runtime for the optimization of polygeneration system using entire year data 
and sets of representative days.

Variables RuntimeNumber of days Integer Total Constraints Hours Minutes Seconds
365 21 928763 1270363 1 27 6
14 21 35824 48888 0 0 8

4. Conclusions

The performance of three different methods were compared for the selection of representative days for 
the optimization of polygeneration systems. Two different systems were considered - standalone and 
grid-connected located in two different locations in Spain. The locations presented different climatic 
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conditions, natural resources and energy demands, covering a wide range of possibilities that enable the 
extension of the results to other case studies. 

In general terms, the use of representative days in the optimization of polygeneration systems was more 
accurate for grid-connected than standalone systems. The OPT method could be considered the best 
option for grid-connected systems. In the case of standalone systems, the methods yielded similar 
results. For instance, in Gran Canaria the Mix kM-OPT method performed best, but in Zaragoza the k-
Medoids and Mix kM-OPT methods presented the same score.

The stochastic variability of the attributes has strong influence and must be taken into account when 
assessing the most suitable method for the selection of representative days. This was the case for wind 
turbine production. The Averaging method was not adequate to address with attributes with high 
stochastic variability, such as wind energy; however, it was a good alternative to tackle attributes such 
as solar energy. 

It is important to highlight that the total annual cost was not a determinant factor when evaluating the 
suitability of a method for the selection of representative days.  When the Averaging method was applied 
to grid-connected systems in Gran Canaria or standalone systems in Zaragoza, the annual cost errors of 
the optimal systems were below 2% with respect to the corresponding reference cases, but the optimal 
designs were significantly different than those obtained for the reference systems. 

Regarding conventional technologies to produce electricity/heating/cooling, all methods performed well 
when sizing the components. In the case of energy storage, although there is no connection between the 
selected representative days to model its continuous dynamic behavior, the sizing errors observed were 
below 20% in most cases. Herein only thermal energy storage for cooling TSR was feasible in the 
optimal configurations, and the best results were obtained when applying the OPT method, achieving 
errors under 5% in Gran Canaria for grid-connected systems. When TSQ and Bat were part of the 
optimal configuration, sizes were negligible. The energy storage considered herein was a short-term 
storage.

From the point of view of operation, the electricity and fuel consumption obtained from the application 
of k-Medoids, OPT and Mix kM-OPT methods presented good fit with the reference system. The results 
obtained for standalone systems were remarkable, with fuel consumption errors below 5%.

In general, based on the obtained results, the OPT method seems to be the best alternative to select 
representative days. However, computational effort can be very high in the process to obtain the global 
optimum and, as a consequence, it is advisable to stop the optimization process before the global 
optimum is reached. 

It has been demonstrated herein that the k-Medoids method results can be improved by combining the 
k-Medoids and the OPT methods. This leads, however, to increases in computational effort and cost. 
The importance of reducing RMSE metric values was highlighted, to improve the results of the 
optimization of polygeneration systems by using representative days. The lowest RMSE values were 
obtained with the OPT method, and it was observed that the best results for grid-connected systems 
were also obtained by applying this method. Nonetheless, when this method is applied, it is more 
difficult to reach the global optimum, which entails an uncertainty associated with the application of the 
OPT method. The kM-OPT method allows the achievement of a global optimum, which is an advantage 
with respect to the OPT method, but does not necessarily mean that results were improved.

As a final global conclusion, the synthesis and optimization of polygeneration systems using appropriate 
sets of representative days provide a good and reasonable approach and pre-design in terms of 
configuration, sizing and operation. However, due to the complexity of the problem, an appropriate 
method for the selection of a set of representative days should be applied, as these highly complex 
polygeneration systems should meet several energy demands (heating, cooling and electricity in the 
analyzed cases), using manageable (electricity from the grid, fossil fuels, or biomass) and non-
manageable (e.g., solar and wind) energy resources considering several candidate energy conversion 
technologies (cogeneration, heat pumps, wind turbines, solar PV panels, solar thermal collectors, 
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mechanical and absorption chillers) as well as short-term energy storage.  
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Appendix A: Optimization model

                                                                                                       (A.1))*+*,*-. JC�<= <?5<= �C!�
                                                                                                 (A.2)  JC�<= <??5<= �C!� =  RUV + RC#

        (A.3)RUV = (1 + WVJ) ∙ (1 + X�?�) ∙ RKX ∙ ∑/ = �C
#C?>?�R5/ ∙ R<#/ ∙ (1 + X�IW/)(1 + X
/)
                                                                                                                                (A.4)RC# = RN + R;

                                                             (A.5)RN = ((R��> + RY>)·(1 + J<�>) + R<=$>)·(1 + WVJ)
                                                                                      (A.6)RY = ∑�B>#� = 19� ∙ (∑24ℎ = 1�#>(ℎ)·N#(ℎ))�

                                                                                                                (A.7)R��> = ∑3� = 1�I��� ∙ I���
                                                                                                                (A.8)I��?C
 = [I��1…I��?]

                                                                  (A.9)I�� = [I��?C
 ∙ ^I��1  I��?C
 ∙ ^I��2  I��?C
 ∙ ^I��3]
                                                                                                                                      (A.10)I�� ≥ N#

                                                                                        (A.11)R; = (R��; + R<=$; + RY;)(1 + WVJ)
                                                                                      (A.12)RY; = ∑�B>#� = 19� ∙ (∑24ℎ = 1�#5>= ∙ X(ℎ))�

Balance equations:
An energy balance is carried out in each node  of the superstructure 


                                                                                                                    (A.13) ∑
(N
�? ― N
C5�) = 0
Equipment efficiency:
GB:                                                                                                                  (A.14)T`a ∙ Xb ― Sb = 0
HP:                                                                                                            (A.15)ScI ― NcI ∙ RHI = 0
HP:                                                                                                            (A.16)KcI ― NcI ∙ NNK = 0
GE:                                                                                                               (A.17)  de ∙ X`N ―f`N = 0
CM:                                                                                                             (A.18)de ∙ XRL ―fRL = 0
CM:                                                                                                                 (A.19)d$ ∙ XRL ― S� = 0
ACH:                                                                                                         (A.20)K<�ℎ = RHI<�ℎ ∙ S<�ℎ
For thermal energy storages for heating q and cooling r:

                                                                             (A.21) M$,B(�) = M$,B(� ― 1) ∙ g$,B + N�?$,B ― NC5�$,B
Equipment capacities:
For renewable energy production components:
PV:                                                                                                                   (A.22)fIW = NIW ∙ VIW
ST:                                                                                                                      (A.23)SMJ = NMJ ∙ VMJ
WT:                                                                                                                 (A.24)ff = NIf ∙ �fJ
For each component j, the energy production is equal or lower than its nominal capacity. Thus, for 
heating , cooling  or electricity  production:S K f

                                                                                                                                    (A.25)S/ ≤ R<#/
                                                                                                                                     (A.26)K/ ≤ R<#/

ffS
    0

        
          0

     
     

          

      
h n
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                                                                                                                                    (A.27)f/ ≤ R<#/
Stored energy S is equal or lower to nominal capacity of the energy storage.

                                                                                                                            (A.28)M ≤ R<#?C
�?<=
Appendix B. Technical, economic and environmental data
Table B.1. Technical, economic and environmental data of components

Economic data Environmental data
Component j Technical data

Cu [€/*] Fm nr [Years] CO2U [kgCO2eq/*]
PV ηPV= 15.66% [23] 113.4 €/m2 [31] 0.9 20 161 kgCO2eq/m2 [32]
WT Manufacturer curve [25] 51230 €/ud [33] 0.7 20 21600 kgCO2eq/ud [34]

ST
TC = 0.801
3.188 W/m2∙K <1 = <2

0.011W/m2∙K2  [24]= 254 €/ m2 [35] 1.5 20 95 kgCO2eq/m2 [36]

GB ηb: 0.96 [37] 80 €/kWt [37] 0.5 15 10 kgCO2eq/kWt [2]

HP
COP=3.0, EER= 4.0, 

β=0.9 [38]
500 €/kW [38] 0.5 20 160 kgCO2eq/kWt [2,39]

ACH COPACH= 0.7 [40] 485 €/kWt [40] 1.5 20 165 kgCO2eq/kWt [2,39]
GE αw= 0.28 [41] 600 €/kW [41] 0.2 10
CM αw= 0.28,αq= 0.56 [42] 1150 €/kWe [43] 0.7 10 65 kgCO2eq/kWe [2]

TSQ λ= 1% (Estimated) 212 €/kWh [38] 31 kgCO2eq/kWht [39]
TSR λ= 3% (Estimated) 257 €/kWh [38]

0.1 15
62 kgCO2eq/kWht [39]

Bat
ηrt=90%; DOD=90%;

Nc,failure =2000 [44]
370 €/kWh [44] 0.25 12 160 kgCO2eq/kWh [45]

Table B.2. Economic and environmental data for electricity and fuels

Economic data
 €/kWh Reference
Electricity price for Zaragoza - [46]
Electricity price for gran Canaria - [47]
Natural Gas - [48]
Gasoil A 0.1174
Gasoil for heating 0.0678

[49]

Environmental data
 kgCO2eq/kWh Reference
Electricity from grid - [27]
Natural Gas 0.204
Gasoil 0.294

[50]

Nomenclature
Renewable energy
PV: Photovoltaic
ST: Solar thermal
WT: Wind turbine
EPV: Hourly electrical production of a wind turbine
EW: Hourly photovoltaic energy production per square meter
EST: Hourly solar thermal energy production per square meter

Methods for selecting representative days
c: Attribute or time serie
t: Time period (1-8760 hours)
d: Day (1-365 days)
h: Hour (1-24 hours)

Ga
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: Value of the element of the attribute �'
x: Normalized value of the element of the attributes
dis: Dissimilarity
D: Dissimilarity matrix
Ψ: Matrix which contains normalized values x of all attributes

: binary variable equal to 1 if and only if object j is assigned to the cluster of which i is the 1�,/
representative day.
Nk: number of clusters or representative days defined by the user
u: Binary variable used to select the representative day
ω: weight of each representative day

: Number of periods, usually 365 days��
: Number of time steps, usually 24 hours�ℎ
: Number of attributes��

: Scale factor:
DC: Duration curve
DCrep: Duration curve from representative days
NDC: Normalized duration curve
b: Division of the ordinate (bin)
s: Division of the abscissa (interval)
Ls: Length of the interval s 

: Root-Mean-Square ErrorKLMN
Candidate technologies
GE: Electric generator
CM: Cogeneration module
GB: Conventional boiler
ACH: Absorption chiller
HP: Reversible heat pump
TSQ: Thermal energy storage for heating
TSR: Thermal energy storage for cooling
Bat: Batteries

Data Cost
: Annual investment cost [€/yr]RUV
: Annual operational cost [€/yr]RC#

: Electricity bill cost [€/yr]RN
: Annual cost of fuel consumption [€/yr]R;

: Fixed cost bill [€/yr]R��
: Electricity or fuel consumption cost[€/yr]RY

: Meter equipment rental cost [€/yr]R<=$
: Capital Recovery Factor 0.0802RKX

: Unit Cost [€/*]R5
: Electricity or fuel price [€/kWh]�#

: Indirect cost factorX�?�
: Net Present Value factorX�IW

: Installation and maintenance cost factorX

: Contracted power unit cost [€/kW∙yr]�I��

: Nominal power from the grid [kW]I��?C

: Electricity tax 0.05113J<�>
: value-added tax, 0.21 for Zaragoza and 0.03 for gran CanariaWVJ

Energy fluxes
: Purchased electricity [kWh]N#

bil
of fu
ill [€

l

ost [€/y
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[€/y
yr]
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: Fuel consumption [kWh]X
: Energy [kWh]N
: Electricity production [kWh]f

: Heating production [kWh]S
: Cooling production [kWh]K

Variables
: Area [m2]V

: Nominal capacityR<#
: Number of wind turbines�fJ

: Store energy [kWh]M
: Binary variable to select contracted power from the grid

T̂echnical parameters
: Electric efficiency enginede
: Thermal efficiency engined$

: Coefficient of performanceRHI
: Energy Efficiency ratioNNK

: EfficiencyT
: Energy losses factor for thermal energy storageg

Sub-indexes e and g indicates electricity and fuel respectively
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Highlights  

• Comparison of representative days’ selection methods for optimization

• Pros and cons of averaging, k-Medoids and OPT methods are evaluated 

• Guidelines for applying adequate representative days’ selection method are provided

• A new method, combination of k-Medoids and OPT methods, is proposed

 

 

 


