000096101 001__ 96101
000096101 005__ 20210902121907.0
000096101 0248_ $$2sideral$$a120368
000096101 037__ $$aART-2020-120368
000096101 041__ $$aeng
000096101 100__ $$aAres, Filiberto
000096101 245__ $$aComplex behavior of the density in composite quantum systems
000096101 260__ $$c2020
000096101 5060_ $$aAccess copy available to the general public$$fUnrestricted
000096101 5203_ $$aIn this paper, we study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system. We uncover that the difference of probability depends on the energy in a striking way and show the pattern of this distribution. We discuss the main features of the latter and explain analytically those that we understand. In particular, we prove that it is a nonperturbative property and we find out a large/small coupling constant duality. We also find and study features that may connect our problem with certain aspects of nonlinear classical dynamics, such as the existence of resonances and sensitive dependence on the state of the system. We show that the latter has, indeed, a similar origin than in classical mechanics: the appearance of small denominators in the perturbative series. Inspired by the proof of the Kolmogorov-Arnold-Moser theorem, we are able to deal with this problem by introducing a cutoff in energies that eliminates these small denominators. We also formulate some conjectures that we are not able to prove at present but can be supported by numerical experiments.
000096101 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E21-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/PGC2018-095328-B-I00
000096101 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000096101 590__ $$a4.036$$b2020
000096101 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b130 / 333 = 0.39$$c2020$$dQ2$$eT2
000096101 591__ $$aPHYSICS, CONDENSED MATTER$$b22 / 69 = 0.319$$c2020$$dQ2$$eT1
000096101 591__ $$aPHYSICS, APPLIED$$b41 / 160 = 0.256$$c2020$$dQ2$$eT1
000096101 592__ $$a1.78$$b2020
000096101 593__ $$aElectronic, Optical and Magnetic Materials$$c2020$$dQ1
000096101 593__ $$aCondensed Matter Physics$$c2020$$dQ1
000096101 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000096101 700__ $$0(orcid)0000-0001-7715-4970$$aEsteve, José G.$$uUniversidad de Zaragoza
000096101 700__ $$0(orcid)0000-0002-0882-0463$$aFalceto, Fernando$$uUniversidad de Zaragoza
000096101 700__ $$aUsón, Alberto
000096101 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000096101 773__ $$g102, 16 (2020), 165121 [13 pp]$$pPhys. Rev. B$$tPHYSICAL REVIEW B$$x2469-9950
000096101 8564_ $$s1327014$$uhttps://zaguan.unizar.es/record/96101/files/texto_completo.pdf$$yVersión publicada
000096101 8564_ $$s535187$$uhttps://zaguan.unizar.es/record/96101/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000096101 909CO $$ooai:zaguan.unizar.es:96101$$particulos$$pdriver
000096101 951__ $$a2021-09-02-10:40:22
000096101 980__ $$aARTICLE