000096143 001__ 96143
000096143 005__ 20201116185625.0
000096143 0247_ $$2doi$$a10.1002/er.5006
000096143 0248_ $$2sideral$$a116224
000096143 037__ $$aART-2019-116224
000096143 041__ $$aeng
000096143 100__ $$0(orcid)0000-0001-8350-6485$$aPina, Eduardo Antonio$$uUniversidad de Zaragoza
000096143 245__ $$aA multiperiod multiobjective framework for the synthesis of trigeneration systems in tertiary sector buildings
000096143 260__ $$c2019
000096143 5060_ $$aAccess copy available to the general public$$fUnrestricted
000096143 5203_ $$aThis paper develops a multiperiod multiobjective optimization procedure to determine the optimal configuration and operational strategy of a trigeneration system assisted with solar-based technologies and thermal energy storage. The optimization model, formulated as mixed integer linear programming problem, incorporates dynamic operating conditions through time-dependent local climatic data, energy resources, energy demands, electricity prices, and electricity CO2 emission factors. The methodology is applied to a case study of a residential building in Spain. First, the single-objective solutions are obtained, highlighting their fundamental differences regarding the installation of cogeneration (included in the optimal total annual cost solution) and solar-based technologies (included in the optimal total annual CO2 emissions solution). Then, the Pareto curve is generated, and a decision-making approach is proposed to select the preferred trade-off solutions based on the marginal cost of CO2 emissions saved. Additionally, sensitivity analyses are performed to investigate the influence of key parameters concerning energy resources prices, investment costs, and rooftop area. The analyses of the trade-off solutions verify the enormous potential for CO2 emissions reduction, which can reach 32.3% with only 1.1% higher costs by displacing cogeneration in favor of the heat pump and the electric grid. Besides, with a modest cost increase of 7.3%, photovoltaic panels are incorporated, promoting an even greater CO2 emissions reduction of 45.2%.
000096143 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T55-17R$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2017-87711-R
000096143 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000096143 590__ $$a3.741$$b2019
000096143 591__ $$aNUCLEAR SCIENCE & TECHNOLOGY$$b1 / 34 = 0.029$$c2019$$dQ1$$eT1
000096143 591__ $$aENERGY & FUELS$$b46 / 112 = 0.411$$c2019$$dQ2$$eT2
000096143 592__ $$a0.785$$b2019
000096143 593__ $$aNuclear Energy and Engineering$$c2019$$dQ1
000096143 593__ $$aRenewable Energy, Sustainability and the Environment$$c2019$$dQ2
000096143 593__ $$aEnergy Engineering and Power Technology$$c2019$$dQ2
000096143 593__ $$aFuel Technology$$c2019$$dQ2
000096143 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000096143 700__ $$0(orcid)0000-0002-4411-9834$$aLozano, Miguel Ángel$$uUniversidad de Zaragoza
000096143 700__ $$0(orcid)0000-0002-5161-7209$$aSerra, Luis María$$uUniversidad de Zaragoza
000096143 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000096143 773__ $$g44, 2 (2019), 1140-1166$$pInt. j. energy res.$$tINTERNATIONAL JOURNAL OF ENERGY RESEARCH$$x0363-907X
000096143 8564_ $$s520081$$uhttps://zaguan.unizar.es/record/96143/files/texto_completo.pdf$$yPostprint
000096143 8564_ $$s428366$$uhttps://zaguan.unizar.es/record/96143/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000096143 909CO $$ooai:zaguan.unizar.es:96143$$particulos$$pdriver
000096143 951__ $$a2020-11-16-17:40:25
000096143 980__ $$aARTICLE