000096149 001__ 96149
000096149 005__ 20210902121850.0
000096149 0247_ $$2doi$$a10.3390/pr8091144
000096149 0248_ $$2sideral$$a120575
000096149 037__ $$aART-2020-120575
000096149 041__ $$aeng
000096149 100__ $$aShirmohammadi, R.
000096149 245__ $$aCO2 Utilization via Integration of an Industrial Post-Combustion Capture Process with a Urea Plant: Process Modelling and Sensitivity Analysis
000096149 260__ $$c2020
000096149 5060_ $$aAccess copy available to the general public$$fUnrestricted
000096149 5203_ $$aCarbon capture and utilization (CCU) may offer a response to climate change mitigation from major industrial emitters. CCU can turn waste CO(2)emissions into valuable products such as chemicals and fuels. Consequently, attention has been paid to petrochemical industries as one of the best options for CCU. The largest industrial CO(2)removal monoethanol amine-based plant in Iran has been simulated with the aid of a chemical process simulator, i.e., Aspen HYSYS(R)v.10. The thermodynamic properties are calculated with the acid gas property package models, which are available in Aspen HYSYS(R). The results of simulation are validated by the actual data provided by Kermanshah Petrochemical Industries Co. Results show that there is a good agreement between simulated results and real performance of the plant under different operational conditions. The main parameters such as capture efficiency in percent, the heat consumption in MJ/kg CO2 removed, and the working capacity of the plant are calculated as a function of inlet pressure and temperature of absorber column. The best case occurred at the approximate temperature of 40 to 42 degrees C and atmospheric pressure with CO2 removal of 80.8 to 81.2%; working capacity of 0.232 to 0.233; and heat consumption of 4.78 MJ/kg CO2.
000096149 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000096149 590__ $$a2.847$$b2020
000096149 591__ $$aENGINEERING, CHEMICAL$$b74 / 143 = 0.517$$c2020$$dQ3$$eT2
000096149 592__ $$a0.413$$b2020
000096149 593__ $$aBioengineering$$c2020$$dQ2
000096149 593__ $$aProcess Chemistry and Technology$$c2020$$dQ2
000096149 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ2
000096149 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000096149 700__ $$aAslani, A.
000096149 700__ $$aGhasempour, R.
000096149 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, L.M.$$uUniversidad de Zaragoza
000096149 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000096149 773__ $$g8, 9 (2020), 1144 [12 pp]$$pProcesses$$tPROCESSES$$x2227-9717
000096149 8564_ $$s855031$$uhttps://zaguan.unizar.es/record/96149/files/texto_completo.pdf$$yVersión publicada
000096149 8564_ $$s475891$$uhttps://zaguan.unizar.es/record/96149/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000096149 909CO $$ooai:zaguan.unizar.es:96149$$particulos$$pdriver
000096149 951__ $$a2021-09-02-10:29:13
000096149 980__ $$aARTICLE