000096150 001__ 96150 000096150 005__ 20210902121920.0 000096150 0247_ $$2doi$$a10.3390/math8091498 000096150 0248_ $$2sideral$$a120576 000096150 037__ $$aART-2020-120576 000096150 041__ $$aeng 000096150 100__ $$0(orcid)0000-0002-8488-985X$$aGállego, M.P. 000096150 245__ $$aProducts of finite connected subgroups 000096150 260__ $$c2020 000096150 5060_ $$aAccess copy available to the general public$$fUnrestricted 000096150 5203_ $$aFor a non-empty class of groups L, a finite group G = AB is said to be an L-connected product of the subgroups A and B if <a, b> e L for all a e A and b e B. In a previous paper, we prove that, for such a product, when L = S is the class of finite soluble groups, then [A, B] is soluble. This generalizes the theorem of Thompson that states the solubility of finite groups whose two-generated subgroups are soluble. In the present paper, our result is applied to extend to finite groups previous research about finite groups in the soluble universe. In particular, we characterize connected products for relevant classes of groups, among others, the class of metanilpotent groups and the class of groups with nilpotent derived subgroup. Additionally, we give local descriptions of relevant subgroups of finite groups. 000096150 536__ $$9info:eu-repo/grantAgreement/ES/MICIU-FEDER/PGC2018-096872-B-I00 000096150 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000096150 590__ $$a2.258$$b2020 000096150 591__ $$aMATHEMATICS$$b24 / 330 = 0.073$$c2020$$dQ1$$eT1 000096150 592__ $$a0.495$$b2020 000096150 593__ $$aMathematics (miscellaneous)$$c2020$$dQ2 000096150 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000096150 700__ $$aHauck, P. 000096150 700__ $$aKazarin, L.S. 000096150 700__ $$aMartínez-Pastor, A. 000096150 700__ $$aPérez-Ramos, M.D. 000096150 773__ $$g8, 9 (2020), 1498 [8 pp]$$pMathematics (Basel)$$tMATHEMATICS$$x2227-7390 000096150 8564_ $$s230229$$uhttps://zaguan.unizar.es/record/96150/files/texto_completo.pdf$$yVersión publicada 000096150 8564_ $$s401286$$uhttps://zaguan.unizar.es/record/96150/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000096150 909CO $$ooai:zaguan.unizar.es:96150$$particulos$$pdriver 000096150 951__ $$a2021-09-02-10:48:16 000096150 980__ $$aARTICLE