000096151 001__ 96151
000096151 005__ 20230126102837.0
000096151 0247_ $$2doi$$a10.3390/en13184687
000096151 0248_ $$2sideral$$a120577
000096151 037__ $$aART-2020-120577
000096151 041__ $$aeng
000096151 100__ $$aMartínez, A.
000096151 245__ $$aCharacterization of thermophysical properties of phase change materials using unconventional experimental technologies
000096151 260__ $$c2020
000096151 5060_ $$aAccess copy available to the general public$$fUnrestricted
000096151 5203_ $$aThe growing interest in developing applications for the storage of thermal energy (TES) is highly linked to the knowledge of the properties of the materials that will be used for that purpose. Likewise, the validity of representing processes through numerical simulations will depend on the accuracy of the thermal properties of the materials. The most relevant properties in the characterization of phase change materials (PCM) are the phase change enthalpy, thermal conductivity, heat capacity and density. Differential scanning calorimetry (DSC) is the most widely used technique for determining thermophysical properties. However, several unconventional methods have been proposed in the literature, mainly due to overcome the limitations of DSC, namely, the small sample required which is unsuitable for studying inhomogeneous materials. This paper presents the characterization of two commercial paraffins commonly used in TES applications, using methods such as T-history and T-melting, which were selected due to their simplicity, high reproducibility, and low cost of implementation. In order to evaluate the reliability of the methods, values calculated with the proposed alternative methods are compared with the results obtained by DSC measurements and with the manufacturer’s technical datasheet. Results obtained show that these non-conventional techniques can be used for the accurate estimation of selected thermal properties. A detailed discussion of the advantage and disadvantage of each method is given.
000096151 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000096151 590__ $$a3.004$$b2020
000096151 591__ $$aENERGY & FUELS$$b70 / 114 = 0.614$$c2020$$dQ3$$eT2
000096151 592__ $$a0.597$$b2020
000096151 593__ $$aControl and Optimization$$c2020$$dQ2
000096151 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ2
000096151 593__ $$aRenewable Energy, Sustainability and the Environment$$c2020$$dQ2
000096151 593__ $$aEnergy Engineering and Power Technology$$c2020$$dQ2
000096151 593__ $$aFuel Technology$$c2020$$dQ2
000096151 593__ $$aEnergy (miscellaneous)$$c2020$$dQ2
000096151 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000096151 700__ $$aCarmona, M.
000096151 700__ $$0(orcid)0000-0001-6665-5331$$aCortés, C.$$uUniversidad de Zaragoza
000096151 700__ $$0(orcid)0000-0001-5473-6919$$aArauzo, I.$$uUniversidad de Zaragoza
000096151 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000096151 773__ $$g13, 18 (2020), 4687 [23 pp]$$pENERGIES$$tEnergies$$x1996-1073
000096151 8564_ $$s740438$$uhttps://zaguan.unizar.es/record/96151/files/texto_completo.pdf$$yVersión publicada
000096151 8564_ $$s481547$$uhttps://zaguan.unizar.es/record/96151/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000096151 909CO $$ooai:zaguan.unizar.es:96151$$particulos$$pdriver
000096151 951__ $$a2023-01-26-09:55:05
000096151 980__ $$aARTICLE