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Nowadays, one of the challenges we face when carrying out modeling of epidemic spreading is to develop
methods to control disease transmission. In this article we study how the spreading of knowledge of a disease
affects the propagation of that disease in a population of interacting individuals. For that, we analyze the
interaction between two different processes on multiplex networks: the propagation of an epidemic using the
susceptible-infected-susceptible dynamics and the dissemination of information about the disease—and its
prevention methods—using the unaware-aware-unaware dynamics, so that informed individuals are less likely
to be infected. Unlike previous related models where disease and information spread at the same time scale,
we introduce here a parameter that controls the relative speed between the propagation of the two processes.
We study the behavior of this model using a mean-field approach that gives results in good agreement with
Monte Carlo simulations on homogeneous complex networks. We find that increasing the rate of information
dissemination reduces the disease prevalence, as one may expect. However, increasing the speed of the
information process as compared to that of the epidemic process has the counterintuitive effect of increasing
the disease prevalence. This result opens an interesting discussion about the effects of information spreading on

disease propagation.
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I. INTRODUCTION

Mathematical modeling of contagious disease spreading
has become an important tool to estimate the extent of an
epidemic [1,2], and it is regaining attention with the actual
coronavirus worldwide pandemic. The knowledge or infor-
mation we handle about a virus and its transmission among
individuals plays a fundamental role in the containment of an
epidemic. This knowledge may lead to adopt strategies that
change human behavior, with direct consequences on disease
spreading, which has represented an intense research topic
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over the last years [1-4]. It is known that the information
about a disease and how this can contribute to epidemic
spreading might help to develop more effective prevention
methods [5-9]. Some of these methods can significantly re-
duce the full extent of an epidemic, as shown in previous stud-
ies [10-12]. To explore the influence of human behavior on
the spread of an epidemic, these works have used a model for
the spreading of rumors to simulate the spread of knowledge
about the disease (and its methods of prevention) by word of
mouth. In this way, the rumors—also called information—and
the epidemic are considered as two diffusion processes that
interact with each other. Some pioneer works on interacting
spreading processes have already considered the dynamical
interaction between two epidemics that propagate on single
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[13-15] and overlay [16] networks. Other more recent studies
have also analyzed the impact of the information on the
spread of epidemics in a population of interacting individuals
[17-23].

These systems with two interacting spreading dynamics
can be studied using the topology of a multiplex network,
where the disease and the information to prevent transmis-
sion spread in two different layers. The disease layer may
represent physical or proximity contacts for the spread of
airborne diseases in people who interact regularly (family,
coworkers, etc.) or occasionally (people who share public
transport). The information layer represents contacts between
people who exchange information face-to-face or in a virtual
way by means of social networks. To model the spread-
ing of awareness (information) in these entangled epidemic-
information processes, Granell et al. [11,12] implemented
the susceptible-infected-susceptible (SIS) dynamics, while
Wang et al. [18,19] used the susceptible-infected-recovered
(SIR) dynamics. In [11,12] they showed that the degree of
immunization of the informed individuals and the mass media
change the critical aspects of disease spreading. Besides, in
[18,19] the authors showed that there is an optimal informa-
tion transmission rate that minimizes the disease spreading.
These works, however, assumed that the time scales associ-
ated with the propagation of the epidemic and the awareness
processes are the same, while in principle one may expect that
in real life epidemics and information does not necessarily
spread at the same speed.

In this context, we introduced in a recent article [23] a new
model of epidemic spreading with awareness considering the
SIS dynamics for disease transmission and the dynamics of
the Maki-Thompson rumor model [24] for rumor dissemina-
tion. We also considered an external parameter 7 that allows
one to control the relative time scales between the disease
and rumor propagation processes. A remarkable result of this
model is that the prevalence of the disease increases with 7,
that is, as the transitions of the rumor process happen faster
than those of the epidemic process. This is a counterintuitive
behavior, as one would expect that a faster informational
process should be more efficient in reducing the disease
propagation and prevalence. We note that in a previous work
[15] the authors studied a model for the interplay between two
competing epidemics that propagate at different speeds, which
are controlled by the time step At of each process. However,
unlike the model studied by Ventura et al. [23] that uses an
SIS-type dynamics on a two-layer network and individuals
can be in the infected and informed states at the same time,
the work in [15] assumes that the two diseases spread on a
single network following the susceptible-infected-recovered
dynamics and that each individual can catch at most one of
the two diseases (cross-immunity).

In this article we consider a simplified version of the model
studied in [23], in order to understand the surprising influence
of information awareness on the epidemic prevalence. Our
simulation results on multilayer networks turn to be qual-
itatively the same as those obtained in [23]. However, we
provide a continuous time formulation and a more complete
theoretical analysis than performed before. We show that the
resulting effects of varying the relative speed of infection
and information processes are robust under models with a
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FIG. 1. Schematic illustration of a multiplex structure used for
the SIS-UAU model. In the information layer, nodes have two
possible states: unaware (U) and aware (A) of the disease. In the
epidemic layer, nodes represent the same individuals as in the top
layer and can be either susceptible (S) or infected (I).

cyclic dynamics, which adds more evidence for the universal
behavior of dynamical processes on multilayer networks [25].
A mean-field (MF) approach helps to elucidate the mech-
anisms at play that give rise to some of the nonintuitive
behavior mentioned above.

The article is organized as follows: In Sec. II, we introduce
the multiplex framework and the dynamics of the model
on each layer. We present numerical results in Sec. III and
develop an analytical approach in Sec. IV. Finally, in Sec. V
we give a summary and conclusions.

II. THE MODEL

We consider a two-layer network made of an epidemic
layer, where the disease propagates, and an information layer,
where the disease awareness takes place, as shown in Fig. 1.
In the epidemic layer, nodes can be either Susceptible (S)
or Infected (1), while in the information layer nodes are
either in the Unaware (U) state (an individual not aware
of the disease) or in the Aware (A) state (subjects who are
aware of the disease). We represent the composite state of
a node with two capital letters, the first one for the epi-
demic state and the second one for the information state,
i.e., Susceptible-Unaware (SU), Susceptible-Aware (SA),
Infected-Unaware (1U), and Infected-Aware (I1A).

The basic SIS dynamics, in which infected nodes transmit
the disease to susceptible neighbors with rate 8 and recover
from the disease at rate u, is modified to introduce the inter-
action between information and epidemics. The information
is considered as the knowledge of the prevention methods that
aware individuals have to reduce the probability of contracting
the disease. This is modeled as a reduction in the contagion
rate by a factor ' (0 < ' < 1) if the susceptible node is
aware. Then, an infected node infects an SU neighbor with
rate B, while the infection rate is reduced to '8 < B if the
neighbor is in the SA state. The dynamics on the information
layer is quite similar to that of the SIS model, i.e., an unaware
node becomes aware with rate y by contacting an aware
neighbor, and aware nodes forget the information—or simply
lose interest in it—and go back to the unaware state at rate
«. Besides, the existence of infected nodes reinforces the
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FIG. 2. Schematic representation of the transitions between node
states and their associated rates.

information about the disease, which is included in the model
as a “self-awareness” of the infected people, where IU nodes
spontaneously become aware at rate k.

As mentioned before, in real life it is expected that both the
epidemic and information dynamics do not necessarily evolve
at the same speed. For this reason we introduce a parameter
7 (0 < 7 < 1) that tunes the relative time scales associated
with the disease and rumor propagation processes, by making
the information and disease transitions proportional to 7 and
(1 — m), respectively. That is, 7 increases the speed of the
information process as compared to the infection process, so
that the final form of state transitions and their rates are

Ix+su % 4w,

Ix+ 54 2% 1 4 IA,

(I=m)p
—_—

Ix Sx,

for the epidemic process, where x = U, A represent an arbi-
trary information state, and

YU +yA 75 yA + A,
yA 5 yU,
U =5 14,

for the information process, where y = I, S represent an arbi-
trary epidemic state. All these transitions are shown in Fig. 2.

III. NUMERICAL SIMULATION RESULTS

We perform numerical simulations of the model described
in Sec. II using a two-layer network made of two Erdos-
Rényi networks that represent the information and the epi-
demic layer, each one with N = 1000 nodes and mean degree
(k) = 20 (the typical number of different contacts per person
reported in various surveys [26]). The nodes in different
layers represent the same individuals but their connections
may differ in both layers. We analyze the behavior of the
stationary density of infected nodes p; (disease prevalence)
and the stationary density of aware nodes p. We are partic-
ularly interested in studying how these two magnitudes are
affected by the parameter m, which increases the speed of
the information process as compared to that of the infection
process.
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FIG. 3. Average stationary density of infected nodes (p;) vs
information speed m, for y = 0.0 (circles), 0.1 (squares), and 0.3
(triangles), and for the values of « and I' indicated in each panel.
Other parameter values are § = 0.3, u = 0.9, and @ = 0.6. Symbols
correspond to MC simulation results while solid lines represent
the analytical approximation, derived in Sec. IV. The results are
averaged over 10* independent realizations of the spreading process
starting from a density of infected nodes p; = 0.5 and aware nodes
pa = 0.5 uniformly distributed over the epidemic and the informa-
tion layer, respectively. Each layer is an Erdds-Renyi network of
mean degree (k) = 20 and N = 1000 nodes.

In Fig. 3 we show simulation results for the average value
of p/ over 10* independent realizations of the dynamics as a
function of m, for various parameter values. By comparing
panel (a) with panel (c) for « = 0.5, we notice that (o)
is larger for I' = 0.5 than for I' = 0. We can see a similar
behavior if we compare panels (b) and (d) for « = 1. In
general, we have verified that (p;) increases as I' increases.
This is because the infection rate of SA nodes increases with
I', increasing the overall infection rate and so the disease
prevalence. The second and less intuitive result shown in this
figure is that the prevalence increases monotonically with 7
in all panels, which seems to be a quite robust behavior,
independently on the parameter values. Indeed, a similar
behavior was also observed in our previous work [23] using
a more complex model, suggesting that this phenomenology
may be universal in these type of models. That is, speeding
up the information dynamics with respect to the infection
dynamics by increasing m, leads to a larger number of infected
individuals at the stationary state. This result does not seem
obvious given that we would expect that a faster information
dynamics would be more efficient in reducing the number of
infections. By a “faster information dynamics” we mean that
both information transmission and forgetting happen at higher
rates, which are proportional to m. In the next section we
develop a MF approach that helps to elucidate this apparently
contradictory result.

We also notice in Fig. 3 that the increase of the prevalence
with 7 is less pronounced for I' = 0.5, and we have verified
that the curves become independent of & for ' = 1. When
[’ = 1, the infection and recovery rates (1 — )8 and (1 —
)|, respectively, are the same for both, unaware and aware
nodes. Therefore, the dynamics becomes equivalent to that of
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FIG. 4. (Top panels) (p;) vs self-awareness rate « for y = 0.1,

B =0.3,and (a) I' = 0.0 and (b) I" = 0.5. (Bottom panels) (p}) vs

infection rate 8 for y = 0.1, «k =0.5,and (¢) [ =0.0and (d) " =

0.5. Curves correspond to & = 0.1 (circles), 0.5 (squares), and 0.9
(triangles).

the standard SIS model, with a stationary density of infected
nodes in a MF setup given by the expression p; = ﬁ%—;“ =
0.85, which is independent of 7 because the infection and
recovery rates are both proportional to 1 — . Here 7 is the
mean degree of the network (see Sec. IV). For I' = 0 and
y = 0.3 the prevalence vanishes for all & values [triangles
in panels (a) and (b)], and thus the system is reduced to a
standard cyclic UAU dynamics akin to that of the SIS model,
with transmission and recovery information rates y and «,
respectively, giving a stationary density of aware nodes in MF
Py =HLE =09,

In Fig. 4 we show the behavior of the prevalence for two
values of I" and three values of r, as indicated in the legends.
Figures 4(a) and 4(b) show the prevalence as a function of
the self-awareness rate k. We observe that the prevalence
decreases with «, confirming that the self-awareness is an
effective method in reducing disease propagation. However,
for I' = 0.5 the impact of « on the prevalence is very small,
and also the prevalence is almost independent on 7 [Fig. 4(b)].
Figures 4(c) and 4(d) show the prevalence as a function of the
infection rate 8. As it happens in Fig. 4(b), the prevalence
barely varies with = for I' = 0.5 [Fig. 4(d)]. We also observe
a transition from a healthy phase (epidemic extinction) to an
endemic phase (epidemic propagation) at a threshold value g,
which is reminiscent of that found in the SIS model.

To explore how the transition value B, depends on the
information transmission rate y, we calculated g, forr = 0.5,
I' = 0.1, and various values of y in the interval (0,1). Results
are shown in the two-dimensional 8 — y phase diagram of
Fig. 5, where the square symbols represent the transition val-
ues that separate the healthy and endemic phases, calculated
numerically. For a given y, we simulated the quasistationary
state as proposed by Ferreira and others in [27], for sev-
eral equally spaced values of S. The critical point B, was
estimated as the value of B that maximized the prevalence
susceptibility, calculated as x = N({p?) — (0:)*)/{pi), where
(e) represents an average over 1000 independent realizations
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FIG. 5. Phase diagram on the B-y plane showing the transition
line between the healthy and endemic phases, for u = 0.9, « = 0.6,
k =0.5, ' =0.1, and = = 0.5. Squares correspond to simulation
results while the solid line represents the analytical approximation
from Eq. (20). The inset is a zoom of the region indicated by a square,
showing the analytical behavior of the transition line for small y.

of the dynamics. Starting from a population in the endemic
phase with 8 < 0.35 and increasing y while keeping 8 fixed,
the system undergoes a transition to a healthy phase as y
overcomes a threshold value y.(8). However, for 8 = 0.35
the system remains in the endemic phase for all y values. This
means that, as long as the infection rate is low enough, the
epidemics can be stopped by increasing the rate at which the
information is transmitted between individuals but, strikingly,
the information spreading is not able to stop the disease
propagation when the infection rate is high enough.

We also run simulations for other values of 7 and I' (see
Fig. 7 in Appendix A). These simulations reveal that the
transition lines are independent of . Besides, the transition
line (8., v.) becomes more vertical as I" increases, until for
I' = 1.0 it becomes the perfect vertical line 8, >~ 0.05, inde-
pendent of y and m. An insight into these quite remarkable
behaviors is given in Sec. IV.

ENDEMIC PHASE

0.0 7

0.00.1.9

r030405 o9 02 04 06 08 10

FIG. 6. Phase diagram on the B-y-I" space obtained from
Eq. (20) for the same parameter values as in Fig. 5.
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FIG. 7. Phase diagram on the B-y plane showing the transition
line between the healthy and endemic phases for © = 0.9, « = 0.6,
k =0.5,17=20,7 =0.5, and I = 0.0 (circles), I' = 0.1 (squares),
I' = 0.3 (diamonds), and I' = 1.0 (down triangles). Symbols corre-
spond to simulation results while solid lines represent the analyti-
cal approximation from Eq. (20). The top inset shows the curves
corresponding to I' =0.1 and 7 = 0.25 (up triangles), m = 0.5
(squares), and 7w = 0.75 (right triangles). The bottom inset shows
the prevalence susceptibility x as a function of 8 for ' = 0 and
y = 0.025 (circles), y = 0.2 (squares), and y = 0.4 (diamonds). For
each y, the critical value of B is taken as the one that maximizes .

Summarizing the behavior of the model with respect to
the parameters we can say that, on the one hand, the disease
prevalence decreases when the information spreading rates
increase through y and «, or when the disease recovery rate p
increases. On the other hand, the disease prevalence increases
when the information recovery rate o decreases, or when
the infection rate increases through 8 and I'. These results
are expected by model construction. However, the prevalence
increase with 7 turns to be an unexpected and a striking result
that seems harder to understand. In Sec. IV we develop a MF
approach that helps to gain an insight into these results.

IV. MEAN-FIELD APPROACH

We study the behavior of the SIS/UAU model using a
mean-field approximation that assumes that, at every infinites-
imal time step dt of the dynamics, each node interacts with
n neighbors chosen at random among the nodes of the entire
population (annealing approximation). This approach neglects
correlations that appear between the states of neighboring
nodes in a static network, and should work reasonably well
for random networks with homogeneous degree distributions
and without degree correlations, such as the Erdos-Rényi
networks. Then, the densities of nodes in each of the four
states evolve according to the following set of coupled rate
equations:

dp;
d—t’” = (1 — m)Bnpsupi + wapig — (1 — T)Pj
—TTK Py — TV NPiuLas (1a)
d pg
dt =(1- n)ﬂpiu +map — (1 — 7T)/377:0.m,0;

—TY N PsuPas (1b)

dp;
d—ta = TYNPuPa + Tk Piu + (1 — )T BNpsapi
—apig — (1 — T)UPias (1c)
dp;
dt” =y npwpa + (1 — T)pia — Tt Py

_(1 - n)rﬂnpmpis (1d)

where p,, is the density of nodes in state xy (x =i, s and y =
u, a), pi = Piu + Pia 1s the density of infected nodes, and p, =
Dia + Psa 18 the density of aware nodes. Also, the conservation
relation for the total number of nodes p;, + s + Pia + Psa =
pi + ps = pa + py, = 1 holds at any time. The gain and loss
terms of Eq. (1) correspond to the respective incoming and
outgoing arrows at each of the four node states of Fig. 2. For
instance, the gain term (1 — 7)Bnp,0; in Eq. (1a) describes
the fraction of nodes in state SU that make the transition to
state /U per unit of time df: an SU node is infected at rate
(1 — )pB by each of its infected neighbors, which are a total
of np; in average.

A. Stationary states

In this section we obtain solutions of the system of Eq. (1)
at the stationary state. We are particularly interested in the
behavior of p with 7, which is the most intriguing as we
showed in Sec. III. Given that Eq. (1) is a system of nonlinear
(quadratic) equations, explicit formulas for its stationary so-
lutions cannot be obtained with standard methods. Therefore,
it is hard to obtain closed expressions for the densities as a
function of the parameters. Instead, we derive here parametric
equations that relate p; and 7 through o (the “parameter”),
which is an indirect form of expressing p; as a function of
7. For that, we obtain expressions for the different stationary
densities pj, p¥, ps,, and p}, as a function of p}, as we show
below.

We start by adding Egs. (1) and (1) on one side, and
Egs. (1) and (1 d) on the other side, to arrive to the following
rate equations for p; and p,, respectively:

dp;i

Fre (1 —m)Bn(osu + I'psa) — (] pi, (2a)
dp,
P = xlyn(l = p) = alpa+ Tk P (2b)

A simple stationary solution of Eq. (2) is obtained by set-
ting p; = 0, which leads to [yn(1 — p}) — a]p} = 0 for & #
0. Therefore, there are two trivial stationary states correspond-
ing to a totally healthy population (p}, = pj =0, p; = 1) in
which (a) either all individuals are unaware (o}, =0, p; =
1), or (b) there is a fraction pf, = V)”/—;“ of aware individuals.
This scenario corresponds to a simple UAU dynamics. At the
nontrivial stationary state p; # 0, with = € (0, 1), we obtain
the equations,

Bn(py, +Tp;,) —pn =0, and (3a)
[yn(1 = p;) — o} +Kpj, = 0. (3b)
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Using the identities o}, + p;;, = p; = 1 — p}, o3, + 0} = oy
and p} = p}; + pi we can express p;, and p} in terms of p},
P, and p} as
pr =1—pr—p and (4a)
Pra = Lo = P+ Py (4b)

Substituting the expressions Eq. (4) for pf, and p}, into
Eq. (3a) and solving for p;* we arrive at

. Bn—u  (=T)p:+pL)
b = 87 T . )

Finally, replacing the expression,

_ 1_ * *
ot = [a VU(K pa)]pa’ ©)

for p}, from Eq. (3b) into Eq. (5) we obtain, after doing some
algebra, the following equation that relates p;* with p;:
pr = P (=Dt a—ynd = pDle;
! I'Bn Tk '
We can also express p;, and p;, in terms of p;. Inserting
expression Eq. (6) for p}, into Eq. (4a) we arrive at

(7

[k +a —yn(l — p)lp;
K

®)

Then, replacing Eqgs. (6) and (7) for p}, and p;, respectively,
into Eq. (4b) we obtain

p:uzl_

pr = et —yn—plo,  pn—n
sa | s gy

Now that we have explicit expressions for the stationary
densities o}, p/, ps,, and p}, in terms of p) given by Egs. (6),
(7), (8), and (9), respectively, we can obtain an expression that
relates v with o) by inserting these expressions into Eq. (1b)
at the stationary state,

)

(1 = mpp;, +mapy, — (1 —7)Bp; +myp;Ine;, =0,
(10)
and solving for . After doing some algebra, we finally obtain
the following equation that gives 7 as a function of the density
o, and the other parameters:
P(p7)
T = )
Q@)
where P and Q are polynomial of degree two and four in p}
given by Eqgs. (B3) and (B4), respectively, of Appendix B. In
principle, it is possible to transform Eq. (11) into a quartic
equation in p} and find its solution, which would give an
expression for p’ as a function of the model’s parameters
and also an expression for p} by inserting this expression
for p} into Eq. (7). However, as we can guess, the resulting
expression would be highly complicated and not very useful.
Instead, we prefer to state the analytical relationship between
p} and 7 in the parametric form [m (o)), o/ (p})], where the
expressions for m(p)) and p/(p}) are given by Egs. (11)
and (7), respectively. This parametric solution is plotted by
solid lines in Fig. 3 and compared with MC simulation results
(symbols). We observe that the agreement between theory and

simulations is quite good for I' = 0, but some discrepancies
arise for I' = 0.5.

(1)

Even though the analytical solution presented above de-
scribes numerical data rather well, its complicated form makes
it hard to explore the behavior of the densities with 7. Instead,
to gain an insight into the behavior of p; with = it proves
useful to analyze the simplest nontrivial case y =0 and I' =
0, where p; also exhibits the monotonic increase with 7
observed for the general case y # 0 and I" # 0. As we show
in Appendix C, the stationary density of infected nodes for
y = I' = 0 adopts the rather simple form,

= W=l e + (=)
"k wpnima + (1 —mpl

We can check from expression Eq. (12) that for « =0 is
Pl = ﬁ;’}—;", which corresponds to the stationary value of p;
in the SIS model. Indeed, when ¥ = 0 and y = 0O there are
no transitions to aware states SA and /A, and thus all nodes
are unaware at the steady state (o}, + pj;, = 1), and subject
to the standard SIS dynamics. For k > 0, the term 7 (k + @)
in the numerator of Eq. (12) grows faster than the term w« in
the denominator as 7 increases, and thus p; increases when
7 increases, as we have seen already for all parameter values
analyzed in Sec. III.

This result can be understood intuitively with the help of
Fig. 2, by analyzing the stationary flow between states. On the
one hand, we expect that p, decreases as 7 increases. This
is because the incoming flow Fj,_.,, = (1 — 7)up}, (from IA
to SA) decreases with 7, while the outgoing flow F;,_., =
mapy, (from SA to SU) increases with 7. On the other hand,
we proved in Appendix C that p¥ is independent of 7 and
given by the expression,

(12)

Ly 13
P = g (13)
Therefore, when 7 increases the density of susceptible nodes
pi = py, + pl, decreases, and thus p; increases.

It proves instructive to derive Eq. (13) from the analysis of
the flows of Fig. 2. Given that in the steady state the incoming
and outgoing flows in any node state is the same, we have that
Fiu 5o = Fyu_s 54, and thus we can think that there is a net flow

from 1A to SU equal to
F}a—mu = (1 - n)MIO[*a (14)

Therefore, the total incoming flow to SU from infected
states is

Fissu = Fiussu + Fiasu
=1 —mppy, + A —m)up;, = A —mup, (15)
while the outgoing flow from SU to infected nodes is
Fousi = Fumie = (1 = 1)B0p5,07 (16)

Then, the dynamics of the system corresponds to that of an SU
— I — SU model, where we know that the stationary density
of SU nodes equals the ratio between the recovery rate (1 —
m)u and the infection rate (1 — )87, leading to Eq. (13).

B. Stability analysis

A relevant feature in models of epidemic and information
spreading is the existence of a transition from a healthy
phase (p] = 0) to an endemic phase (p; > 0) as the infection

022312-6



DISEASE AND INFORMATION SPREADING AT ...

PHYSICAL REVIEW E 102, 022312 (2020)

probability overcomes a threshold value ., as we described
in Sec. IIT and showed in Figs. 4 and 5. We want to find an
analytical expression for the transition line S.(y) of Fig. 5,
along which the stability of the healthy phase changes, so that
it is stable for 8 < B. and unstable for 8 > B.. For that, we
perform a linear stability analysis of the stable fixed points
within the healthy phase, which are

p=1(0,0,0,1) foryn < oand

Py = <0, rnze i) foryn>a. (17
yn yn

where 5, = (o}, pi,, pi» PL), with n =1, 2. These are the
two fixed points corresponding to the healthy phase obtained
in Sec. IV A, where the dynamics of aware nodes is given by
Eq. (2b) with p;, = 0,

d pq
dt

=nlyn( — pa) — @lpa.

The linearized form of this equation around p, = 0 corre-
sponding to the fixed point g is dp,/dt = Ap,, with A =
7 (yn — o). Then, p;* is stable (unstable) for A < 0 (A > 0),
as stated in Eq. (17) assuming 7w # 0.

In Appendix D we perform a linear stability analysis of the
fixed points g, = (0, A, 0, 1 — A), where

A=0 foryn <a (n=1)and

Azyn—a

foryn > a (n=2), (18)

and show that the following relation must hold at the transition
point:

[(I—m)pn+awlyn+ I -T)8nA+ n— Bnl=0.
(19)
Given that we considered the rates u, y, and k to be positive
in simulations, the first term in brackets of Eq. (19) is positive,
thus we have

(I-I)BnA+pn—Bn=0.

Replacing the values of A from Eq. (18), we finally obtain the
following expression for the critical infection rate:

3
lgc:{n yi

yn—(1-T)(yn—a)

for yn < a and

for yn > «. (20)
In Fig. 5 we observe that the analytical approximation of
the transition line B.(y) from Eq. (20) (solid line) agrees
quite well with the transition points obtained from simulations
(squares). We can also check that . approaches the value
u/('n) =0.45 in the y — oo limit (for © = 0.9, = 0.1,
and n = 20), confirming that for high enough values of § the
information is not able to stop the epidemics, as mentioned
in Sec. III. We also see that for ' = 1 is 8. = u/n = 0.045
for all y, which is in agreement with MC results (see Fig. 7
in Appendix A). Given that performing numerical simulations
for various values of y and I are very costly, we also imple-
mented Eq. (20) to build a transition plane in the -y -I" space.
Results are shown in the phase diagram of Fig. 6.

V. CONCLUSIONS

We have explored the interplay between the propaga-
tion of an epidemic disease using the susceptible-infected-
susceptible dynamics and the dissemination of information
about the knowledge of the disease using the unaware-aware-
unaware dynamics, as a simplified model from a recent study
[23]. For that, we assumed that the disease and the information
spread on two coupled Erdos-Rényi networks where these
two processes interact with each other, and whose relative
propagation speeds are controlled by an external parameter
. We have verified that the information helps to reduce
the disease prevalence and increase the epidemic threshold
of the disease. We have also observed that self-awareness,
which keeps infected individuals aware of their condition, is a
very effective mechanism for reducing the disease prevalence.
Surprisingly, the prevalence increases with i, that is, as the in-
formation dynamics is faster. This seemingly counterintuitive
result was also obtained in a more complex model studied in
our previous work [23] and, therefore, it seems to be universal
and independent of the model details. However, it was not
fully explored and understood.

In order to gain an insight into this phenomenon, we devel-
oped a MF approach to study the dynamics of the model. We
found a good agreement between simulations of the model and
analytical MF results. We showed that the SIS/UAU dynamics
in MF exhibits a behavior that is qualitatively the same to
that found in the SIS/UAU and SIS/UARU models using the
Markov chain approach and Monte Carlo simulations [23],
in particular, the increase of the prevalence with . Besides,
the MF approach allowed for the detailed study of a simple
nontrivial case where the relation between the prevalence and
7 was analyzed in terms of probability flows between states.

It is interesting to note that the nontrivial relation between
disease propagation and information spreading described in
this article calls for a careful analysis of the impact of infor-
mation management on disease spreading in a real society,
something very pertinent in the current global pandemic.
Given that these results seem to hold for cyclic (SIS-like)
spreading dynamics, both for disease and information pro-
cesses, it would be worthwhile to explore whether a similar
phenomena is observed in models where two noncyclic (SIR-
type) dynamics interact, with controllable relative speeds. It
might also be worth studying the behavior of the model on
multilayer networks with more complex topologies than the
Erdos-Renyi networks used in this work, such as scale-free
networks or contact networks with a structure obtained from
real data.
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APPENDIX A: PHASE DIAGRAM

In this Appendix we provide complementary results for the
healthy-endemic phase transition of the SIS-UAU model on
the 8-y plane, analyzed in Sec. III of the main text. We run
extensive numerical simulations to estimate the transition line
Bc(y) for different sets of I and . Results are shown by sym-
bols in Fig. 7. For a given y, we simulated the quasistationary
state as proposed by Ferreira and others in [27], for equally
spaced B values. The critical point was taken as the value of
B that maximizes the prevalence susceptibility, calculated as
X = N((p?) — (pi)*)/(p:), where p; is the stationary density
of infected nodes and (e) represents an average over 1000
independent realizations of the dynamics. As an example,
we show in the bottom inset of Fig. 7 x vs B for three
different values of y, where the peaks (maximum) of y are

text. A remarkable result from Eq. (20) is that the transition
line is independent of 7. To check this observation, we run
simulations to estimate the transition line for I' = 0.1 and
three different values of . These results are plotted in the
top inset of Fig. 7 where we can see that, within statistical
errors, the three curves overlap, confirming that B.(y) is @
independent. We also observe that the transition line (8., )
becomes more vertical as I' increases, until for I' = 1.0 it
becomes the perfect vertical line 8. ~ 0.05, independent of
y and 7 (down triangles). This behavior is also in agreement
with Eq. (20), where we can check that for I' =1 is . =
wu/n = 0.045 for all y.

APPENDIX B: COMPLETE FORM OF POLYNOMIAL P and
Q

Solving for & from Eq. (10) we obtain

o Bnoi oy, — 103,
oL (Bnp; — ynpl) — wog, + apl,’

(B1)

which, after inserting expressions for p},, o/, o , and p}, from
Egs. (6), (7), (8), and (9), respectively, becomes

at B, >~ 0.054, 0.333, and 0.644 for y = 0.025, 0.2, and 0.4, P(p})
respectively. T = 0"’ (B2)
Solid lines in Fig. 7 correspond to the analytical approx- a
imation from Eq. (20) derived in Sec. IVB of the main with
|
o _ B[ Bn—n o le—ynd —pD)lp; pla —yn(l — p)leg
Py =22 — =)+ - , (B3)
r Bn K K
and
. o le—yn(d —pDlpg \ | Bn| Bn—n o le—ynd —pDlp; «
Q(pa)=<1—pa+ - — (0 =D){p; + — VNP,
K r Bn K
— 1—p9]pF « IMNa — 1—pH]pk —
_mle=ynd =plos | @ o lo —yn( = plpa _ Bn—n]| (B4)
K r K2 Bn

APPENDIX C: SOLUTIONFOR y =0andI =0

For y =0 and I' =0 Eq. (1) is reduced to the simpler
form,

dloiu
prale (I = m)Bnpsupi + wapig — (1 — TP — T Pius»
(Cla)
d psu
7 = (1 _n)ﬂpiu'i_napsa_(l —77),3’7,0su,0i, (Clb)
d p;
CZ“ = 7 pju — T pig — (1 — T)pia, (Clc)
d psa
FTo (I = m)Upig — T Psq- (C1d)

The trivial fixed point of this system of equations is
ps, = 1.0, corresponding to a totally healthy and unaware

(

population. The nontrivial fixed point corresponds to the
stationary densities,

« _ a(Bn—p)

;= , (C2a)
(k +a)Bn
Pt — wak(Bn — 1) ’ (C2b)
(k +a)Bnlra + (1 — m)u]
w
== C2
Psu B (C2c)
ot (I —m)ux(Bn — 1) (©2d)

T+ a)fnlra + (1 —mul’
leading to the following expression for the disease prevalence
P; = Pit Pig
o = a(Bn — wlrk + o)+ (1 —m)ul
' ( +o)Bnlma+ (1 —m)u]

quoted in Eq. (12) of the main text. In Fig. 8 we plot p} vs
the spontaneous aware rate « for various values of 7 from
Eq. (C3). We observe that p; decreases as « increases, as

N (C))
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FIG. 8. Stationary density of infected nodes p; vs spontaneous
rate ¥ from Eq. (12), fory =0,I'=0, =03, © =0.9, « = 0.6,
n = 20 and for the values of 7 indicated in the legend.

expected from the fact that the number of aware individuals
increases with «, reducing the total number of new infections.
However, the decay of p; with k becomes less pronounced
when 7 increases, until the value pf = (Bn—pun)/(Bn) =
0.85 for r close to 1, which is x independent.

Equation (C3) predicts that the prevalence takes the value
p; =a(Bn —w)/[(1 +a)Bn] and p; = (Bn — w)/Pn in the
7 = 0and 7 = 1 limits, respectively. However, these extreme
cases are pathological because the above limiting values do
not correspond to the value of p; at those points. That is, p/
exhibits a discontinuity at w = 0 and at w = 1. To see that we
rewrite Eq. (C1) forr =0

= sulPi — ius a
- NosupPi — P
dpsu
d_ = WPiu — ﬂ’?ﬁsuﬁh (C4b)
t
dpia
= - ias C4
7 np (C4o)
d psa
i C4d
o M (C4d)

whose nontrivial stationary solution is p}, = Co — u/Bn,
pi, =0, p¥ = u/Bn, and p}, =1 — Cy, where Cy = p,(t =
0) is a constant. Assuming that all individuals are unaware
initially, Cy = 1, leads to a prevalence p/ = (8n — u)/Bn at
= 0, which is higher by a factor (1 + o)/« than the limit
m — 0 from Eq. (C3). For 7 = 1, Eq. (C1) are reduced to

djt - (C5a)
dst = apu, (C5b)
d;;a = Piu — %Pja; (C50)
d;;“‘ = Py, (C5d)

whose stationary solution is p}f, =aCi/(1 +a), pk =
Ci/(1+a), pi, =1—Cy, and p¥, =0, where C; = p;(t =
0). That is, the fraction of infected nodes stays constant over

time. If there is one infected individual initially, then the
prevalence is p; = 1/N < 1 for large N.

We note that the stationary density of aware nodes o) =
(Bn — w)/[Bn(1 + )] is independent of 7, while p} does
depend to w. This means that both SIS and UAU dynamics
are cyclic but not equivalent. This equivalence is broken by the
term k7 in the spontaneous transition /U — IA. Indeed, for
the k = 0 case we obtain that p} = (8n — w)/Bn independent
of 7. This gives an insight into the nonintuitive behavior of p,
as we describe in Sec. [V A.

APPENDIX D: LINEAR STABILITY ANALYSIS

To better handle calculations, we write the fixed points of
Eq. (17) in the general form p," = (0, A, 0, 1 — A), where

A=0
yn—o

foryn <a(n=1)and

A=

for yn > a (n = 2), (D1

and study their stability under a small perturbation by means
of Eq. (1). For that, we linearize Eq. (1) around the fixed
point p,* by setting p;, = €1, psa = A + €2, and p;; = €3, with
lex] < 1 (k=1,2,3), and study their time evolution (the
evolution of pg, is obtained from the other three densities).
Neglecting terms of order €7, we obtain

dz
€ _Mme, (D2)
dt
where
a 0 b
M=|c d e]| and € = (¢, €, €),
f 0 g
with

a={-mpn(—-A)—u]—nlk+nyAl
b=(1—-m)Bn(1 -A)+ra,
c=—[ryn+ 1 —-m)BnlA,
d =nlyn(l—-2A) —al,
e=myn(l —2A)+ (1 —m)[u —T'pnAl,
f=nlynA+«l+ 1 —m)BnA,
g=U—-mII'nA —pu] —rma.

At the critical point, the determinant of matrix M,

det(M) = d(ag — fb),

must be zero, from where we obtain after doing some algebra
the relation quoted in Eq. (19) of the main text.

APPENDIX E: BEHAVIOR OF pF WITH (k)

The MF approach developed in Sec. IV of the main text
assumes that every node interacts with n neighbors selected
at random at every time step of the dynamics, known as the
annealing approximation. Therefore, it considers that each
node is connected to exactly 1 neighbors and that state
correlations between nearest neighbors are negligible. These
assumptions work reasonably well in random networks with
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FIG. 9. (p;) vs w on two coupled Erdds-Renyi networks, each of
N = 1000 nodes and mean degree (k). Curves correspond to (k) =
100, 50, 25, 20, 10, and 6 (from top to bottom). Other parameter
values are y = 0.1, k =0.5, '=0.5, =03, £t =0.9, and o =
0.6. Squares correspond to MC simulation results while solid lines
represent the analytical approximation from Eq. (E1) derived in
Sec. IV A of the main text.

homogeneous or narrow degree distributions and without de-
gree correlations, such as degree-regular random networks or
the Erdos-Renyi networks used in this work, by taking n as the
mean degree (k) of the network. Besides, the performance of

this MF approach should improve as the number of neighbors
n increases and give the best results in complete graphs (n =
N — 1), i.e., when each node is connected to any other node.

Based on this approach, in Sec. IVA we obtained the
analytical expressions:

«_Bn—p (A -=Dlk+a—yn(d—p)le;
P = A Tk ’
Ppz)
T = )
Qo)
where P and Q are the polynomial of degree two and four in
Py, respectively, given in Appendix B. Equation (E1) gives a
relation between the stationary density of infected nodes p}
and the information speed 7 in a parametric form, through the
stationary density of aware nodes p.

In order to study how the MF results from Eq. (El)
compare to those of MC simulations when different mean
degrees of the network are considered, we run simulations for
various values of (k) = n and study the behavior of p; with
7. Results are shown in Fig. 9. We can see that the agreement
between MF results [solid lines from Egs. (E1)] and MC
results (squares) increases as (k) increases. The difference
becomes smaller than 2% for (k) > 20, the value used in
the simulations of the article, which is in agreement with the
mean number of daily contacts per person reported in different
surveys [26].
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