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Abstract 12 

Plants prevent uncontrolled water loss by synthesising, depositing, and maintaining a hydrophobic 13 

layer over their primary aerial organs, the plant cuticle. Quercus coccifera L. can plastically respond to 14 

environmental conditions at the cuticular level. When exposed to hot summer conditions with high 15 

vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; 16 

MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing 17 

transpiration water loss. However, under mild summer conditions with moderate VPD and regular solar 18 

radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the 19 

ecophysiological importance of cuticular waxes of Q. coccifera, the wax composition and its 20 

contribution to avoid uncontrolled dehydration remain unknown. Thus, we determined several leaf 21 

traits for plants exposed to both MED and TEM atmospheric conditions. Further, we qualitatively and 22 

quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we 23 

measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular 24 

transpiration barrier. MED leaves were smaller, stiffer, and contained a higher load of cuticular lipids 25 

than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 26 

times higher than that found for TEM plants, respectively. In detail, MED plants produced higher 27 

amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. 28 

Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different 29 

between both habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular 30 

waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the 31 

efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that 32 

atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do 33 

not alter its transpiration barrier properties. 34 

Keywords: cuticular lipids, dehydration tolerance, environmental change, minimum leaf conductance, 35 

leaf area reduction.  36 
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Introduction 37 

Plant transition from an exclusively aquatic to a terrestrial environment happened approximately 450 38 

million years ago. Besides providing important advantages, the new environment was the cause of a 39 

set of challenges like imminent desiccation, increased temperature, and exposure to ultraviolet 40 

radiation (Waters 2003; Leliaert et al. 2011; Yeats and Rose 2013). Since this time, plants have 41 

evolved a multitude of morphological and physiological features that allow them to cope with these 42 

new challenges. However, the capacity to synthesise, deposit and maintain a hydrophobic surface 43 

layer, named cuticle, on the outside of primary aerial organs has been claimed to be one of the most 44 

critical adaptive trait for plant survival in the highly dehydrating terrestrial environment (Yeats and 45 

Rose 2013). 46 

The primary function of the plant cuticle is avoiding uncontrolled water loss (Riederer and Schreiber 47 

2001). The plant cuticle consists of a cutin matrix impregnated and coated with cuticular waxes. The 48 

biopolymer cutin is mainly composed of C16 to C18 hydroxy alkanoic acids and their derivatives, which 49 

are esterified within a complex network (Pollard et al. 2008). The cutin polyester is non-extractable but 50 

hydrolysable, whereas cuticular waxes are solvent-extractable, complex mixtures typically comprising 51 

homologous series of very-long-chain aliphatic and, additionally, in some plant species pentacyclic 52 

compounds (Jetter et al. 2006). The cutin matrix is involved in waterproofing, but it mainly contributes 53 

to the mechanical integrity of the plant cuticle (Khanal and Knoche 2017). So far, the functional barrier 54 

against water diffusion through the cuticle has been attributed to the very-long-chain aliphatic waxes 55 

(Riederer and Schreiber 1995; Jetter and Riederer 2016), whereas the pentacyclic components have 56 

been associated with protection against herbivory and with stabilisation of the heat-stressed cuticle 57 

(Reichardt et al. 1984; Oliveira and Salatino 2000; Schuster et al. 2016). 58 

Besides avoiding dehydration, plants also depend on acquiring carbon dioxide for photosynthesis. The 59 

balance between stomatal transpiration and carbon dioxide uptake is essential for the life of terrestrial 60 

plants. While the stomata are open to carbon dioxide uptake, plants inevitably lose water to the 61 

surrounding atmosphere. Under unfavourable conditions, plants close their stomata and, therefore, the 62 

remaining water loss only occurs through the cuticle. It has been proposed that excessive cuticular 63 

water loss and high leaf-to-atmosphere vapour pressure may lead to sudden xylem cavitation during 64 
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heatwaves (Cochard 2019). Thus, the efficient control of cuticular water loss is of fundamental 65 

importance for maintaining xylem hydraulic safety and, thereby, ensuring plant fitness and survival. 66 

Elevated temperature, high vapour-pressure deficit and a high number of sunshine hours are among 67 

the major limiting factors for reproduction, growth, development, and geographical distribution of plants 68 

in Mediterranean ecosystems. Quercus coccifera L. is a sclerophyllous evergreen shrub, which can 69 

withstand prolonged periods of abiotic stress (Vilagrosa et al. 2003; Peguero-Pina et al. 2008). This 70 

plant species is one of the most representative constituents of the shrub-land flora in the arid regions 71 

of the Iberian Peninsula (Peguero-Pina et al. 2008), but its distribution even reaches temperate 72 

oceanic conditions in the Iberian Atlantic coast (Castro Díez and Navarro 2007). Q. coccifera is 73 

capable of plastically responding to environment variations, allowing this plant species to occur in 74 

these contrasting habitats (Rubio de Casas et al. 2007). Roth-Nebelsick et al. (2013) demonstrated 75 

that Q. coccifera is capable of developing cuticular wax structures to reduce the stomatal conductance 76 

when growing under Mediterranean atmospheric conditions (MED): elevated summer temperatures, 77 

high vapour-pressure deficit and intense solar radiation. The cuticular waxes reduce the stomatal pore 78 

area from 32 µm2 to 5 µm2. Moreover, Peguero-Pina et al. (2015) showed that this phenomenon is 79 

strongly reduced when Q. coccifera grows under temperate atmospheric conditions (TEM): mild 80 

temperatures, moderate vapour-pressure deficit and regular solar radiation. The authors attributed this 81 

fact to the plasticity of stomatal protection by cuticular waxes in response to contrasting climatic 82 

conditions. Previous studies have also reported that environmental factors like low water availability, 83 

high temperatures, excessive light exposure, and high vapour-pressure deficit leads to a higher 84 

cuticular wax accumulation (Shepherd and Griffiths 2006). Despite the physiological and ecological 85 

importance of the cuticular waxes, the relationship between the wax composition and its transpirational 86 

barrier properties in Q. coccifera leaves remains unknown. 87 

This study aims to investigate the effect of the atmospheric conditions on the leaf cuticular lipids and 88 

the efficacy of the cuticular transpiration barrier of Q. coccifera. We hypothesise that in plants living 89 

under MED conditions compared with those under TEM ones: (i) the accumulation of cuticular lipids 90 

increases and their qualitative composition widely differ and (ii) the cuticle is more efficient to avoid 91 

water loss. From these hypotheses, we predicted that MED plants (i) possess higher amounts of cutin 92 

monomers and cuticular waxes and (ii) have a lower cuticular permeability than TEM plants due to the 93 

higher accumulation of very-long-chain aliphatic compounds. We tested these hypotheses (i) by 94 
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qualitatively and quantitatively determining the chemical composition of the leaf cuticle and (ii) by 95 

measuring the minimum leaf conductance (gmin) at 25°C for plants of Q. coccifera grown either at the 96 

MED or TEM sites. 97 

Material and Methods 98 

Plant material and grown conditions 99 

Seeds of Quercus coccifera L. (Fagaceae) were harvested from a natural population growing near 100 

Zaragoza, Spain. The seeds were germinated in a mixture of 80% compost (Neuhaus Humin 101 

Substrate N6; Klasman-Deilmann GmbH) and 20% perlite under greenhouse conditions. After the first 102 

vegetative period, plants were cultivated outside at CITA de Aragón (Zaragoza, Spain) under 103 

Mediterranean atmospheric conditions (MED; Figure 1). Finally, two-year-old plants were randomly 104 

selected and transplanted into the Jardín Botánico de Iturrarán (Gipuzkoa, Spain), which features 105 

temperate atmospheric conditions (TEM). Plants in both MED and TEM sites were watered as needed 106 

and fertilised with Osmocote Plus (Sierra Chemical). Measurements were conducted using one-year-107 

old fully developed leaves of eight-year-old plants. 108 

Scanning electron microscopy 109 

Small air-dried leaf sections were mounted on aluminium holders using double-sided adhesive tape 110 

(Plannet Plano) and sputter-coated with approximately 15 nm gold:palladium (150 s, 25 mA, partial 111 

argon pressure 0.05 mbar, SCD005 sputter coater, Bal-Tec). Afterwards, the samples were examined 112 

with a field-emission scanning electron microscope (JEOL JSM-7500F) using a 5-kV acceleration 113 

voltage and a 10 mm working distance. Micrographs were taken from both adaxial and abaxial leaf 114 

surfaces. The processed micrographs were used for determining the stomatal density. 115 

Leaf traits 116 

Overnight, leaves were full hydrated in a humid chamber before the measurements. The water-117 

saturated fresh weight (FW) of leaves was determined using an analytical balance (MC-1 AC210S, 118 

Sartorius; precision 0.1 mg) and the dry weight (DW) was obtained after oven drying the leaves at 119 

90°C for 24 h. The actual fresh weights (FWactual) during leaf drying experiments were used to 120 

calculate the relative water deficit (RWD) according to: 121 
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. 122 

Leaves were scanned at high resolution using a flatbed scanner, and the leaf area was measured 123 

from the scanned leaf image using the Adobe Photoshop software. Leaf mass per area (LMA) was 124 

obtained by dividing the DW by the leaf area. The leaf water content (LWC) was calculated by 125 

subtracting the DW from the FW and, subsequently, dividing the result by the FW. 126 

Minimum leaf conductance 127 

Minimum leaf conductance (gmin) was determined gravimetrically from the consecutive weight loss of 128 

desiccating leaves in darkness and at low atmospheric humidity. It corresponds to the lowest 129 

conductance a leaf can reach when stomata are maximally closed as a consequence of desiccation. 130 

Cut petioles of water-saturated leaves were sealed with high melting paraffin wax (Fluka). 131 

Subsequently, the sealed leaves were placed in an incubator at 25°C (IPP 110, Memmert). The air 132 

temperature and humidity were monitored using a digital thermo-hygrometer (Testoterm 6010, Testo). 133 

Silica gel (Applichem) was used to control the moisture in the incubator. The weight of desiccating 134 

leaves was determined as a function of desiccation time using an analytical balance (MC-1 AC210S, 135 

Sartorius; precision 0.1 mg). The transpiration rate (J) was calculated from the change in fresh weight 136 

(ΔFW) with time (t) divided by the dual projected leaf area (A): 137 

  
          

      
. 138 

The cuticular water conductance (g) was calculated from the transpiration rate (J) divided by the 139 

driving force for water loss from the outer epidermal cell wall to the surrounding atmosphere. The 140 

driving force for the vapour-based conductance corresponds to the difference between the saturation 141 

concentrations of water vapour at the temperature of the leaf (Cwv sat leaf) and the surrounding 142 

atmosphere (Cwv sat air) multiplied by the water activity in the epidermal apoplast (αapo) and the 143 

atmosphere (αair): 144 

  
 

                                         
. 145 

The water activity of the atmosphere (αair) over silica gel is nearly zero. The water activity in the 146 

apoplast adjacent to the inner side of the cuticle (αapo) is assumed to be close to one. Thus, the active 147 

driving force for cuticular transpiration in the setup used here is the saturation concentration of water 148 
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vapour at actual leaf temperature (Cwv sat leaf). Leaf temperature was measured using an infrared laser 149 

thermometer (Harbor Freight Tools, one point measurements), and the corresponding water vapour 150 

saturation concentrations at leaf temperature were derived from tabulated values (Nobel 2009). The 151 

cuticular water conductance at a given dehydration point was plotted versus the respective relative 152 

water deficit (RWD). 153 

Chemical analyses of cuticular waxes 154 

Cuticular waxes were extracted by dipping the whole leaf (except the wounds of cut petioles) twice into 155 

trichloromethane (≥ 99.8%, Roth) at room temperature for 1.5 min. N-tetracosane (C24; ≥ 99.5%, 156 

Sigma-Aldrich) was added as an internal standard and the solutions were reduced to dryness under a 157 

gentle flow of nitrogen. Dry cuticular wax samples were derivatised with N,O- 158 

bis(trimethylsilyl)trifluoroacetamide (BSTFA, Marchery-Nagel) in dry pyridine (≥ 99.5%, Roth) at 70°C 159 

for 30 min. Quantification of cuticular wax compounds was performed with a gas chromatograph 160 

equipped with a flame ionisation detector and an on-column injector (7890A, Agilent Technologies). 161 

Separation of compounds was carried out on a fused-silica capillary column (DB1-ms, 30 m length × 162 

0.32 mm inner diameter, 0.1 µm film thickness, Agilent Technologies) with hydrogen as a carrier gas. 163 

The temperature program consisted of injection at 50°C for 2 min, raised by 40°C min-1 to 200°C, held 164 

at 200°C for 2 min, and then raised by 3°C min-1 to 320°C, and held at 320°C for 30 min. Qualitative 165 

analysis was carried out using a gas chromatograph equipped with a mass spectrometric detector 166 

(5975 iMSD, Agilent Technologies) following the same gas chromatographic conditions but using 167 

helium as the carrier gas. Cuticular wax compounds were identified comparing a query mass spectrum 168 

with reference mass spectra in a library via spectrum matching and quantitated against the internal 169 

standard. 170 

The weighted median carbon-chain-lengths (MCL) for cuticular waxes at both the MED site and the 171 

TEM site were calculated. Each compound had its molar coverage calculated from the gas 172 

chromatographic data and summed up according to carbon-chain-lengths. For each chain-length (Ni,), 173 

the mol fraction (Wi) was determined and used as a weight for calculating the MCL. For n distinct 174 

ordered chain-lengths N1, N2, N3 …, Nn with weights W1, W2, W3 …, Wn, the MCL is the chain-length 175 

Nk satisfying: 176 

∑    
 

 

   
    and ∑    

 

 

 
     . 177 
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Chemical analysis of the cutin matrix 178 

For cutin depolymerisation, completely delipidated leaves were transesterified with boron trifluoride in 179 

methanol (Fluka) at 70°C overnight. After cooling down, a saturated aqueous solution of sodium 180 

chloride (AppliChem), trichloromethane and n-dotriacontane (C32; Sigma-Aldrich) as an internal 181 

standard were added to the reaction mixtures. From this two-phase system, the deesterified cutin 182 

monomers were extracted three times with trichloromethane. The combined organic phases were 183 

dried over anhydrous sodium sulphate (AppliChem). All extracts were filtered, and the organic solvent 184 

was evaporated under a gentle flow of nitrogen. Derivatisation with N,O-bis-trimethylsilyl-185 

trifluoroacetamide in pyridine was performed at 60°C for 60 min. Analysis of cutin monomers was 186 

performed similarly to the gas chromatographic analysis of cuticular waxes. Separation of cutin 187 

mixtures was carried out at 50 kPa for 60 min, 10 kPa min-1 to 150 kPa and at 150 kPa for 30 min 188 

using a temperature program of 50°C for 1 min, raised by 10°C min-1 to 150°C, held at 150°C for 2 189 

min, and then raised by 3°C min-1 to 320°C and held at 320°C for 30 min. Qualitative and quantitative 190 

composition of the mixtures was studied using capillary gas chromatography with mass spectrometric 191 

and flame ionisation detection under the same chromatographic conditions. Single cutin monomers 192 

were identified based on the electron ionization mass spectra using authentic standards, the Wiley 193 

10th/NIST 2014 mass spectral library (W10N14, John Wiley & Sons) or by interpretation of the 194 

spectra, by the retention times and/or by comparison with literature data and quantitated against the 195 

internal standard. 196 

Statistical analyses 197 

Data were tested for normality by Shapiro-Wilk test. Afterwards, comparisons between leaves of MED 198 

and TEM sites were investigated using the t-test for normally distributed data and the Mann-Whitney-U 199 

test for those non-normal distributed. Statistical analyses were performed using the SPSS Statistics 200 

software version 23.0 (IBM Corporation). 201 

Results 202 

Leaf surface properties 203 

Leaves of Q. coccifera were analysed with scanning electron microscopy to examine the morphology 204 

of the leaf surface. Trichomes, stomata and epicuticular wax structures were the principal features. 205 
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Leaves from the MED and the TEM sites were similar as they presented only a few trichomes on both 206 

adaxial and abaxial leaf surfaces and possessed stomata exclusively on the abaxial surface 207 

(hypostomatic). The stomata distribution occurs without any distinct pattern across the leaf surface. 208 

The adaxial leaf surface showed a continuous smooth cuticular wax layer with the presence of few 209 

epicuticular wax granules (Figure 2, A and B). On the abaxial leaf surface, the epicuticular wax 210 

granules were more abundant, and the continuous cuticular wax layer projected over the stomata, thus 211 

partially covering the stomatal opening (Figure 2, C and D). 212 

Leaf traits 213 

Leaf traits of Q. coccifera were calculated (Figure 3, A to D). The leaf mass per area (LMA) at the 214 

MED site amounted to 245.7 ± 14.4 g m-2 (mean ± SD), which was 1.6 times higher (p < 0.05) 215 

compared to the TEM site (152.0 ± 7.1 g m-2). Leaf water content (LWC) was lower (p < 0.05) in MED 216 

plants (0.42 ± 0.02 g g-1) in comparison to TEM plants (0.48 ± 0.01 g g-1). Leaf dry weight (DW) did not 217 

show significant differences at p < 0.05 between both sites (0.02 ± 0.01 and 0.03 ± 0.01 g for MED 218 

and TEM sites, respectively). Leaf size, accessed as dual projected leaf area (LA), was the half (p < 219 

0.05) at the MED site (0.18 ± 0.05 × 10-3 m2) when compared to the TEM site (0.37 ± 0.16 × 10-3 m2). 220 

Minimum leaf conductance 221 

Minimum leaf conductance (gmin) at maximal stomatal closure was determined at 25°C from leaf drying 222 

curves. The first stage of drying curves was characterised by high leaf conductance (g) that decreases 223 

with leaf dehydration until reaching a plateau of constant leaf conductance values when stomata 224 

maximally close (Figure 4). The continuous low leaf conductance corresponds to the minimum leaf 225 

conductance (gmin) and results of the maximum stomatal closure. Minimum leaf conductance of Q. 226 

coccifera was 12.0 ± 3.7 x 10-5 m s-1 and 12.4 ± 4.1 x 10-5 m s-1 for MED and TEM sites, respectively 227 

(Figure 5). Significant differences between both growing conditions were not found (p < 0.05). 228 

Chemical composition of leaf cuticular waxes 229 

The cuticular waxes of Q. coccifera were analysed qualitatively and quantitatively using gas 230 

chromatography to investigate the potential effect of the atmospheric conditions on the leaf cuticular 231 

wax coverage. The amount of cuticular waxes was 2.6 times higher for plants grown at the MED site 232 

(34.9 ± 6.6 µg cm-2) compared to the TEM site (13.0 ± 2.8 µg cm-2). Except for the similar amounts of 233 
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alkanoic acids, all the compound classes increased at the MED site. However, the qualitative 234 

composition of the cuticular waxes was not different (Figure 6). Pentacyclic triterpenoids were the 235 

most abundant class of cuticular wax constituents of both MED (17.2 ± 3.1 µg cm-2, 49% of the total 236 

cuticular waxes) and TEM (8.0 ± 1.8 µg cm-2, 61%) leaves. The major cuticular wax constituents were 237 

germanicol (10.1 ± 2.3 µg cm-2, 29% at MED site; and 3.4 ± 0.6 µg cm-2, 26% at TEM site) and lupeol 238 

(2.9 ± 1.4 µg cm-2, 8% at MED site; and 1.6 ± 0.4 µg cm-2, 12% at TEM site). Very-long-chain aliphatic 239 

compounds with carbon-chain-lengths ranging from C20 to C51 amounted to 12.0 ± 2.1 µg cm-2 (34%) 240 

at the MED site and 3.3 ± 0.6 µg cm-2 (25%) at the TEM site (Figure 7). Within the aliphatic cuticular 241 

wax fraction, n-alkanes were the main compound class (3.5 ± 0.7 µg cm-2, 10% at MED site; and 1.1 ± 242 

0.2 µg cm-2, 8% at TEM site). The n-alkane fraction comprised a homologous series from C25 to C32 n-243 

alkanes with odd-numbered n-alkanes dominating above even-numbered, and n-nonacosane (C29) 244 

was the major constituent (1.6 ± 0.7 µg cm-2, 5% at MED site; and 0.4 ± 0.1 µg cm-2, 3% at TEM site). 245 

Primary alkanols, alkanol acetates, alkanals, alkanoic acids, and alkyl esters were also identified in the 246 

Q. coccifera cuticular waxes of the two sites (Table 1).  247 

Chemical composition of the leaf cutin matrix 248 

The cutin monomeric composition was analysed using gas chromatography with flame ionisation and 249 

mass spectrometry detection after depolymerisation of the cutin polyester. The amount of the cutin 250 

monomers of Q. coccifera leaves was 255.2 ± 22.9 μg cm-2 at the MED site and 178.8 ± 4.4 μg cm-2 at 251 

the TEM site (Table 2). The leaf cutin matrix was composed of 88% aliphatic and 14% phenolic cutin 252 

monomers for the MED site and 91% aliphatic and 9% phenolic cutin monomers for the TEM site, 253 

respectively. For both sites, 9,10-epoxy 18-hydroxy alkanoic acid averaging out at 67.3 µg cm-2 was 254 

the predominant cutin monomer (27% of total cutin monomers for MED and 37% for TEM). 255 

Additionally, 9/10,16-dihydroxy hexadecanoic acid (63.3 µg cm-2), 18-hydroxy octadec-9-enoic acid 256 

(27.0 µg cm-2), 9,10,18-trihydroxy octadecanoic acid (23.1 µg cm-2) and 4-hydroxy cinnamic acid 257 

(para-coumaric acid; 16.3 µg cm-2) were detected in high quantities in the cutin matrix of MED plants. 258 

In particular, distinctly lower amounts of 9/10,16-dihydroxy hexadecanoic acid (1.9 times), 9,10,18-259 

trihydroxy octadecanoic acid (5.3 times) and 4-hydroxy cinnamic acid (2.5 times) in TEM plants 260 

accounted for the 1.4 times difference in the total cutin monomeric quantity when comparing both MED 261 

and TEM sites (Figure 8). Due to the different monomeric composition, the degree of epoxylated and 262 

unsaturated alkanoic acids was lower for the leaf cutin of the MED site (0.27 and 0.13) compared to 263 
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the TEM site (0.37 and 0.22). Furthermore, the ratio of predominate C16 and C18 aliphatic cutin acids 264 

differed between 1:1.7 for the MED site and 1:2.2 for the TEM site. 265 

Discussion 266 

Elevated temperatures often co-occur with high vapour-pressure deficit and intense solar radiation 267 

during the summer season in Mediterranean ecosystems. Leaf size plays a vital role in water and leaf 268 

energy balance, especially under dry and hot atmospheric conditions. Leaf mass per area also reflects 269 

the intrinsic relation between carbon gain and longevity (Díaz et al. 2016), while leaf water content 270 

roughly indicates leaf density (Garnier and Laurent 1994) and may prolong the leaf survival time after 271 

stomatal closure. Q. coccifera responds to MED conditions by reducing leaf size (2.0 times in 272 

comparison with leaves grown at the TEM site) and increasing leaf mass per area (1.6 times). The 273 

small leaves with high leaf mass per area might be associated with the exposure to the increased light 274 

and vapour-pressure deficit at the MED site. 275 

In summer, it is common in MED environments that the temperature rises while the water vapour 276 

density stays constant, resulting in considerably reduced atmospheric humidity. This combination 277 

leads to a rise in the driving force for water loss by transpiration. Although Q. coccifera has its main 278 

distribution area in the MED zone, this plant species also occurs at the Iberian Atlantic coast under 279 

constantly humid conditions. It is generally assumed that plants adapted to a high driving force for 280 

water loss have a very robust and efficient cuticle. Therefore, one may intuitively expect the minimum 281 

leaf conductance (gmin) of Q. coccifera to be lower when grown at the MED site due to phenotypic 282 

modifications to avoid cuticular water loss. However, our findings do not support this hypothesis since 283 

gmin of Q. coccifera remained unaffected by the contrasting atmospheric conditions in the growth sites. 284 

In line with our findings, the water permeability of the astomatous isolated leaf cuticle of the evergreen 285 

tree Citrus aurantium L. grown at a temperature ranging from 15°C to 35°C and relative humidity of 286 

50% or 90% remained unaffected by the different conditions (Geyer and Schönherr 1990). Schuster et 287 

al. (2016) reported that the leaf cuticular permeability of the evergreen desert shrub Rhazya stricta 288 

Decne. is comparable to those of woody plant species from various habitats, including humid ones. 289 

Similarly, the leaf cuticular permeability of the summer-green desert vine Citrullus colocynthis (L.) 290 

Schrad. is close to that of non-evergreen forbs from TEM climates (Bueno et al. 2019). These authors 291 

also showed that the leaf cuticular permeability of the evergreen desert tree Phoenix dactylifera L. is 292 
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still equivalent to the permeability reported for evergreen woody plants from other climates. Therefore, 293 

the common assumption that the plant cuticle either genetically or phenotypically adapted to high 294 

transpirational demand should have a more efficient barrier to avoid water loss is not supported by 295 

experimental evidence. 296 

Some studies have pointed out evidence that cuticular water permeability is mainly determined by 297 

genetic control, and not or only slightly being subject to environmental influence. Gil-Pelegrín et al. 298 

(2017) investigated eleven Quercus species growing in a common garden and found out that gmin of 299 

typical evergreen MED Quercus species was slightly lower compared to deciduous TEM ones. 300 

However, gmin of deciduous MED and TEM Quercus species did not differ. Moreover, the leaf cuticular 301 

permeability from 160 plant species extracted from the literature was summarised and revealed that 302 

only in two particular cases, epiphytes and climbers/lianas, the cuticular permeability was 303 

exceptionally low (Schuster et al. 2017). Therefore, cuticular water permeability might be related to the 304 

plant life strategy to deal with environmental constraints, as suggested by Bueno et al. (2019). 305 

The plant cuticle acts as a protective barrier against a wide range of biotic and abiotic stresses and 306 

might respond to environmental changes. Our findings showed that cuticular wax and cutin coverages 307 

increased for MED leaves, corroborating our hypothesis that Q. coccifera shrubs grown under MED 308 

conditions accumulate more cuticular lipids than those in TEM conditions. However, the assumption 309 

that the qualitative chemical composition would also be affected by the atmospheric conditions was 310 

rejected. Although the quantitative variations were detected for leaf cutin monomers between the MED 311 

and TEM sites, the cutin composition was similar for leaves of both habitats, and the main component 312 

was in both cases the 9,10-epoxy 18-hydroxy alkanoic acid. Previous studies have shown that the 313 

mechanical strength of the cutin matrix, especially under conditions of high temperature or protracted 314 

exposure to sun, plays a pivotal role in maintaining the barrier function of the plant cuticle in particular 315 

and the physiological plant integrity in general (Heredia 2003; Bargel et al. 2006; Khanal and Knoche 316 

2017). 317 

Similarly, MED leaves had almost three times more cuticular waxes than TEM leaves, but the relative 318 

composition of the cuticular waxes was not different between both sites. All the identified wax 319 

compound classes (pentacyclic triterpenoids, n-alkanes, primary alkanols, alkanol acetates, alkanals, 320 

alkanoic acids, and alkyl esters) were found in both MED and TEM leaves. Pentacyclic triterpenoids 321 
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correspond to about half of the total cuticular waxes of Q. coccifera leaves regardless of the habitat. 322 

The potential triterpenoid functions are protecting plants against herbivory and stabilising the cuticle of 323 

heat-stressed plants (Reichardt et al. 1984; Oliveira and Salatino 2000; Schuster et al. 2016). 324 

However, the contribution of pentacyclic triterpenoids to avoid uncontrolled water loss has been 325 

considered small or absent (Leide et al. 2007, 2011; Buschhaus and Jetter 2012; Jetter and Riederer 326 

2016; Schuster et al. 2016). Therefore, the efficacy of the cuticular transpiration barrier has been 327 

attributed to the very-long-chain aliphatic compounds (Jetter and Riederer 2016). These findings are in 328 

line with the molecular structure model of cuticular waxes proposed by Riederer and Schreiber (1995). 329 

According to these authors, the cuticular waxes are multiphase systems made up of mobile 330 

amorphous zones within highly structured crystalline domains. This model predicts that the very-long-331 

chain aliphatic compounds build up impermeable crystalline domains, and the amorphous zones 332 

incorporate the chain ends and pentacyclic molecules. Hence, the model assumes that the very-long-333 

chain aliphatic compounds constitute the cuticular transpiration barrier in plants. In our study, these 334 

compounds increased by 3.5 times in leaves of Q. coccifera grown at the MED site, but the efficacy of 335 

the cuticular transpiration barrier remained unaltered. In line with our findings, studies on several plant 336 

species have shown that cuticular water permeability does not correlate with the amount of cuticular 337 

waxes or cuticle thickness (Schreiber and Riederer 1996; Riederer and Schreiber 2001; Schuster 338 

2016; Bueno 2018). Several plant species under water stress had increased the production of 339 

cuticular waxes, including the herbaceous model plant Arabidopsis thaliana (L.) Heynh. (Cameron et 340 

al. 2006; Kim et al. 2007; Kosma et al. 2009; Le Provost et al. 2013). Indeed, water limitation caused 341 

by either soil drought or low atmospheric humidity affects the cuticular wax deposition. However, in 342 

this specific case, an effect of the soil water status can be excluded because the plants were watered 343 

as needed over the eight years’ cultivation. 344 

Here arises the question: what are the environmental drivers of the increased leaf cuticular wax 345 

coverage of Q. coccifera at the MED site? The principal environmental differences between the two 346 

growth sites during the experimental year 2016 were summer temperature, solar radiation and vapour-347 

pressure deficit. Although the mean annual temperature differs only by 1°C between both sites, the 348 

mean and maximum monthly temperatures during the summer at the MED site were up to 4°C and 349 

10°C higher than at the TEM site, respectively. Q. coccifera grown at the MED site also experienced 350 

higher solar radiation in comparison with TEM site during the whole year. Finally, yet importantly, the 351 

mean vapour-pressure deficit during the summer months was higher at the MED site that at the TEM 352 
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site. This scenario is even more evident when comparing the maximum monthly vapour-pressure 353 

deficit, which was up to 3.5 times higher at the MED site. 354 

Plants under stress conditions often exhibit changes in the amount and composition of cuticular waxes 355 

(Shepherd and Griffiths 2006). Studies on the effect of temperature on the cuticular wax composition 356 

are scarce, and the few studies available are contradictory (Shepherd and Griffiths 2006). Some 357 

studies have shown that a lower temperature stimulated high cuticular wax production in leaves of 358 

Brassica species (Whitecross 1963; Whitecross and Armstrong 1972; Baker 1974). In opposite, 359 

Riederer and Schneider (1990) reported that increasing the day temperature from 25°C to 30°C lead 360 

to an increase of about two times in cuticular waxes of C. aurantium leaves. Further, Reed and Tukey 361 

(1982) found that a higher amount of leaf cuticular waxes was produced at either lower for example in 362 

herbaceous Brassica oleracea L. or higher temperature for example in evergreen MED herb Dianthus 363 

caryophyllus L. In contrast to temperature, it has been widely accepted that high solar radiation leads 364 

to an increase in cuticular wax coverage (Baker 1974; Giese 1975; Reed and Tukey 1982; Shepherd 365 

et al. 1995). Another important environmental factor is atmospheric humidity. High relative humidity 366 

tends to reduce the evaporative demand by decreasing the vapour-pressure deficit. Koch et al. (2006) 367 

showed that the cuticular wax accumulation of B. oleracea leaves strongly declines in response to a 368 

low vapour-pressure deficit. Lihavainen et al. (2017) proposed that plants under low vapour-pressure 369 

deficits transpire less, improving their water status and, thereby, reducing the demand for cuticular 370 

waxes. Therefore, one may assume that the main drivers of the increased cuticular wax coverage of 371 

Q. coccifera are the intense solar radiation, the high vapour-pressure deficits and, potentially, the high 372 

temperatures at the MED site, especially in the summer. The high accumulation of cuticular lipids may 373 

confer higher resistance to the intense light exposure and high vapour-pressure deficit at the MED 374 

site. However, further studies on wild plants, especially in their natural ecosystems, are needed to 375 

trace potential clues of cuticular adaptation to cope with inherent environmental constraints. 376 

In conclusion, we showed that the cuticle of Q. coccifera leaves plastically responds to the harsh MED 377 

conditions, which leads to high cuticular wax and cutin loads. However, the cuticular lipids at both 378 

MED and TEM sites are qualitatively very similar; i.e. the relative contribution of each component 379 

class, and the carbon-chain-length of homologous compounds. Although, it is often stated that a 380 

thicker cuticle is a barrier with a higher efficiency against passive water loss than thinner ones with a 381 

lower amount of cuticular waxes (Purves et al. 2004; Poorter and Garnier 2007; Lüttge 2007; De Micco 382 
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and Aronne 2012; Smith et al. 2012; Jones 2013), our findings suggest that the accumulation of 383 

functional equivalent cuticular waxes might compensate for the quantitative plasticity of the cuticular 384 

deposition of Q. coccifera and, thereby, conferring equal cuticular transpiration properties. Further, we 385 

stress that high cuticular wax loads do not increase the efficacy of the cuticular transpiration barrier 386 

and, therefore, might not extend the safety margin between stomatal closure and xylem hydraulic 387 

failure. 388 
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Figure 1. Mean (Tmean), maximum (Tmax), and minimum (Tmin) daily temperature (°C), mean diurnal 

(from dawn to sunset) vapour-pressure deficit (VPD, kPa) and maximum diurnal vapour-pressure 

deficit (VPDmax), mean daily quantum flux density (Qint, mol m−2 day−1), for the Mediterranean (MED) 

and temperate (TEM) sites during the growing season of 2016 to 2017 (from March to February). Bars 

represent mean ± SE. Lines stand for single values. 
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Figure 2. Scanning electron micrographs of the adaxial and abaxial surfaces of Quercus coccifera 

leaves from Mediterranean (MED; A and C) and temperate sites (TEM, B and D). The stomatal density 

of MED leaves (445 ± 61 stomata mm-2) was slightly higher than that of TEM leaves (401 ± 51 stomata 

mm-2), but there was no difference at p < 0.05 between sites. Each value represents mean ± SD (n 

=10). 
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Figure 3. Leaf traits of Quercus coccifera grown at Mediterranean (MED) and temperate (TEM) sites, 

respectively (n ≥ 16). Leaf mass per area (LMA; A), leaf water content (LWC; B), leaf dry weight (DW; 

C) and the dual projected leaf area (LA; D) were determined for plants grown under the two conditions. 

Different letters indicate significant differences at p < 0.05 between the two sites. 
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Figure 4. Cuticular water conductance (g) as a function of the relative water deficit (RWD) of Quercus 

coccifera grown at the Mediterranean site. Each point represents a single measurement obtained from 

the leaf drying curves of nine leaves at 25°C. A sigmoidal four-parameter curve is fitted to guide the 

eye. The transition between the declining stage and the plateau stage of leaf conductance represents 

stomatal closure. After maximum stomatal closure, leaf conductance remains constant representing 

the minimum leaf conductance (gmin). 
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Figure 5. Minimum leaf conductance (gmin) of Quercus coccifera grown at Mediterranean (MED) and 

temperate (TEM) sites, obtained from drying curves at 25°C (n ≥ 16). The gmin did not differ between 

plants from the MED and the TEM sites (t (31) = -0.33, p = 0.74). 
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Figure 6. Chain-length distributions of the very-long-chain aliphatic fraction of cuticular waxes of 

Quercus coccifera leaves grown at Mediterranean (MED; A) and temperate (TEM; B) sites (n = 4). 

Bars stand for the mole-based contribution of a single chain-length to the total very-long-chain 

aliphatic wax coverage. Triangles denote the weighted median chain-lengths (MCL) of the very-long-

chain aliphatic compounds with chain-lengths < 40 (closed symbol) and ≥ 40 (open symbol) carbon 

atoms. The 50% weighted percentile of the chain-lengths corresponds to the MCL. 
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Figure 7. Cuticular wax coverage of Quercus coccifera leaves grown at Mediterranean (MED) and 

temperate (TEM) sites, arranged by compound class. Each value represents the mean value ± SD (n 

= 4). Asterisk indicates significant difference at p < 0.05 between the MED and the TEM sites. 
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Figure 8. Cutin monomer coverage of Quercus coccifera leaves grown at a Mediterranean (MED) and 

a temperate (TEM) site, respectively. Each value represents the mean ± SD (n = 4). Asterisk indicates 

significant difference at p < 0.05 between the MED and the TEM sites. 
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Tables 

Table 1. Chemical composition of leaf cuticular waxes of Quercus coccifera grown at a Mediterranean 

and a temperate site, respectively. Each value represents the mean value ± SD (n = 4). 

Compound class Carbon-chain-
length 

Coverage (µg cm-2) 

Mediterranean site Temperate site 

n-alkanes 

25 0.07 ± 0.01 0.02 ± 0.01 
26 0.06 ± 0.01 0.01 ± 0.00 
27 0.20 ± 0.05 0.05 ± 0.02 
28 0.20 ± 0.02 0.03 ± 0.02 
29 1.61 ± 0.75 0.43 ± 0.13 
30 0.21 ± 0.02 0.11 ± 0.05 
31 0.98 ± 0.22 0.37 ± 0.04 
32 0.21 ± 0.06 0.04 ± 0.02 

total n-alkanes  3.54 ± 0.65 1.06 ± 0.24 

primary alkanols 

22 0.01 ± 0.00 0.00 ± 0.00 
23 0.02 ± 0.00 0.00 ± 0.00 
24 0.14 ± 0.06 0.02 ± 0.01 
25 0.03 ± 0.01 0.01 ± 0.00 
26 0.10 ± 0.01 0.08 ± 0.02 
27 0.04 ± 0.02 0.01 ± 0.01 
28 0.07 ± 0.01 0.02 ± 0.02 
30 0.54 ± 0.27 0.10 ± 0.04 
31 0.38 ± 0.08 0.09 ± 0.07 
32 1.01 ± 0.56 0.19 ± 0.12 
33 0.22 ± 0.01 0.05 ± 0.03 
34 0.20 ± 0.02 0.06 ± 0.04 

total primary alkanols  2.75 ± 0.90 0.65 ± 0.29 

alkanol acetates 

26 0.02 ± 0.01 
 

- 
 27 0.03 ± 0.02 

 
- 

 28 0.13 ± 0.11 
 

- 
 29 0.06 ± 0.03 0.01 ± 0.01 

30 0.43 ± 0.25 0.03 ± 0.02 
31 0.11 ± 0.04 

 
-   

total alkanol acetates  0.78 ± 0.40 0.04 ± 0.01 

alkanals 
28 0.03 ± 0.02 0.02 ± 0.01 
30 0.20 ± 0.08 0.09 ± 0.02 
32 0.31 ± 0.02 0.07 ± 0.04 

total alkanals  0.55 ± 0.09 0.17 ± 0.03 

alkanoic acids 

20 0.02 ± 0.01 0.01 ± 0.00 
21 0.01 ± 0.00 0.00 ± 0.00 
22 0.08 ± 0.07 0.00 ± 0.00 
23 0.03 ± 0.01 0.00 ± 0.00 
24 0.12 ± 0.10 0.02 ± 0.01 
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25 0.04 ± 0.03 0.01 ± 0.00 
26 0.11 ± 0.07 0.03 ± 0.02 
27 0.04 ± 0.02 0.02 ± 0.01 
28 0.17 ± 0.12 0.10 ± 0.03 
29 0.18 ± 0.08 0.10 ± 0.07 
30 0.85 ± 0.55 0.25 ± 0.14 
31 0.22 ± 0.06 0.10 ± 0.01 
32 0.52 ± 0.47 0.08 ± 0.06 
33 0.08 ± 0.03 0.03 ± 0.01 

total alkanoic acids  2.48 ± 1.50 0.75 ± 0.25 

alkyl esters 

40 0.11 ± 0.03 0.02 ± 0.01 
42 0.19 ± 0.05 0.04 ± 0.01 
44 0.47 ± 0.12 0.11 ± 0.03 
45 0.07 ± 0.01 0.02 ± 0.00 
46 0.45 ± 0.08 0.15 ± 0.03 
47 0.07 ± 0.02 0.02 ± 0.00 
48 0.31 ± 0.04 0.12 ± 0.03 
49 0.05 ± 0.01 0.02 ± 0.01 
50 0.17 ± 0.01 0.09 ± 0.02 
51 0.04 ± 0.01 0.02 ± 0.00 

total alkyl esters  1.93 ± 0.34 0.62 ± 0.08 

total very-long-chain 
aliphatic compounds 

 

12.04 ± 2.09 3.46 ± 0.62 

α-amyrin 
 

0.24 ± 0.09 0.17 ± 0.05 
β-amyrin 

 
0.98 ± 0.10 0.29 ± 0.07 

betulin 
 

0.34 ± 0.05 0.20 ± 0.07 
betulinic acid 

 
0.59 ± 0.15 0.26 ± 0.20 

erythrodiol 
  

- 
 

0.11 ± 0.02 
fridelin 

 
0.23 ± 0.08 0.05 ± 0.04 

fridelinol 
 

0.32 ± 0.17 0.11 ± 0.05 
germanicol 

 
10.11 ± 2.28 3.45 ± 0.55 

germanicone 
 

0.13 ± 0.01 0.03 ± 0.01 
lupeol 

 
2.88 ± 1.39 1.60 ± 0.36 

oleanoic acid 
 

0.23 ± 0.04 0.17 ± 0.10 
ursolic acid  0.21 ± 0.08 0.08 ± 0.05 
uvaol  0.28 ± 0.04 0.21 ± 0.07 
unknown triterpenoid 1 

 
0.06 ± 0.02 

 
- 

 unknown triterpenoid 2 
 

0.27 ± 0.07 
 

- 
 β-sisterol  0.24 ± 0.06 1.13 ± 0.81 

total cyclic compounds 
 

17.10 ± 3.03 7.86 ± 1.67 

β-tocopherol 
 

0.07 ± 0.03 0.11 ± 0.08 
δ-tocopherol 

 
0.04 ± 0.01 0.03 ± 0.02 

total phenolic compounds 
 

0.12 ± 0.04 0.14 ± 0.09 

not identified 
 

5.61 ± 2.05 1.75 ± 0.55 
total cuticular waxes 

 
34.87 ± 6.64 13.03 ± 2.77 
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Table 2. Chemical composition of the leaf cutin matrix of Quercus coccifera grown at a Mediterranean 

and a temperate site, respectively. Each value represents the mean value ± SD (n = 4). 

Compound Carbon-
chain-length 

Cutin coverage (µg cm-2) 
Mediterranean site Temperate site 

alkanoic acid 16 8.62 ± 0.44 5.16 ± 0.22 
alka-9,12-dienoic acid 18:2 2.50 ± 0.55 1.02 ± 0.15 
alk-9-enoic acid 18:1 1.42 ± 0.38 0.90 ± 0.30 
alkanoic acid 18 3.37 ± 1.21 1.16 ± 0.22 
alkanoic acid 20 1.52 ± 0.15 0.32 ± 0.10 
alkanoic acid 22 0.64 ± 0.09 0.55 ± 0.13 
alkanoic acid 24 2.70 ± 0.46 1.83 ± 0.63 
alkanoic acid 30 0.43 ± 0.08 0.10 ± 0.06 
alkane-1,16-dioic acid 16 0.52 ± 0.07 0.26 ± 0.04 
alkane-1,18-dioic acid 18 1.00 ± 0.06 0.39 ± 0.17 
primary alkanol 16 0.01 ± 0.02 0.01 ± 0.02 
primary alkanol 18 0.94 ± 0.39 0.32 ± 0.10 
primary alkanol 20 0.83 ± 0.33 0.29 ± 0.09 
9/10-hydroxy alkane-1,16-dioic acid 16 0.21 ± 0.09 0.69 ± 0.19 
16-hydroxy alk-9-enoic acid 16:1 2.34 ± 0.50 6.24 ± 2.25 
16-hydroxy alkanoic acid 16 2.61 ± 0.20 2.65 ± 0.23 
18-hydroxy alk-9-enoic acid 18:1 27.02 ± 1.42 31.48 ± 2.08 
9/10,16-dihydroxy alkanoic acid 16 63.25 ± 5.93 33.72 ± 1.86 
9/10,18-dihydroxy alkanoic acid 18 2.82 ± 0.13 2.92 ± 0.18 
9,10-epoxy 18-hydroxy alkanoic acid 18 68.98 ± 9.15 65.66 ± 4.26 
9,10,18-trihydroxy alkanoic acid 18 23.11 ± 3.10 4.38 ± 0.77 
2-hydroxy alkanoic acid 16 0.58 ± 0.16 0.44 ± 0.05 
2-hydroxy alkanoic acid 20 0.03 ± 0.04 0.02 ± 0.05 
2-hydroxy alkanoic acid 22 1.26 ± 0.18 1.40 ± 0.36 
2-hydroxy alkanoic acid 23 0.77 ± 0.38 0.52 ± 0.10 
2-hydroxy alkanoic acid 24 0.88 ± 0.12 0.28 ± 0.11 
2-hydroxy alkanoic acid 26 0.74 ± 0.21 0.26 ± 0.08 
3,4-dihydroxy benzoic acid  2.07 ± 0.22 1.20 ± 0.26 
3-methoxy 4-hydoxy benzoic acid  2.26 ± 0.44 1.59 ± 0.54 
4-hydroxy benzoic acid  0.57 ± 0.09 0.37 ± 0.08 
3,4-dihydroxy cinnamic acid  0.83 ± 0.10 0.18 ± 0.03 
4-hydroxy cinnamic acid  16.26 ± 1.15 6.63 ± 1.33 
4-hydroxy cinnamic acid derivatives  14.10 ± 1.71 5.83 ± 0.33 
total cutin monomers  255.22 ± 22.93 178.77 ± 4.36 
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