000096171 001__ 96171
000096171 005__ 20210902121618.0
000096171 0247_ $$2doi$$a10.1111/str.12331
000096171 0248_ $$2sideral$$a116092
000096171 037__ $$aART-2020-116092
000096171 041__ $$aeng
000096171 100__ $$0(orcid)0000-0002-8503-9291$$aCilla, Miryam
000096171 245__ $$aAnalysis of the accuracy on computing nominal stress in a biaxial test for arteries
000096171 260__ $$c2020
000096171 5060_ $$aAccess copy available to the general public$$fUnrestricted
000096171 5203_ $$aBiaxial tests are commonly used to investigate the mechanical behaviour of anisotropic soft biological tissues such as cardiovascular tissues. However, there is still no clear understanding of the influence that the biaxial test set-up conditions may have on the computing material stress of the experimental results. The aim of the present study is to further investigate the accuracy of calculated material stress from measured force during biaxial tests using finite element methods (FEM). The biaxial mechanical response of ascending aorta and pulmonary artery tissue samples was obtained by FEM simulation under two different gripping methods: (a) a system with noodle clamps and (b) a clamped system with needles which leave the specimen's edges free to expand laterally.
The results show that the clamped method whose joints allow free movement in the lateral direction produces stresses closer to the universally accepted formulation of biaxial material stress in the central region. However, the system with noodle clamps, commonly used to grip the sample, produces an alteration of the measurement stresses. Our simulations show results giving an inaccurate estimation of the stress at the centre of the sample. In some cases, the stresses are overestimated and in others underestimated depending on the anisotropy of the sample. We can conclude that the clamped system with needles which leave the specimen's edges free to expand laterally should be used as an efficient methodology to other commonly used gripping methods for biological tissues with anisotropic materials.
000096171 536__ $$9info:eu-repo/grantAgreement/ES/DGA/LMP121-18$$9info:eu-repo/grantAgreement/ES/DGA/T24-17R$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2016-76630-C2-1-R
000096171 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000096171 590__ $$a1.848$$b2020
000096171 591__ $$aMATERIALS SCIENCE, CHARACTERIZATION & TESTING$$b17 / 32 = 0.531$$c2020$$dQ3$$eT2
000096171 592__ $$a0.476$$b2020
000096171 593__ $$aMechanics of Materials$$c2020$$dQ2
000096171 593__ $$aMechanical Engineering$$c2020$$dQ2
000096171 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000096171 700__ $$aCorral, A.V.
000096171 700__ $$0(orcid)0000-0002-4268-7424$$aPeña Baquedano, Juan Antonio$$uUniversidad de Zaragoza
000096171 700__ $$0(orcid)0000-0002-0664-5024$$aPeña Baquedano Estefania$$uUniversidad de Zaragoza
000096171 7102_ $$15002$$2305$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Expresión Gráfica en Ing.
000096171 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000096171 773__ $$g56, 1 (2020), e12331 1-13$$pStrain$$tSTRAIN$$x0039-2103
000096171 8564_ $$s5610757$$uhttps://zaguan.unizar.es/record/96171/files/texto_completo.pdf$$yPostprint
000096171 8564_ $$s387830$$uhttps://zaguan.unizar.es/record/96171/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000096171 909CO $$ooai:zaguan.unizar.es:96171$$particulos$$pdriver
000096171 951__ $$a2021-09-02-08:45:52
000096171 980__ $$aARTICLE