Hindawi

Security and Communication Networks
Volume 2020, Article ID 8856379, 9 pages
https://doi.org/10.1155/2020/8856379

WILEY

Hindawi

Research Article

Oblivious Inspection: On the Confrontation between System
Security and Data Privacy at Domain Boundaries

Jorge Sancho (), José Garcia, and Alvaro Alesanco

Aragén Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50009, Spain
Correspondence should be addressed to Jorge Sancho; jslarraz@unizar.es

Received 3 April 2020; Revised 4 August 2020; Accepted 10 September 2020; Published 22 September 2020
Academic Editor: Leandros Maglaras

Copyright © 2020 Jorge Sancho et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, we introduce the system boundary security vs. privacy dilemma, where border devices (e.g., firewall devices) require
unencrypted data inspection to prevent data exfiltration or unauthorized data accesses, but unencrypted data inspection violates
data privacy. To shortcut this problem, we present Oblivious Inspection, a novel approach based on garbled circuits to perform a
stateful application-aware inspection of encrypted network traffic in a privacy-preserving way. We also showcase an inspection
algorithm for Fast Healthcare Interoperability Resources (FHIR) standard compliant packets along with its performance results.
The results point out the importance of the inspection function being aligned with the underlying garbled circuit protocol. In this
line, mandatory encryption algorithms for TLS 1.3 have been analysed observing that packets encrypted using Chacha20 can be
filtered up to 17 and 25 times faster compared with AES128-GCM and AES256-GCM, respectively. All together, this approach
penalizes performance to align system security and data privacy, but it could be appropriate for those scenarios where this

performance degradation can be justified by the sensibility of the involved data such as healthcare scenarios.

1. Introduction

Data leakage and exfiltration are one of the top security
concerns in modern information systems. The consequences
of data exfiltration are huge for companies; information is
the most valuable resource a company has. However, these
consequences elevate to disastrous when sensible data, such
as health-related one, are involved due to the consequent
legal implications [1]. For decades, companies have
addressed this problem by holding this sensible information
within their boundaries. However, in the last decade, their
doors have been opened to take advantage of all the advances
that are taking place in the ICT industry; information ex-
change between partners has been proved to suppose an
important strategic advantage (e.g., improvements in global
supply chain). This is not different for healthcare institutions
where the patient-generated resources and the cross-orga-
nizational healthcare data sharing seem to be the key for the
future of medicine. Open data sharing jointly with the latest
data processing technologies, such as big data and machine
learning, would help to enable preventive medicine and early

detection of illness conditions by improving care delivery
and lowering costs [2].

This unstoppable new connected environment makes it
impossible for organizations to keep as isolated silos,
experimenting the need to open their boundaries to take
advantage of all these changes. However, with these new
opportunities also come new risks and threats and the
adoption of this connected scenario must be performed
carefully, without falling into security concerns [3]. Fire-
walls, as key components for system security, are usually
placed at domain borders to take care in the perimeter
security. They inspect the traffic that flows along the system
boundaries to avoid many threats: malware reaching inside
the system, confidential information being compromised,
and so on. However, the use of end-to-end data encryption
between communicating peers (providing confidentiality,
integrity, and authenticity to data) limits the information
that the firewall can use to decide whether a packet is le-
gitimate or not. In these cases, the application data are
encrypted so that firewall can just inspect the network in-
formation (e.g., IP addresses and ports) that is transmitted

mailto:jslarraz@unizar.es
https://orcid.org/0000-0001-8518-6884
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8856379

without encryption. Some existent approaches such as SSL
inspection propose to use a man-in-the-middle-like con-
trolled (by the system administrator) attack [4] allowing the
firewall to decrypt the whole packet and inspect its content.
However, this approach presents several drawbacks, being
the most important that the data privacy is compromised
making it unacceptable for several scenarios. Hence, the
system boundary security vs. privacy dilemma arises; if more
information is used to decide whether a packet might
suppose a security concern, more reliable would be the
decision (security) but more information available com-
promises the confidentiality of the data flow (privacy).

In the past few years, data privacy has attracted much
attention and new methods to perform computation on
private data have appeared. These solutions can be classified
into two groups: those ones that rely on Trusted Execution
Environments (TEEs) and others that rely on Cryptographic
Primitives. A TEE is a secure area inside a main processor
able to guarantee the confidentiality and integrity of the code
and data loaded on it. Main examples of TEEs are Intel
Software Guard Extensions (SGX) and ARM TrustZone. The
second group includes methods (also known as protocols)
that use Cryptographic Primitives to perform some privacy-
preserving computations, but the use of these protocols
comes at a cost: a decrease in the overall system performance
[5]. In practice, one of the most widely used protocols is
garbled circuits (GC), which is a general purpose, two-party
secure computation protocol. The use of this protocol allows
two parties to jointly compute the output of a function
without learning anything about the other party’s inputs or
intermediate results. In garbled circuits, as in other secure
computation protocols, some parties might be corrupted
and they would try to extract information related with the
inputs of the other parties. This behavior could be classified
within two adversaries’ models, each with its own security
concerns. The semihonest adversary model, which provides
passive security, assumes that the adversary will cooperate to
gather all information leaked from the protocol execution
without deriving from the agreed protocol. In the malicious
adversary model, which provides active security, the ad-
versary may arbitrarily deviate from the protocol execution
in its attempt to cheat. The only thing that an adversary can
do in the case of dishonest majority is to cause the honest
parties to abort having detected cheating.

Thus, the question raised is whether secure computation
protocols could sort out the system boundary security vs.
privacy dilemma, allowing the firewall to inspect the
encrypted information (looking for threats) while infor-
mation privacy remains unaltered. Some challenges reside in
the design of these privacy-preserving inspection methods.
Most relevant challenges include that proposed privacy-
preserving inspection methods must fit in existent network
architectures with minimal modifications; they should
provide similar functionalities to standard firewall devices,
achieving similar performance and without requiring ad-
ditional security assumptions. Although some previous
works already talk about privacy-preserving middleboxes
[6], all of them have important related drawbacks. They
require heavy modification on network architectures for

Security and Communication Networks

their use, provided functionalities are quite limited (typically
only allow to perform pattern or range matching), and they
require making some security assumptions (at least one of
the communication peers, the client, or the server cannot be
compromised) that cannot be guaranteed in most scenarios.

In this paper, we present Oblivious Inspection, the first
privacy-preserving inspection method able to keep track of
the communication state at the application level while is also
able to understand some protocols and parse them so that
signatures or rules can specifically address certain fields in
the protocol. In order to show the interest of the proposed
method, an application scenario where clinical information
is involved has been proposed and a proof of concept has
been implemented to test the inspection of packets com-
pliant with the Fast Healthcare Interoperability Resources
(FHIR) standard.

2. Related Work

In the past few years, there have been advances in providing
middleboxes with the appropriate mechanisms to improve
both system security and data privacy at the same time. First
approaches, which are based on Cryptographic Primitives,
could be found in [7, 8]. These works use searchable en-
cryption to check whether some patterns of interest are
present or not in the ciphered payload. To that end, the
packet payload is first tokenized and then these tokens are
matched against the rule patterns. Those studies do not show
interest not only on the confidentiality of the ciphered data
but also on the rules. The rules have to be protected given
that in some cases can be intellectual property (e.g., com-
mercial IDS rules). In [7], only the content of the rules is
protected while some metadata (inspection fields, offsets,
and number of patterns) remain unencrypted. This could
leak some confidential information and is addressed in [8].
Although those works pointed into a promising research
direction, functionality achievable with those methods is
quite limited since they only allow us to look for patterns
(i.e., do not support range matching nor regular expressions)
inside the ciphered payload.

In [9, 10], the authors proposed novel methods to
provide new functionalities to middleboxes. These im-
provements enable them to match encrypted values against
encrypted prefixes and ranges (e.g., check if a port belongs to
a range). This can be used to perform tasks such as load
balancing, NAT, or traffic classification. In [9], the authors
proposed a new encryption scheme called PrefixMatch and
used it to perform the secure range matching. Some met-
adata about the packet headers are leaked in this system. In
[10], a different approach based on secret sharing secure
multiparty computation (MPC) is taken. This approach is
limited to substring comparison and leaks information
about which bits of the incoming packet do not match.

Zhou et al. exposed in their work [11] the importance of
privacy-preserving packet filtering for Internet of Things
(IoT) scenarios. They state that message content filtering
would avoid duplicate packet transmission which would
reduce both computational and communication cost. To that
end, they proposed the use of a prefilter [12], an efficient

Security and Communication Networks

privacy-preserving relay filtering scheme for Delay-Tolerant
Networks (DTNSs) in vehicular IoT communication.

Other works [13, 14] presented methods that rely on a
TEE, Intel SGX, to ensure the confidentiality and integrity of
the middlebox. However, although approaches based on the
TEE are really promising, it is still necessary to trust the
hardware manufacturer and deal with possible security is-
sues related to the technology that could appear (e.g.,
foreshadow [15]), which may not be acceptable in all cases.

Finally, the authors presented a prior study [16] that
explores the idea of using garbled circuits to inspect
encrypted traffic. However, this is a very preliminary work
that only considered some basic functionality without caring
about some essential aspects such as the state of the con-
nection, information about the user making the request, or
how policies are compartmented. Moreover, performance
results were very scarce and it does not face how the involved
parties interact between them to perform the inspection
process.

3. Scenario and Assumptions

In this section, we first present the target scenario where the
proposed inspection method would be applied. After that,
we discuss the assumptions that have been taken for the
design of the inspection function as well as for the obtention
of the performance results.

3.1. Scenario. In this work, we focus on a connected
healthcare scenario (see Figure 1) where information is
stored into an Electronic Health Record (EHR) placed inside
of a trusted domain (e.g., healthcare institution) and some
clients, placed outside, request access to the stored infor-
mation. Different kinds of clients might attempt to access the
EHR with different purposes. Thanks to the widespread
adoption of wearables, a huge amount of patient’s infor-
mation, such as vital signs and fitness data, is collected daily.
Since some of these devices can acquire this information
with enough accuracy to be used with clinical purposes [17],
many advantages could be obtained from these patient-
generated resources if available for the healthcare institution
(i.e., they are in the EHR). Thus, patients should be able to
access the EHR not only to see their history but also to feed it
with new data.

To obtain real value from the collected data, some
processing techniques must be applied. Machine learning
and big data techniques are providing promising results in
the field of the health informatics [18], but tons of data are
required to develop and validate these kinds of methods.
Thus, researchers should be allowed to access the patient’s
record, after the corresponding process of anonymization, to
perform their studies. Finally, in this highly connected
world, it is not unusual that users desire to share some
information with their family or friends. A patient who
stores his fitness data, his weight progression, or other re-
lated data might be able to delegate access to a third-party
application (e.g., social network) to retrieve authorized in-
formation from the EHR and share it with his contacts.

In such heterogeneous scenario with different parties
accessing patient’s information with different profiles,
purposes, and security restrictions, it might be challenging to
avoid information leakages to undesired locations. A firewall
placed at the boundary of the trusted domain might inspect
all the data packets coming from/to the EHR and ensure that
they meet the security policies defined by the security ad-
ministrator. For example, dropping resources containing
personally identifiable information when destined to a re-
search institution or blocking data traffic that contains
sensitive information when destined to a social network.

3.2. Assumptions. In this scenario, we would assume that all
the information is exchanged between the EHR and its
clients using the most recent standard from the Health Level
Seven (HL7) International Organization, FHIR. This stan-
dard defines a set of data models which can represent a wide
range of healthcare-related aspects, both clinical and ad-
ministrative. Instances of these data models, which are
named resources, are used to exchange and/or store the data
using different serializations formats, such as the JavaScript
Object Notation (JSON), which would be used in this case. A
JSON object is a data structure that holds unordered name/
value pairs, where names are strings and values might be
basic (string, numeric, true, false, or null) or complex types
(lists of basic types of another object). The FHIR standard
also defines an Application Programming Interface (API)
based on Representational State Transfer (REST) that can be
used to retrieve, create, update, and delete the resources
from the EHR. This kind of API uses the HyperText Transfer
Protocol (HTTP) for message exchange, in which the pre-
ferred way to assert identities is by means of JSON Web
Tokens (JWTs), as is also suggested by the FHIR team. JWTs
are a JSON-formatted set of claims stating things such as the
user identity, the organization he/she belongs to, or his/her
role there. The token is signed, encoded in base64, and
included as the Authorization header value in the HTTP
packet. An example of a request to create an observation
resource is shown in Figure 2. In this message, the request
line, which indicates the type of operation and the resource
involved, is shaded in green, the request headers are shaded
in blue, and the request body is shaded in orange.

Finally, Transport Layer Secure (TLS) is used to provide
confidentiality to data flows between clients and the EHR. In
this work, we will assume that TLS 1.3 would be used since it
is the most recent version of the standard which comes with
remarkable security improvements. When using TLS, dif-
ferent cipher suits which are combinations of Authenticated
Encryption with Associated Data (AEAD) and HMAC-
based Key Derivation Function (HKDF) algorithms could be
used. The cipher suit for each session is negotiated during
the TLS handshake.

4. Methodology

The proposed inspection method, Oblivious Inspection,
allows us to perform a stateful, application-aware inspection
of encrypted packets relying on garbled circuits [19] to

Patient

Research
institution

Security and Communication Networks

N
Security

// Policyset administrator

[|
7 \
Social r":' . ,I
networks AEHIR “ f Firewall EHR —\ |
I
4 a |
\
1
1

N Trusted domain /,

FIGURE 1: Reference scenario: several clients require access to the EHR from different locations and for different purposes.

POST /Observation HTTP/1.1

Host: fhir-server.org
User-Agent: Mozilla/4.0

Content-Type: application/fhir+json;charset = UTF-8

Content-Length: 450

Authorization: eyJhbGciOiJIUZIIN ... R5¢CI6IkpXVC]9

{
“resourceType”:
“_id”: “1234%
“status”: “final’,
“code”: {
“coding”: [
{
“system”: “http://snomed.info/sct’,

“code”: “27113001%,

Observation”,

“display”: “Body weight”
}
]
b
“subject”: {
“reference”: “Patient/5678”
b
“effectiveDateTime”: “2016-03-28”
“valueQuantity”: {
“value”: 185,
“unit”: “Ibs,
“system”: “http://unitsofmeasure.org’,
“code”: “[Ib_av]”
}
}

FIGURE 2: Request to create an observation resource.

ensure the privacy of the inspected data. Garbled circuits are
a cryptographic protocol that enables two-party secure
computation, which means that two mistrusting parties can
jointly evaluate an arbitrary function while no information
about one party’s private input nor intermediate results are
leaked to the other party. The garbled circuits protocol
consists of 6 steps (see Figure 3). First, the function that
would be evaluated in a private way is defined as a Boolean
circuit known by both parties. Then, one party, the garbler,
assigns a k-bit label randomly generated to 0 and 1 values in
each circuit wire (i.e., for input X wire, Xy and X, labels).
New truth tables are generated for each gate in the circuit
using these labels, and finally the garbled tables are gener-
ated, encrypting each output in the new truth table using its
inputs as keys. Garbled tables and labels corresponding to
garbler’s inputs (X, and Y; in Figure 3) are sent to the other
party, the evaluator. The evaluator obtains the labels cor-
responding to his own inputs (Z;) through Oblivious
Transfer with the help of the garbler. After that, the evaluator
goes through all gates trying to decrypt the rows of the
garbled tables but just one row could be decrypted correctly,
obtaining the label corresponding to the output of the gate.
After the evaluation of the whole circuit, the evaluator
obtains the label associated to the output (F;). Finally, the
garbler and evaluator cooperate to learn the value repre-
sented by the output label, which is the result of the function.

When the Oblivious Inspection is applied to the pro-
posed eHealth scenario, the role of the garbler would be
played by the EHR while the firewall would be the evaluator.
The Oblivious Inspection is performed each time when a
new packet reaches the firewall. However, before the
Oblivious Inspection could be performed for the first time,
some configurations are required. Since the Oblivious In-
spection relies on garbled circuits, two parties are involved in
the inspection process. Thus, each time the inspection
process is about to start, the firewall must know how to

Security and Communication Networks

Circuit generation

Data transfer

Encgy, (T,)
Garbler Evaluator . =
Enc., (T)
Garbled table Encyy, (T)
)2l Garbled table|
O Garbled table IR cox Gm @)
En EnC BN, (T) X T
Enc Enc Enc (T) %
Enc Enc (T))
Ency,y, (T)
{2} Z
D T >
Bnc,,, (U)
Enc,,, (U)
Ency, (U)
Enc, (U)

y1z1 £ 0

Assign random labels

Circuit evaluation

Generate garbled tables

0 0 0 X, Y T, Encygy, (TO)
0 1 1 — X Y, T, —» Encyy (T)
1 0 1 1 0 i Ency,y, (Tl)
1 1 0 X, Y, T Encyyy, (Ty)

1 1 0

Reveal output

Garbler Evaluator

Enc (F 0)
Enc,y, (F)

1
Enc, ()

Encyyy, (F)

FIGURE 3: Garbled circuit protocol: steps that compose the underlying multiparty computation protocol.

notify the EHR about it and jointly perform the inspection.
To that end, the EHR is configured to be waiting for
Oblivious Inspection Start Request on a concrete port and
the corresponding configuration (IP address and port) is
provided to the firewall beforehand.

In the normal operation mode, each time a packet
reaches the firewall, the workflow shown in Figure 4 is
triggered to decide whether the packet should be forwarded
or not. First, the firewall checks if the packet source or
destination addresses belong to a registered EHR. If this is
the case, the firewall will send an Oblivious Inspection Start
Request to its previously configured peer. This Oblivious
Inspection Start message is sent over a new TLS session and
includes IP addresses and ports (both source and destina-
tion) of the packet to be evaluated. This information would
be used by the EHR to identify the flow to which the packet
belongs and obtain the session key used for its encryption. If
everything goes as expected, both firewall and EHR jointly
evaluate the inspection function (right side of Figure 4) using
the garbled circuit protocol explained previously. Infor-
mation required to evaluate the inspection function (garbled
tables, labels of EHR private inputs, and all information
exchange related to the oblivious transfer) is transmitted
over the new established TLS session. After the inspection
has taken place, both parties learn whether the packet meets
the defined policies or not. If true, the firewall would forward
the packet to its destination. If any of these steps do not
result as expected (the firewall does not recognize any of the
packet addresses as a registered EHR, the EHR do not
recognize the flow to which the packet belongs, or the packet
does not meet the policies), the packet is dropped and the
firewall sends a reset (RST) message to the source of the
rejected packet.

4.1. Inspection Function. The inspection function depends
on the application traffic being inspected, and the achievable
functionality would be limited by the performance overhead
assumable on each scenario. In order to show the potential of
the Oblivious Inspection, a function to evaluate some rel-
evant aspects of the FHIR compliant packets has been
proposed (see Figure 4, right side). To evaluate this in-
spection function, the session key and the ciphered packet
would be provided as private inputs by the EHR and the
firewall, respectively. The firewall would also provide an
auxiliary key that would be used, jointly with the session key,
to derive the state key.

When the inspection of a new packet begins, it is first
decrypted using the session key (note that evaluating the
whole inspection function inside the garbled circuit protocol
guarantees that no party would have access to the decrypted
message). After that, behavior differs when the packet is a
request or a response. If the packet is a request, the request
line is parsed and information about the requested operation
(read, create, delete, etc.) and the targeted resource (resource
type and id) is gathered and saved as state information. After
that, the HTTP headers are parsed and inspected to assert
that only allowed headers are present. If the Authorization
header is present, it is then processed to collect some useful
information from it. In the proposed scenario, the Autho-
rization header would be a JWT, so that it would be firstly
decoded from base64 and then its integrity would be vali-
dated by checking its signature, ensuring that it has not been
tampered after it was issued. If everything goes as expected,
some claims (such as the user identity, the organization he/
she belongs, or his/her role there) are extracted from the
token and saved as state information. After the header’s
inspection, the state information is encrypted using the state

Firewall EHR
New packet
arrives

Is the src or dst a
registered EHR?

Send oblivious inspection
start message

Oblivious inspection
start message received

Does the EHR
recognize the flow?

Garbled circuits

Evaluate the inspection
function running the GC
protocol as garbler

Evaluate the inspection
function running the GC [P
protocol as evaluator

Forward the
packet

Security and Communication Networks

(Evaluate inspection function)
Firewall
. Ciphered

Isa
request

EHR

Yes No

—— Parse Request-Line

¢ A4

Parse headers

v

Process
— authorization
header

i PolicySet ;

Parse body

v

Policy evaluation

—»| State [a—

FIGUREe 4: Oblivious Inspection: flowchart of the Oblivious Inspection evaluation.

key and returned as protocol output. If the request has not a
body (i.e., a read operation), the inspection would be fin-
ished and the packet forwarded. Otherwise, the body of the
HTTP packet would be inspected now. The body would be
parsed to assert that it is a FHIR resource serialized in the
JSON format. To that end, names in the resource are
matched against a dictionary of FHIR keywords, which
content would depend on the resource type information
obtained from the request line. After that, attributes are
extracted from the resource. In this study, we refer as “at-
tribute” to each pair of the nested names that point to a basic
value type and the value itself. Some examples of attributes
extracted from the FHIR resource shown in Figure 2 would
be (resourceType, “Observation”) and (code.coding.display,
“Body weight”). At this point, the resource being inspected is
checked to assert that is coherent with the resourceType and
resource id information obtained from the request line,
ensuring that only resources that have previously been
requested leave the perimeter.

Finally, the policy evaluation takes place. Policies are
compartmented depending on the role of the user making
the request (obtained from the JWT) and the resource type
being inspected. For each combination of resourceType and
role, a PolicySet is defined, which contains a set of policies
which in turn contains a set of rules. Each rule defines a
condition about an attribute of the resource (e.g., the value of
“code.coding.display” must be “Body weight” or

“subject.reference” must not be present in the resource). If
all the rules in a policy are successfully matched, the policy is
met. If at least one policy in the policy set is met, the policy
evaluation is considered as passed and the decision would be
to forward the packet.

If the packet is not a request but a response, the parse of
the request line and the Authorization header processing
steps would be skipped while the rest of the inspection would
be performed as already explained for the requests. The
additional information required for the policy evaluation
(i.e., resource type and user role), which is gathered from the
skipped steps when a request is being inspected, would be
now obtained from the state information instead. To that
end, the firewall would provide as protocol input the
encrypted state resulting from the inspection of the request
that has triggered the response being inspected, which would
be decrypted using the state key.

5. Results

In order to evaluate the proposed Oblivious Inspection, we
have implemented the proposed inspection function using
the Obliv-C framework [20]. Several analyses have been
performed to assess the viability of using this kind of
methods in real-world scenarios. The performance results
have been calculated using Amazon Web Services (AWS)
EC2 c5.large instances, which have 2 virtual CPUs and 4 GB

Security and Communication Networks

0.9
g
E
H
128 384 640 896 1152 1408 1664 1920
Input size (bytes)
AES128-GCM Hea. parse
- -~ AES256-GCM - JWT
~ -~ Chacha20 - JSON parse
0.6
0.5
0.4
L
£
H
0.2
0.1
0

10 attributes
—A— 20 attributes

25 30 35 40 45

Policyset size

—m- 30 attributes
40 attributes

FIGURE 5: Performance results: they have been calculated using Amazon Web Services (AWS) EC2 c5.large instances, which have 2 virtual

CPUs and 4 GB RAM.

RAM. One instance has been used for each party (garbler
and evaluator) needed to consider the communication cost
required by the garbled circuit protocol in a realistic way.

The times taken to perform different tasks that compose
the proposed inspection function under different conditions
have been analysed (see Figure 5). In the left side, the figure
shows the times associated with packet decryption (dashed
lines), the header parse and inspection (green line), Au-
thorization header processing (brown line), and JSON
content parsing (blue line) when the input size ranges from 0
t0 2000 bytes. Decryption performance has been analysed for
the three mandatory AEADs defined in the TLS 1.3 standard
(AES128-GCM, AES256-GCM, and Chacha20). As we can
see in the figure, times required to decrypt the ciphertext
when an AES-based algorithm is used is significantly higher
than the required time when using Chacha20 (close to 17
times for AES128-GCM and 25 times for AES256-GCM).
Therefore, the encryption scheme used may condition the

viability of using this inspection method. The Authorization
header processing times include the time required to decode
the JWT from its base64 encoding, to verify its signature
using the HMAC-SHA256 algorithm, and to extract the
subject id, the role, and organization claims from the token.
Times required to perform all tasks shown in this figure are
linear with the input size. On the other hand, times asso-
ciated with the policy evaluation are shown in the right side
of Figure 5. Times for different policy set sizes (5 to 45
policiey per policy set) and number of attributes inside the
resource (10, 20, 30, and 40 attributes) have been calculated,
assuming a fixed number of 10 rules per policy in all cases.
Times used for the policy evaluation are linear with both the
number of attributes extracted from the resource and the
size of the policy set being enforced.

A proof of concept of the Oblivious Inspection has been
implemented using the NGINX server as the EHR and the
Click modular router as the firewall. Both have been

0,5
0,45
0,4
0,35
0,3

0,25

Time (s)

0,2
0,15
0,1

0,05

Security and Communication Networks

Get res.

E=E Decryption
8% Header parse
@ JSON parse

PPG

PPG

Post res.

Post req.

I Req. line
27 Auth. hea.
[Policy eval.

FIGURE 6: Package inspection times: inspection times to read or create a photoplethysmogram and blood pressure observations.

modified to support the workflow shown in Figure 4. Times
required to inspect some FHIR packets exchanged for some
frequent operations along the patient’s daily illness man-
agement are shown in Figure 6. These packets include re-
quests and responses required to read and create two
different kinds of resources. To obtain these times, some
reasonable assumptions have been performed. First, a fixed
HTTP header size of 600 bytes for requests and 300 for
responses is assumed in all cases, where the 300-byte dif-
ference is because the Authorization header is only included
in request packets. Two different resources have been
analysed: a blood pressure (BP) observation (scalar values)
which has a size of 400 bytes and a 10-second plethys-
mography (PPG) observation (low frequency unidimen-
sional signal) which has a size of 1200 bytes. The number of
attributes inside of each resource has been set to 15 and 30
for the BP and PPG resources, respectively. Finally, the size
of the policy set being enforced for each combination of role
and resource type would be a maximum of 10 policies
containing 10 rules each. These times are decomposed in
times for the different tasks to show the impact of each task
in the overall inspection time. From the figure, we can see
that the whole time (including request and response in-
spection times) required to read the already defined re-
sources would be 340 and 521 ms, while times required to
create them would be 340 and 529ms for BP and PPG
observations, respectively.

6. Conclusions

In this paper, we have presented Oblivious Inspection, the first
stateful application-aware inspection method that cares about
the privacy of the inspected data without relying on TEEs.
Some key benefits can be associated with the proposed

inspection method. First, it can work over a standard
implementation of TLS with minimal modification on the
EHR (server side) being seamless for clients, which eases its
deployment in real-world scenarios. Second, it can be used to
inspect not only plain text but also structured data, enabling a
wide spectrum of applications. It is also able to keep track of
the connection state at application level, which is crucial to
inspect new-generation protocols such as HTTP/2, which is
already replacing the previous version due to its performance
improvement. Finally, with the proposed method, the firewall
can be sure that a given packet matches or not the defined rules
before forwarding it without relying on any other party.

An inspection function to evaluate FHIR compliant
packets along with its performance results has been pre-
sented. In view of the performance results, the authors
conclude that although the performance penalty introduced
by using the proposed method could currently be too high
for a general application use, the sensibility of the involved
data could justify its use in certain scenarios, such as
healthcare ones. However, there are several fronts that could
be attacked to improve this performance. First, research on
MPC friendly cryptographic algorithms and information
serialization formats is needed. Second, developing MPC
frameworks that take advantage of the parallelism provided
by hardware such as GPUs or FPGAs would improve the
execution speed by orders of magnitude [21]. With the
adoption of these measures, the performance degradation
could be expected to significantly decrease, thus allowing the
widespread adoption of these solutions.

All together, this work shows how multiparty compu-
tation could be used to address the confrontation between
system security and data privacy at the domain boundaries.
The proposed inspection method would help to keep the
private information away from the eyes of a curious network

Security and Communication Networks

administrator or from an intruder taking control of the
firewall (which is usually facing the Internet) without pre-
venting the firewall from providing its crucial functionality
to keep systems secure.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest
regarding the publication of this article.

Acknowledgments

This research was funded by the Ministerio de Economia,
Industria y Competitividad from Gobierno de Espaia,
European Regional Development Fund (TIN2016-76770-R),
Gobierno de Aragén and FEDER “Construyendo Europa
desde Aragén” (T31_20R), and Ministerio de Educacion,
Cultura y Deporte from Gobierno de Espana via a doctoral
grant to the first author (FPU15/04841).

References

[1] Regulation (EU) 2016/679 of the European Parliament and of
the council of 27 april 2016 on the protection of natural
persons with regard to the processing of personal data and on
the free movement of such data, and repealing directive 95/46/
EC (general data protection regulation) (text with EEA
relevance).

[2] O. Enaizan, A. A. Zaidan, N. H. M. Alwi et al., “Electronic
medical record systems: decision support examination
framework for individual, security and privacy concerns using
multi-perspective analysis,” Health and Technology, vol. 10,
no. 3, pp. 795-822, 2020.

[3] M. Hussain, A. A. Zaidan, B. B. Zidan et al., “Conceptual
framework for the security of mobile health applications on
android platform,” Telematics and Informatics, vol. 35, no. 5,
pp. 1335-1354, 2018.

[4] T. Radivilova, L. Kirichenko, D. Ageyev, M. Tawalbeh, and
V. Bulakh, “Decrypting SSL/TLS traffic for hidden threats
detection,” in Proceedings of the 2018 IEEE 9th International
Conference on Dependable Systems, Services and Technologies
(DESSERT), 1IEEE, Kyiv, Ukraine, pp. 143-146, May 2018.

[5] D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic in-
troduction to secure multi-party computation,” Foundations
and Trends® in Privacy and Security, vol. 2, pp. 2-3, 2018.

[6] C. Wang, X. Yuan, Y. Cui, and K. Ren, “Toward secure
outsourced middlebox services: practices, challenges, and
beyond,” IEEE Network, vol. 32, no. 1, pp. 166-171, 2017.

[7] J. Sherry, L. Chang, R. Popa, and S. Ratnasamy, “Blindbox:
deep packet inspection over encrypted traffic,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, pp. 213-226, London, UK, August 2015.

[8] X. Yuan, X. Wang, J. Lin, and C. Wang, “Privacy-preserving
deep packet inspection in outsourced middleboxes,” in Pro-
ceedings of the IEEE INFOCOM 2016-the 35th Annual IEEE
International Conference on Computer Communications,
IEEE, San Francisco, CA, USA, pp. 1-9, April 2016.

[9] C.Lan,]. Sherry, R. Popa, S. Ratnasamy, and Z. Liu, “Embark:
securely outsourcing middleboxes to the cloud,” in

Proceedings of the 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16), pp. 255-273,
Santa Clara, CA, USA, March 2016.

[10] H. J. Asghar, L. Melis, C. Soldani, E. De Cristofaro,
M. A. Kaafar, and L. Mathy, “Splitbox: toward efficient private
network function virtualization,” in Proceedings of the 2016
Workshop on Hot Topics in Middleboxes and Network
Function Virtualization, pp. 7-13, Florianopolis, Brazil, Au-
gust 2016.

[11] J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos, “Security and
privacy for cloud-based IoT: challenges,” IEEE Communi-
cations Magazine, vol. 55, no. 1, pp. 26-33, 2017.

[12] R. Lu, X. Lin, T. Luan et al., “Prefilter: an efficient privacy-
preserving relay filtering scheme for delay tolerant networks,”
in Proceedings of the 2012 Proceedings IEEE INFOCOM,
pp- 1395-1403, IEEE, Orlando, FL, USA, March 2012.

[13] L. Schiffand S. Schmid, “PRI: privacy preserving inspection of
encrypted network traffic,” in Proceedings of the 2016 IEEE
Security and Privacy Workshops (SPW), IEEE, San Jose, CA,
USA, pp. 296-303, May 2016.

[14] J. Han, S. Kim, J. Ha, and D. Han, “Sgx-box: enabling visibility
on encrypted traffic using a secure middlebox module,” in
Proceedings of the First Asia-Pacific Workshop on Networking,
pp- 99-105, Hong Kong China, August 2017.

[15] J. Van Bulck, M. Minkin, O. Weisse et al., “Foreshadow:
extracting the keys to the intel {SGX} kingdom with transient
out-of-order execution,” in Proceedings of the 27th {USENIX}
Security Symposium ({USENIX} Security 18), pp. 991-1008,
Baltimore, MD, USA, August 2018.

[16] J. Sancho, G. L. Mikkelsen, J. Lindstrem, J. Garcia, and
A. Alesanco, “On the privacy enhancement of in-transit
health data inspection: a preliminary study,” in Proceedings of
the Mediterranean Conference on Medical and Biological
Engineering and Computing, Springer, Coimbra, Portugal,
pp- 855-860, September 2019.

[17] D. Hernando, S. Roca, J. Sancho, A. Alesanco, and R. Bailén,
“Validation of the apple watch for heart rate variability
measurements during relax and mental stress in healthy
subjects,” Sensors, vol. 18, no. 8, p. 2619, 2018.

[18] T. Zheng, W. Xie, L. Xu et al., “A machine learning-based
framework to identify type 2 diabetes through electronic
health records,” International Journal of Medical Informatics,
vol. 97, pp. 120-127, 2017.

[19] S. Yakoubov, A Gentle Introduction to Yao’s Garbled Circuits,
Boston Univeristy, Boston, MA, USA, 2019.

[20] S. Zahur and D. Evans, “Obliv-C: a language for extensible
data-oblivious computation,” IACR Cryptology ePrint Ar-
chive, vol. 2015, p. 1153, 2015.

[21] X. Fang, S. Ioannidis, and M. Leeser, “Secure function eval-
uation using an FPGA overlay architecture,” in Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 257-266, Monterey, CA,
USA, February 2017.

