000096207 001__ 96207
000096207 005__ 20210902121653.0
000096207 0247_ $$2doi$$a10.1002/chem.202000068
000096207 0248_ $$2sideral$$a117954
000096207 037__ $$aART-2020-117954
000096207 041__ $$aeng
000096207 100__ $$aQuirós-Ovies, R.
000096207 245__ $$aControlled Covalent Functionalization of 2 H-MoS2 with Molecular or Polymeric Adlayers
000096207 260__ $$c2020
000096207 5060_ $$aAccess copy available to the general public$$fUnrestricted
000096207 5203_ $$aMost air-stable 2D materials are relatively inert, which makes their chemical modification difficult. In particular, in the case of MoS2, the semiconducting 2 H-MoS2 is much less reactive than its metallic counterpart, 1T-MoS2. As a consequence, there are hardly any reliable methods for the covalent modification of 2 H-MoS2. An ideal method for the chemical functionalization of such materials should be both mild, not requiring the introduction of a large number of defects, and versatile, allowing for the decoration with as many different functional groups as possible. Herein, a comprehensive study on the covalent functionalization of 2 H-MoS2 with maleimides is presented. The use of a base (Et3N) leads to the in situ formation of a succinimide polymer layer, covalently connected to MoS2. In contrast, in the absence of base, functionalization stops at the molecular level. Moreover, the functionalization protocol is mild (occurs at room temperature), fast (nearly complete in 1 h), and very flexible (11 different solvents and 10 different maleimides tested). In practical terms, the procedures described here allow for the chemist to manipulate 2 H-MoS2 in a very flexible way, decorating it with polymers or molecules, and with a wide range of functional groups for subsequent modification. Conceptually, the spurious formation of an organic polymer might be general to other methods of functionalization of 2D materials, where a large excess of molecular reagents is typically used.
000096207 536__ $$9info:eu-repo/grantAgreement/EC/H2020/307609/EU/Functional 2D metamaterials at visible wavelengths/FLATLIGHT$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 307609-FLATLIGHT$$9info:eu-repo/grantAgreement/EC/H2020/742684/EU/Catalytic Dual-Function Devices Against Cancer/CADENCE$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 742684-CADENCE$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-79419-R$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2017-86060-P$$9info:eu-repo/grantAgreement/ES/MINECO/SEV-2016-0686
000096207 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000096207 590__ $$a5.236$$b2020
000096207 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b52 / 178 = 0.292$$c2020$$dQ2$$eT1
000096207 592__ $$a1.687$$b2020
000096207 593__ $$aCatalysis$$c2020$$dQ1
000096207 593__ $$aOrganic Chemistry$$c2020$$dQ1
000096207 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000096207 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000096207 700__ $$aVázquez Sulleiro, M.
000096207 700__ $$aVera-Hidalgo, M.
000096207 700__ $$aPrieto, J.
000096207 700__ $$aGómez, I.J.
000096207 700__ $$0(orcid)0000-0002-6873-5244$$aSebastián, V.$$uUniversidad de Zaragoza
000096207 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaría, J.$$uUniversidad de Zaragoza
000096207 700__ $$aPérez, E.M.
000096207 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000096207 773__ $$g26 (2020), 6629-6634$$pChemistry (Weinh.)$$tChemistry - A European Journal$$x0947-6539
000096207 8564_ $$s525616$$uhttps://zaguan.unizar.es/record/96207/files/texto_completo.pdf$$yPostprint
000096207 8564_ $$s172365$$uhttps://zaguan.unizar.es/record/96207/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000096207 909CO $$ooai:zaguan.unizar.es:96207$$particulos$$pdriver
000096207 951__ $$a2021-09-02-09:08:22
000096207 980__ $$aARTICLE