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Abstract This work introduces an innovative Access Point (AP) allocation algorithm for dense Wi-Fi networks, which relies 

on a centralised potential game developed in a Software-Defined Wireless Networking (SDWN)-based framework. The 

proposed strategy optimises the allocation of the Wi-Fi stations (STAs) to APs and allows their dynamic reallocation according 

to possible changes in the capacity of the Wi-Fi network. This paper illustrates the design of the proposed framework based 

on SDWN and the implementation of the potential game-based algorithm, which includes two possible strategies. The main 

novel contribution of this work is that the algorithm allows us to efficiently reallocate the STAs by considering external 

interference, which can negatively affect the capacities of the APs handled by the SDWN controller. Moreover, the paper 

provides a detailed performance analysis of the algorithm, which describes the significant improvements achieved with respect 

to the state of the art. Specifically, the results have been compared against the AP selection considered by the IEEE 802.11 

standards and another centralised algorithm dealing with the same problem, in terms of the data bit rate provided to the STAs, 

their dissatisfaction and Quality of Experience (QoE). Finally, the paper analyses the trade-off between efficient performance 

and the computational complexity achieved by the strategies implemented in the proposed algorithm. 

Keywords Access point allocation; Potential game; Quality of experience; Software-defined wireless networking; Wireless 

LAN 

1. Introduction 

WI-FI networks are now ubiquitously deployed, e.g., in 

apartment buildings, work places and public spaces such as 

airports, shopping malls and university campuses. Dense 

IEEE 802.11 Wireless Local Area Networks (WLANs) 

employ IEEE 802.11 Access Points (APs) configured to 

work on overlapping Radio Frequency (RF) channels to 

provide Wi-Fi stations (STAs) with sufficient signal 

coverage and efficient connectivity. However, Wi-Fi 

operators need to deal with the ever-increasing requirement 

of higher bandwidth, different Quality of Service (QoS) 

based on users’ applications, and better connectivity. 

Addressing this challenge is becoming increasingly daunting 

due to a massive diffusion of bandwidth-hungry Wi-Fi 

applications. Considering that the Wi-Fi spectrum capacity 

is limited, the serious increment of wireless traffic demand 

is now causing over-congestion within the WLANs. 

Hence, the selection of an appropriate AP during the 

association process plays a major role in guaranteeing a fair 

and balanced allocation of Wi-Fi resources among STAs. A 

number of contributions can be found in the state of the art 

dealing with AP allocation aiming to maximize the QoS of a 

certain Wi-Fi user [1]-[19]. Our solutions presented in [16]-

[19] are among the few contributions that try to address the 

AP allocation challenge while also recognising the 

heterogeneous QoS demands of STAs. These contributions 



 

propose association strategies that match the suitability of 

users’ traffic with a particular AP in terms of their QoS 

demand. In these previous contributions, we proposed an AP 

selection framework built on top of a Software-Defined 

Wireless Networking (SDWN) architecture [20]. In this 

architecture, the SDWN controller is the central entity that 

manages the Wi-Fi networks and executes the AP selection 

algorithm. 

Although these contributions all offer QoS aware AP 

selection algorithms, they assume that the availability of Wi-

Fi network resources and AP bandwidth capacities is always 

the same. In reality, Wi-Fi networks are prone to changes, 

perhaps due to the presence of external interference, which 

affects the availability of their resources. In fact, many Wi-

Fi networks operate in environments where certain APs are 

exposed to external interference from inaccessible sources. 

For instance, many Wi-Fi networks deployed in public 

spaces such as airports and train stations have to coexist with 

other Wi-Fi networks owned by small shops and operate on 

the same transmission channels. In such situations, AP 

selection should be able to cope with these changes in 

conditions by reallocating STAs to another AP should their 

current AP resources drop below a given level. 

However, since most of the mentioned contributions adopt 

a static centralised approach to the AP selection problem, the 

introduction of dynamic reallocation of STAs according to 

changes in the capacity of the Wi-Fi network might result in 

extra computational complexity and scalability issues at the 

central control entity.  

In this paper, we aim to address these limitations by 

introducing a novel AP allocation algorithm for dense Wi-Fi 

networks, which relies on a centralised potential game 

supported by the SDWN-based framework proposed in [17]-

[19]. Due to the dynamic nature of the analysed scenario, the 

search for an optimal solution to the allocation problem in 

real time may not be feasible, making the use of suboptimal 

heuristics mandatory. Under these premises, the use of 

potential games to approximate the optimal allocation may 

be suitable. Potential games [21] are typically employed in 

order to execute a distributed optimization of resource 

allocation by means of their convergence to a Nash 

Equilibrium (NE) that can be always reached [22]. On the 

other hand, the development of potential games in dense 

distributed networks, such as the one considered in this 

paper, is commonly characterized by high complexity 

because each player typically needs to acquire relevant data 

from the other players of the network, which makes this 

approach not scalable. However, the use of SDWN as a 

management framework in our work allows us to reduce the 

implementation complexity by playing the potential game at 

the central controller. Moreover, our potential game-based 

approach adopts two commonly-used game theory strategies 

explained throughout the rest of the paper. The difference 

between these strategies and their pros and cons are 

described in detail in Section 5 and Section 6, respectively. 

In [18] and [19], we proposed a preliminary version of the 

AP allocation approach based on the potential game, which 

we have extended in this paper in the facets illustrated in 

Section 2.  

The proposed AP allocation algorithm helps to optimise 

the allocation of AP resources to STAs, which is very 

important in conditions where these resources become 

scarce. Our simulation results show that the algorithm 

achieves a reduction of users’ dissatisfaction of up to roughly 

56% in comparison with the most relevant existing algorithm 

presented in [17]. Moreover, our performance analysis 

illustrates that the computational complexity of our 

algorithm is reduced even for a high number of STAs. 

The rest of the paper is organized as follows: Section 2 

illustrates the state of the art and our new contributions. In 

Section 3 we present the system model together with the 

formulation of the problem and the framework based on 

SDWN. Section 4 includes a detailed description of the 

potential game. In Section 5 we describe the AP allocation 

algorithm relying on the potential game. In Section 6 we 

define the simulation model we implemented to assess the 

proposed algorithm and the analysis of the performance. 

Finally, we provide our conclusions and future work in 

Section 7. 

 

2. Related Works and New Contributions 

AP allocation is a problem broadly addressed in the state of 

the art. In this section, we first analyse the main papers for 

dealing with AP allocation found in the literature and then 

present the motivations behind our work and new 

contributions. Typically, existing works on AP allocation are 

divided into distributed (e.g. [1]-[11]) and centralised (e.g. 

[12]-[19] and [22]) solutions. Specifically, in the case of 

distributed strategies, the user devices first gather 

measurements related to certain performance metrics from 

the network and then choose the best AP based on such 

measurements. In the case of centralised solutions, the 

decision on the selection of the best AP is performed by a 

controller based on its overall view of the managed network.  

Examples of distributed solutions can be found in the 

literature that are based on game theory [1]-[5], neural 

networks [6], cross-layer approaches [7]-[9], and Clear 

Channel Assessment Threshold (CCAT) adjustment that 

takes into account co-channel interference [10]. Moreover, 

the authors in [11] presented a classification of works dealing 

with AP selection for IEEE 802.11 Wi-Fi networks and then 

introduced a distributed strategy, which addresses Quality of 

Experience (QoE) enhancement. 

For centralised solutions, the authors in [12] first 

presented a classification of fairness criteria, which are 

largely used in centralised resource assignments. Then, they 

proposed an AP association algorithm to obtain proportional 

fairness based on a function, which represents a performance 

revenue and is achieved every time a new STA tries to 



 

connect to the network. Moreover, in [13] the authors 

proposed a detailed survey of load balancing strategies based 

on different metrics and approaches. The works proposed in 

[14]-[19] considered SDN-based platforms to implement 

centralised approaches to address AP selection for Wi-Fi 

users. Finally, the work in [22] proposed a cloud-based 

access node selection approach using a potential game. 

An important drawback of the solutions proposed in [1]-

[15] and [22] is that all the Wi-Fi users are treated in the same 

manner. In reality, each Wi-Fi user may be running a certain 

service or experiencing an application that needs particular 

QoS requirements. The works proposed in [16]-[19] 

overwhelm such a drawback through the introduction of an 

association approach, which matches each user traffic with 

the most suitable AP depending on the corresponding bit rate 

requirements. Among these works, we introduced an 

innovative and efficient reallocation of APs to the STAs 

when needed using the centralised potential game in [18] and 

[19] to improve the results presented in [16] and [17]. 

However, these works do not consider possible changes in 

the capacity of a Wi-Fi network due to dynamic interference 

that can negatively affect the performance of the network. 

The novel contributions of the AP allocation algorithm 

proposed in this paper with respect to our works published in 

[16]-[19] can be summarized as follows:  

 Wi-Fi dense radio environments are characterized by 

sources of interference, which are not under the control 

of our SDWN architecture ([20], [23]). In this context, 

we implemented an innovative AP allocation 

algorithm, which takes into consideration such 

interference. The proposed implementation allows us 

to efficiently reallocate relevant APs to STAs’ flows 

connected to the network when the external 

interference negatively affects the capacities of these 

APs managed by the SDWN controller. We will 

demonstrate the benefits of this approach in Section 6. 

 For the first time, we exploit the centralised nature of 

SDWN and the network programmability it offers in 

order to consider two different strategies in our 

potential game-based algorithm, named Best response 

strategy and Better response strategy [22]. Note that 

although the work in [22] proposed a detailed access 

node selection solution based on a potential game, it 

does not consider the QoS requirements of users and is 

not tailored for dense 802.11 Wi-Fi networks. In 

Section 6 we will analyse the benefits and 

disadvantages of each of these strategies. Moreover, 

the use of SDWN allows us to exploit the benefits of a 

potential game while overcoming its drawbacks in 

terms of scalability.  

 In terms of evaluation, we have enhanced the analysis 

of the performance results in [18] and [19] through 

QoE assessment, and provided a detailed discussion on 

the trade-off between performance results and 

computational complexity for the two strategies 

implemented in our potential game. 

  

3. System Model and Problem Formulation 

In this paper, we deal with a dense Wi-Fi environment, where 

a set of APs are managed centrally using the SDWN-based 

framework illustrated in Figure 1. We exploit the centralised 

nature of this framework for the implementation of an 

algorithm that associates a set of downlink application flows 

required by Wi-Fi STAs to the managed APs that could 

satisfy their QoS requirements in terms of the data bit rates. 

In detail, every time a flow attempts a connection to the 

network, the controller performs a centralised potential game 

to obtain an optimized AP allocation for all the flows 

currently active in the network. Note that the working 

principle of the proposed algorithm will be detailed in 

Section 5.  

 

3.1. Wi-5 SDWN Framework 

The framework considered for this work is based on the 

architecture developed for the EU H2020 Wi-5 (What to do 

With the Wi-Fi Wild West) project [24], which addresses 

spectrum congestion in Wi-Fi networks by relying on 

SDWN as an approach to manage the APs. In such an 

architecture, management strategies are designed as 

applications on top of the SDWN controller using its 

northbound API. The architecture already offers a number of 

applications that deal with the spectrum congestion problem 

in Wi-Fi networks [25]-[27]. In the Wi-5 architecture, a 

spectrum plane has been considered in order to strengthen 

the operational capabilities of IEEE 802.11 APs through the 

introduction of novel primitives for monitoring and 

configuration [28]. This approach enables us to make APs 

 

Figure 1: SDWN-based Wi-Fi Management Framework. 
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programmable and allows fine-grained spectrum assignment 

and management [20], [28], [29]. 

The aim of this paper is the evaluation of the proposed 

algorithm in the framework illustrated in Figure 1 that, as we 

will detail in Section 6, has been simulated in order to 

achieve preliminary performance results. The next step will 

be the implementation and real-time evaluation in the above-

mentioned Wi-5 architecture. 

As shown in Figure 1, the framework relies on some 

modules to gather periodic measurements from the radio 

environment, monitor the STAs’ flows that try to connect to 

the network, and associate such flows to the best AP. In 

detail, the framework consists of the following entities: 

 Provided Bit Rates: This module gives the bit rate 

available in each AP of the network that can be 

provided to a new flow. It is computed at the physical 

layer and leans on the channel bandwidth, the 

monitored inter-AP interference, and the location of the 

STA trying to connect to the network. Moreover, this 

bit rate is mapped to the best Modulation Coding 

Scheme (MCS) to obtain the highest bit rate that can be 

provided based on the Orthogonal Frequency Division 

Multiple Access (OFDMA) modulation scheme 

included in the latest 802.11 protocols, such as 802.11g 

and n. 

 Required Bit Rates: This module gives the QoS 

demand in terms of the minimum data bit rate of the 

flow requesting connection, which is a common 

requirement for online applications such as Voice over 

IP (VoIP) and YouTube, as we will explain in Section 

6. It can be obtained through, for instance, a Machine 

Learning (ML) based solution (e.g. [30]), which can be 

easily implemented in our framework. Details on ML-

based classification strategies that could be employed 

here can be found in [17]. 

 Knowledge Database: This module stores the 

following information: 1) the QoS requirements in 

terms of the data bit rate corresponding to each active 

flow computed by the Required Bit Rates module; 2) 

the link capacity in terms of the bit rate available for 

each active flow in the network and computed by the 

Provided Bit Rates module; and 3) the latest evaluated 

network utility function U, which is a metric used in 

the AP allocation algorithm and detailed in the next 

subsection. The data stored in Knowledge Database is 

updated either in the case of a new flow connecting to 

the network, or when an active flow disconnects. 

 Decision Making: This module allows an AP 

allocation every time a new flow attempts a network 

connection. It first gathers a set of information from the 

Required Bit Rates, Provided Bit Rates and Knowledge 

Database modules. Then, it uses this information to 

play the potential game and assign the most suitable AP 

to each active flow in the network based on our 

algorithm. The details of the algorithm are provided in 

Section 5. 

 

3.2. Problem Formulation  

To better formulate the problem of AP allocation and flow 

association, let us consider N as a set of IEEE 802.11 APs, 

where n = |N| is the size of this set of APs. We also assume 

that these APs are providing connectivity to a set of flows with 

different QoS demands, represented as M, where m = |M| is 

the size of this set of flows. The notations and definitions 

utilized in this paper are summarized in Table 1. 

Let 𝜓𝑖,𝑗 indicate the Signal to Interference plus Noise Ratio 

(SINR) for flow i when connected to AP j. Note that 𝜓𝑖,𝑗 is 

measured at the position of the STA requiring that AP j serves 

its flow i. The value of 𝜓𝑖,𝑗 is defined as follows [17]: 

 

𝜓𝑖,𝑗 =
𝑔𝑖,𝑗⋅𝑝𝑗

∑ 𝑔𝑖,𝑘⋅𝑝𝑘𝑘∈𝑁′ +𝑁0
   (1) 

 

Here, 𝑔𝑖,𝑗 is the channel gain from AP j to flow i, including 

the transmitter gain, receiver gain and path loss between the 

AP and the STA requiring the flow connection. 𝑝𝑗 is the 

transmit power of AP j. 𝑁0 is the additive Gaussian white 

noise. 𝑁′ ⊆ 𝑁 is the set of APs that interfere with AP j and 

affect the SINR experienced by flow i. Note that we consider 

the interference only from APs transmitting in  the downlink 

direction for the computation of the SINR, since the number 

of downlink flows is much greater than the amount of uplink 

flows in typical Wi-Fi networks [31]. However, as we will 

explain in Section 6.3, we also present an experiment with 

sources of external interference, which can include also APs 

Notation Description 

N Set of APs 

n n = |N|, the number of APs  
M Set of flows 

m m = |M|, the number of flows 

𝜓𝑖,𝑗 SINR of flow i connected to AP j 

𝑔𝑖,𝑗 Gain from AP j to flow i 

𝑝𝑗 Transmit power of AP j 

𝑁0 Additive Gaussian white noise 

𝑏𝑖,𝑗 Link capacity for flow i connected to AP j 

𝐵𝑊𝑗 Bandwidth assigned to AP j  

Ri,j Bit rate provided to flow i by AP j 

Aj Number of flows connected to AP j 

𝐶𝑗 Maximum capacity of AP j 

Ωi,j Sigmoid function for flow i from AP j  

Rreq,i Bit rate required by flow i 

𝑓𝑖,𝑗 Fittingness factor metric for flow i from AP j 

U Network utility function 

𝐴𝑃𝑖 AP allocated to flow i 

𝛤 Formal game 

𝑆𝑖 Strategies used by player i 

𝑠𝑖 Strategy selected by player 𝑖 
𝑠−𝑖 Strategies selected by all players apart from player i 

𝑢𝑖 Utility function of player i 

V Potential function 

Table 1: Notations and Definitions 



 

not managed by our controller and STAs transmitting in the 

uplink direction.      

The bit rate levels available in each AP vary between 1 

Mbps and 54 Mbps according to 802.11g, which is the 

standard considered in the Wi-5 project. Each of these bit 

rate levels represents the link capacity 𝑏𝑖,𝑗 between flow i and 

AP j that is measured through 𝜓𝑖,𝑗 by the Shannon–Hartley 

theorem [17] and given by the Provided Bit Rates module. In 

detail, a parameter 𝑏′𝑖,𝑗  is first calculated as follows: 

 

𝑏′𝑖,𝑗 = 𝐵𝑊𝑗 ∙ 𝑙𝑜𝑔2(1 + 𝜓𝑖,𝑗)  (2) 
 

Here, 𝐵𝑊𝑗 is the bandwidth given to AP j in Hz. Once 

𝑏′𝑖,𝑗  is determined, 𝑏𝑖,𝑗 is calculated by mapping 𝑏′𝑖,𝑗 to the 

level closest to but below the bit rate level provided by the 

OFDMA scheme supported by 802.11g. 

Once 𝑏𝑖,𝑗 has been calculated, Ri,j that represents the bit 

rate provided to flow i by AP j, can be calculated through the 

resource allocation algorithm defined in [17]. This algorithm 

has been implemented for a dense Wi-Fi environment where 

all the users have the same opportunity to transmit. Further 

details on this resource allocation algorithm can be found in 

[17]. The value of Ri,j is also related to the total number of 

flows allocated to AP j and denoted here as Aj, and to the 

highest capacity 𝐶𝑗 in bps available in AP j. Ri,j can be 

expressed as a function ω of these parameters: 

 

𝑅𝑖,𝑗 = 𝜔(𝑏𝑖,𝑗, 𝐴𝑗 , 𝐶𝑗)  (3) 

 

We now illustrate the Fittingness Factor (FF) metric used 

in our algorithm, which is a performance parameter based on 

the concept proposed in [32]. Specifically, FF is based on the 

function introduced in [17] and [33] with its value ranging 

between 0 and 1. In our AP allocation algorithm, FF allows 

us to compute the suitability of an AP j to meet a wireless 

user’s QoS demand for a particular flow i. FF is formulated 

through the extension of a sigmoid function Ωi,j [34] that 

indicates the bit rate reachable by flow i from AP j for the 

demanded bit rate.  

Since our objective is to devise an AP allocation algorithm 

in a dense Wi-Fi environment where radio spectrum is a 

scarce resource, it is important to define FF so that it 

penalises APs that waste this resource, i.e. offering a higher 

transmission bit rate than required. Therefore, for each flow 

i and each AP j, we define the FF parameter for our algorithm 

as follows: 

 

𝑓𝑖,𝑗 =
1−𝑒

−
𝛺𝑖,𝑗

𝜌∙(𝑅𝑖,𝑗 𝑅𝑟𝑒𝑞,𝑖⁄ )

𝜆
  (4) 

 

In (4),  is a normalization factor considered to guarantee 

that FF is included between 0 and 1, Ωi,j represents the 

mentioned sigmoid function, and both can be calculated as 

follows: 

 

𝛺𝑖,𝑗 =
[𝜌∙(𝑅𝑖,𝑗 𝑅𝑟𝑒𝑞,𝑖⁄ )]

𝜉

1+[𝜌∙(𝑅𝑖,𝑗 𝑅𝑟𝑒𝑞,𝑖⁄ )]
𝜉   (5) 

 

𝜆 = 1 − 𝑒
−

1

(𝜉−1)1 𝜉⁄ +(𝜉−1)(1−𝜉) 𝜉⁄
  (6) 

 

In (4)-(6),  and ρ are shaping parameters that represent 

the various degrees of elasticity between required bit rate 

𝑅𝑟𝑒𝑞,𝑖 and the bit rate 𝑅𝑖,𝑗 provided in the AP. Note that the 

selection of these metrics affects the behaviour of the FF 

defined in (4), which influences the suitability of the AP for 

a particular flow with respect to the bit rate availability and 

bit rate requirement. Moreover, ξ and ρ are values fixed in 

the controller, not related to the radio access technology 

providing connection to the users and, therefore, only 

influence the behaviour of the FF. For instance, as we will 

indicate in Section 6.1, in this paper we consider ξ = 5 that 

allows a smooth decrease of the FF when the available bit 

rates gradually become larger than the requirements, and ρ = 

1.3 meaning that the maximum value of the FF is obtained 

when the assignment equals the requirement (i.e., when 

Ri/Rreq,i = 1) [17]. This selection always allows us to prioritize 

the most suitable APs rather than those guaranteeing the 

highest QoS in the optimization problem, which is the 

principal aim of the algorithm based on the potential game. 

Note that the performance analysis implications of using 

different values for parameters ξ and ρ are out of the scope 

of this paper. However, different behaviours of the FF and 

consequent changes of the performance results obtained 

selecting different values of ξ and ρ can be found in 

referenced paper [17].  

In addition, to optimise the suitability of APs to serve 

flows, the algorithm also needs to optimise the allocation of 

these flows among APs such that it avoids spectrum 

congestion as much as possible. For this purpose, we define 

the network utility function U introduced in the previous 

subsection as the log-sum of the FFs of all the m flows served 

by the network. More specifically, we aim to guarantee a 

proportional fairness in the AP allocation. Therefore, we 

need to use U to optimise the sum of the logarithms of the 

FFs computed for each flow i with its serving AP 𝐴𝑃𝑖. 

However, since it is possible that a FF value is zero, we need 

to modify the objective function U such that we bypass a 

possible inclusion of a zero value in the logarithm argument. 

This leads to U optimising the sum of the logarithms 

calculated from the FF plus one for each flow i served by AP 

𝐴𝑃𝑖 [22]: 
 

𝑈 = ∑ log(𝑓𝑖,𝐴𝑃𝑖
+ 1)𝑚

𝑖=1   (7) 

 

4. Potential Game   

In game theory, a potential game is a particular case of a 



 

formal one. Therefore, let us start by introducing a formal 

game, which is characterized by the following parameters: i) 

a set of players, ii) the space of strategies, and iii) a utility 

function that has to be optimised. Such parameters are 

denoted as 𝛤 = {𝑀,  {𝑆𝑖}𝑖𝜖𝑀 ,  {𝑢𝑖}𝑖𝜖𝑀  }. 

Here, M is the set of players, which in our work is the set 

of flows active in the network. 𝑆𝑖 is the set of strategies that 

player i, i.e. flow i in this paper, employs. 𝑢𝑖: 𝑆 → ℝ is the 

utility function of player i, with 𝑆 =×𝑖∈𝑀 𝑆𝑖  being the 

strategy space of the game and defined as the Cartesian 

product of the strategy sets of all the flows. 

Each strategy 𝑠 ∈ 𝑆 includes one particular strategy from 

every player (i.e. flow), where 𝑠 =

(𝑠1, … , 𝑠𝑖−1, 𝑠𝑖 , 𝑠𝑖+1, … 𝑠𝑀) and can also be denoted as 𝑠 =

(𝑠𝑖 , 𝑠−𝑖). Here, 𝑠𝑖 is the strategy selected by player 𝑖 and 

𝑠−𝑖 = (𝑠1, … , 𝑠𝑖−1, 𝑠𝑖+1, … 𝑠𝑀) are the strategies selected by 

the other players. Accordingly, we first formulate the AP 

allocation problem as a formal game using the utility 

function 𝑢𝑖(𝑠) = 𝑢𝑖(𝑠𝑖 , 𝑠−𝑖). Note that in this context, 

strategy 𝑠𝑖 represents the selection of an AP 𝑗 to serve flow 

i, i.e. 𝑠𝑖 = 𝑗 and  𝑠−𝑖 represents the selections of other APs to 

serve all the other flows. However, a key issue that arises 

when formulating the AP allocation problem as a formal 

game is the selection of 𝑢𝑖 to obtain an efficient general 

performance including the individual actions of all the 

players, which in this context are represented by the flows. 

Furthermore, it is also desirable to have a point of 

equilibrium in order to guarantee the convergence of the 

game when trying to achieve the optimisation. Therefore, we 

consider the Nash Equilibrium (NE) for the game 𝛤, which 

is a specific profile s∗ ∈ S of actions for every flow i ∈ M. It 

guarantees the condition denoted as follows [21]: 

 

𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖

∗ ) ≥ 𝑢𝑖(𝑠𝑖, 𝑠−𝑖
∗ )   (8) 

 

Here, 𝑠𝑖 (≠ 𝑠𝑖
∗) represents any strategy of player i from 

strategy space 𝑆𝑖 , and 𝑠−𝑖
∗  are the strategies of all the other 

players in the profile s*. Note that the condition formulated 

in (8) needs to be addressed for all 𝑠𝑖  ∈ 𝑆𝑖. The convergence 

of the game to a NE guarantees the achievement of a stable 

solution. Furthermore, if any change in the considered 

scenario is detected, the network will be able to respond to 

such a change. In fact, any deviation from the converged NE 

triggers the game in order to achieve a new one.  

Let us discuss the development of our AP allocation 

approach designed as a potential game. In detail, the 

potential game is a specific game characterized by a potential 

function defined as V: S →ℝ to address the following 

condition [21]:  

 
∆𝑢𝑖 = 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) − 𝑢𝑖(𝑠𝑖

′, 𝑠−𝑖) = ∆𝑉 =   (9) 
𝑉(𝑠𝑖, 𝑠−𝑖) − 𝑉(𝑠𝑖

′, 𝑠−𝑖), ∀𝑖 ∈ 𝑀, ∀ 𝑠𝑖, 𝑠𝑖
′ ∈ 𝑆𝑖 

 

Equation (9) guarantees that each interest of a certain 

player is coordinated with the interest of all the players 

because any change ∆𝑢𝑖 in the utility function of player i is 

straightly related to the same change ∆𝑉 for the potential 

function. Hence, any player choosing a strategy, which 

enhances its utility given all the strategies of all the other 

players, will automatically allow us to improve the potential 

function. Moreover, if only one player enhances its utility 

function given the latest action of all the other players, the 

process will always converge to a NE in a limited number of 

steps [22].  

As we have introduced in Section 1, in our centralised 

strategy, the flows are the players. However, it is worth 

noting that STAs only gather and send information to the 

central controller but do not exchange information among 

them nor actually take the decision on the AP that serves its 

flows. The decision on the proposed AP allocation is 

performed by the SDWN controller that plays the game 

internally for all the active flows in the network. In this 

specific case, potential function V is represented as the 

objective to be optimised, which is network utility U defined 

by (7). We consider utility function 𝑢𝑖 equivalent to potential 

function V for our problem (identical interest games), which 

ensures that (9) is satisfied, and then, the game is potential: 

 

𝑢𝑖(𝑠𝑖, 𝑠−𝑖) = ∑ log(𝑓𝑘,𝑠𝑘
+ 1)𝑚

𝑘=1   (10) 

 

Here, 𝑠𝑘 is the strategy of player (or flow) k, i.e., its 

allocated AP 𝐴𝑃𝑘. For the proposed algorithm, a repeated 

sequential game with round robin scheduling is played by the 

SDWN-based controller until it finds a configuration s* that 

achieves the pure NE [35]. The strategy space 𝑆𝑖  for a 

generic flow i is the set Wi ⊆ N of APs providing coverage 

to flow i and the round robin scheduling is based on two 

possible implemented strategies defined as follows: 

 Best Response Strategy: in this case, at each game 

step and for each flow or player i, the SDWN-based 

controller looks for the best ui in the set Si=Wi. Thus, a 

strategy ti is a best response if:  

 

𝑢𝑖(𝑡𝑖, 𝑠−𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑠−𝑖), ∀ 𝑠𝑖 ∈ 𝑊𝑖   (11) 

 

 Therefore, at each step and for each flow i, condition 

(10) is computed |Wi| times, considering |Wi| is the 

number of APs included in Wi. 

 Better Response Strategy: in this case, at each game 

step and for each flow or player i, the SDWN-based 

controller looks for a strategy in the set Si=Wi that 

improves its previous ui. Thus, a strategy ti is a better 

response if: 

 

𝑢𝑖(𝑡𝑖, 𝑠−𝑖) ≥ 𝑢𝑖(𝑠′𝑖, 𝑠−𝑖)   (12) 

 

where 𝑠′𝑖  represents the strategy of player i in the 

previous game step. Therefore, at each step and for 



 

each flow i, condition (10) is computed up until finding 

the first AP included in Wi that improves ui.   

Further details on the implementation of both possible 

strategies in the proposed algorithm will be provided in the 

next section. 

 

5. AP Allocation Algorithm 

5.1. Best Response Strategy 

As mentioned previously, the objective of the algorithm 

proposed in this paper is to find the most suitable AP for each 

downlink flow requested by a user of the Wi-Fi network. In 

this subsection, we illustrate the Best Response Strategy 

described below as Algorithm 1 and executed by the 

controller each time a new downlink flow tries to join the 

network, which can be either a new flow for an STA already 

connected but requiring a change to the bit rate of its 

application, or a flow for a new STA. 

First, the Decision Making module in Figure 1 gathers 

from the Provided Bit Rates module all the link capacities. 

These link capacities are the bit rates that the APs can 

guarantee to the new flow trying to connect, and are 

calculated through (3), which is shown as the line 1 of 

Algorithm 1. Second, the Decision Making module obtains 

the QoS requirements of the new flow in terms of the bit rate 

from the Required Bit Rates module (line 2 of Algorithm 1). 

This information is used later to calculate the FF metric.  

Third, the algorithm acquires from the Knowledge 

Database the information corresponding to all the other 

flows already active in the network (line 3 of Algorithm 1). 

This information includes the bit rate requirements and the 

provided bit rates, which can be computed using (1)-(3), as 

well as the latest calculated network utility U.  

Fourth, the Decision Making module executes the round 

robin scheduling until it reaches the NE (line 6 of Algorithm 

1). In detail, for each flow i connected to the network and for 

each AP providing coverage to flow i (i.e., the APs included 

in the set  Wi ⊆ N), the Decision Making module calculates 

𝑢𝑖 in order to optimise it through condition (11). This 

optimisation will need to take into account the requirements 

of all the m flows active in the network (lines 8-18 of 

Algorithm 1).  

To achieve the optimisation, the Decision Making module 

first uses (4)-(6) to update all the FFs of the flows influenced 

by flow i connecting to AP wj in set Wi (line 10 of Algorithm 

1), and then applies the new FF values for each flow k 

connected to its own AP, i.e., APk, to calculate 𝑢𝑖 through 

(10) (line 11 of Algorithm 1). Afterwards, if 𝑢𝑖 is higher than 

the latest value of U, the Decision Making module assigns 

AP 𝑤𝑗  to flow i, and updates U (lines 12-16 of Algorithm 1). 

The round robin scheduling stops when the NE is reached, 

i.e. condition NE_reached=1 occurs (lines 19-21 of 

Algorithm 1). Finally, the Decision Making module updates 

the Knowledge Database by storing the required bit rate of 

the new flow, the updated bit rates of other flows that have 

been affected when the NE has been reached, and the new 

value of U (line 23 of Algorithm 1). Note that this 

optimisation process might result in a horizontal handover of 

some users to other APs. However, as demonstrated in [28] 

and [36], our Wi-5 SDWN architecture allows seamless 

handover solutions to move STAs among APs when needed, 

such as when the potential game is triggered, without 

noticeable data loss. 

 
Algorithm 1 - AP Allocation  

1:    get info on new flow from Provided Bit Rates 

2:    get info on new flow from Required Bit Rates 

3:    get info on all active flows and last U from Knowledge  

       Database 

4:    include info on new flow in set M 

5:    NE_reached=0 

6:    while NE_reached==0 do  

7:        detected_change=0        

8:        for i=1 to m do 

9:            for j=1 to |Wi | (Wi ⊆ N) do 

10:            update FFs for APs influenced when selection 𝑠𝑖 is the  

 wj-th AP with 1 ≤ 𝑤𝑗 ≤ 𝑛 

11:  compute 𝑢𝑖 = ∑ log(𝑓𝑘,𝐴𝑃𝑘
+ 1)𝑚

𝑘=1  

12:        if 𝑢𝑖 > 𝑈 do 

13:         detected_change=1 

14:                   allocate AP 𝑤𝑗  to flow i 

15:                   𝑈 = 𝑢𝑖 

16:        end if  

17:          end inner for 

18:      end outer for 

19:      if detected_change==0 do 

20:         NE_reached=1 

21:      end if 

22:  end while 

23:  update the Knowledge Database 

 

 

5.2. Better Response Strategy 

In the case of Better Response Strategy, the sequence of steps 

for the algorithm implemented in the SDWN-based controller 

includes a break command after the line 15 of Algorithm 1, 

which interrupts the ‘inner for’ when the utility function for a 

certain flow is improved in the first possible AP. 

 

5.3. Computational Complexity 

Let G be the number of game cycles performed to get the NE, 

m the number of flows active at a particular time, and w the 

average number of APs that can be allocated to a new flow. 

This means that the ‘while loop’ is executed G times, the 

outer ‘for loop’ is repeated m times, and the inner ‘for loop’ 

is executed w times. Hence, the computational complexity of 

the proposed AP allocation algorithm can be denoted as 

O(Gwm). Note that in the case of the Better Response 

Strategy the complexity can be reduced because this solution 

looks for the first available AP that can improve U during the 

round robin scheduling. The reduction of complexity 



 

achieved by the Better Response Strategy with respect to the 

Best Response Strategy will be discussed in detail in Section 

6. 

 

6. Performance Evaluation 

The objective of this section is to demonstrate the performance 

gains of our algorithm presented in Section 5 through a 

simulation campaign. Hence, we have carried out a detailed 

set of experiments by using a MATLAB-based simulator that 

implements our SDWN controller managing the APs of a 

dense IEEE 802.11 environment as illustrated in Section 3.1. 

The use of simulators is effective and convenient for us to 

validate solutions and achieve preliminary performance 

results. Thus, they were used to assess the capability of our 

algorithm before its real-time implementation in the Wi-5 

architecture detailed in [29].  

Note that the Wi-5 architecture includes all the entities of 

the framework illustrated in Figure 1 and can provide all the 

input needed for the real-time execution of the algorithm, such 

as the available bit rate and the type of application flow, in the 

order of milliseconds through its monitoring capability [23]. 

For instance, in [37] we demonstrated how the controller is 

able to compute in real-time the available bit rate for a certain 

flow while the STA that required it was moving, i.e., the 

available bit rate was dynamically updated in relation to 

available APs. This information, together with the bit rate 

requirement, was then used to compute the updated FF in real-

time, which is a key metric needed as an input to the potential 

game.  

 

6.1. Scenario and Metrics 

For the assessment of our AP allocation algorithm, we 

simulated the SDWN-based controller in a scenario based on 

the system model illustrated in Figure 1. Specifically, the 

scenario includes a set N of 5 IEEE 802.11g APs (i.e. n=5) 

randomly distributed in an area of 100m×100m with a 

minimum distance of 7 meters between them, and a set M of 

100 flows progressively created and distributed uniformly 

(i.e. m∈{1, …, 100}). IEEE 802.11g APs are configured to 

work on the Industrial, Scientific and Medical (ISM) 2.4 

GHz radio bands, which include 3 non-overlapping channels 

(i.e., channel 1, 6 and 11). Hence, the n (≥ 4) APs in the 

considered scenario are the starting point of the densification 

problem, which becomes more serious when the number of 

STAs connected to the network increases to 100 [38], [39]. 

Note that the selection of this area represent general dense 

Wi-Fi environments, which have been considered to address 

the use cases analysed in the context of the Wi-5 project [24], 

[38]. 

The data bit rate requirements for the flows of the STAs 

that try to join the network have been randomly selected from 

a set of bit rates ranging from 40 kbps to 2 Mbps. The 

transmit power of all the APs is 25 dBm. The values of 𝐵𝑊𝑗 

in (2) and 𝐶𝑗 in (3) are, respectively, 20 MHz and 54 Mbps 

for all the APs included in the network. Finally, ξ and ρ in 

(4)-(6) are 5 and 1.3, respectively.  

Moreover, the averaged outcome of 10 independent 

simulations has been considered to generate all the results in 

all the experiments illustrated in the next subsections, which 

have provided a sufficient number of samples to achieve an 

accurate computation of the performance metrics. 

Specifically, in order to ensure that the results provide 

realistic values and are statistically meaningful in the 

considered scenario, the confidence intervals have been 

included in the performance analysis.  

To benchmark the performance of our AP allocation 

algorithm, we analyse a comparison against the following 

referenced solutions: 

 AP selection based on the highest Received Signal 

Strength Indicator (RSSI), which is the solution 

proposed in the 802.11 standards; 

 Our previous AP selection approach proposed in [16] 

and [17] that allocates an AP to a flow based on a 

metric named Network Fittingness Factor (Network 

FF). This metric jointly addresses the data bit rate 

demand of a flow trying to connect to the network, and 

the data bit rate demand of the other flows active in the 

network. Our choice of this algorithm is justified by the 

fact that it uses the same SDWN-based framework 

described in Section 3.1. This algorithm also shows 

that the use of the Network FF provided improvements 

over the state of the art such as the work presented in 

[15]. Note that the computational complexity of this 

AP selection approach is also linearly related to the 

number of STA flows, i.e. O(m). Further details about 

this algorithm are provided in Appendix 1; 

 A centralized optimal solution that looks for the 

allocation of the flows to the APs that maximizes the 

value of the utility U. This optimal solution is obtained 

using brute force search by evaluating the network 

utility function U for all the possible combinations of 

APs and flows. In the worst case, i.e., when Wi = N for 

each flow i included in set M, the number of 

combinations to evaluate is Nm. 

For the evaluation of our algorithm against the above two 

approaches, we consider the following performance 

parameters:  

 Data Bit Rate: This is the average data bit rate achieved 

at the end of the simulation by all the STAs’ data flows 

connected to the network. 

 Dissatisfaction: This is the percentage of flows that 

joined the network with their provided bit rates lower 

than their requirements, and it is updated by each new 

AP allocation.  

 Percentage of Flows that reach a Good Mean 

Opinion Score (MOS): This parameter is used to 

measure the QoE perceived by a user when running an 

application that generates a downlink flow [40]. This 

metric is an arithmetic mean of all the scores achieved 



 

by performing subjective tests. Such scores vary from 

1, which is the lowest one, to 5, which represents the 

highest possible score, as illustrated in Table 2. The 

scores correspond to specific qualities of connection 

and any damage to it from the user perspective. In this 

paper we consider as a performance metric the 

percentage of flows that can achieve at least a Good 

MOS (GMOS) at the end of the simulation. 

 Price of Anarchy (PoA): This parameter is the ratio 

between the worst possible NE and the optimal 

solution. It is used to measure the efficiency of the 

proposed game with regard to the optimum. 

Note that the QoS requirements of the active flows 

generated randomly from devices joining the network 

represent most common online applications such as VoIP, 

Video Streaming, etc. which are illustrated in Table 3. For 

each application, the table includes the following 

parameters: i) the minimum bit rate requirements, ii) the 

MOS reachable in case such requirements are met, iii) the 

quality of the connection that can be experienced by the 

STAs, and iv) the damage related to such a quality. 

In the case of VoIP, the minimum bit rate requirements 

that can assure a GMOS are approximately 40 kbps and 60 

kbps, when codec G.729 and G.726 are used respectively1. 

In the case of video streaming, the minimum bit rate 

requirement to guarantee a GMOS on YouTube is 500 kbps, 

and it is 1 Mbps in the case of premium shows such as 

movies and live events2; whereas 2 Mbps is the bit rate 

suggested for videos on Netflix3. In [17] the relations 

between the GMOS and the corresponding minimum bit rate 

requirements presented in Table 3 are analysed in detail.  

Note that, for the sake of simplicity, we illustrate in the 

analysis of the performance the achieved results only for 

downlink transmissions, including the case of VoIP. This is 

a reasonable assumption since maintaining the minimum bit 

rates needed for VoIP shown in Table 3 assures the GMOS 

for both downlink and uplink transmissions1. 

 

6.2. Performance of the AP Allocation 

The results shown in Table 4, Figure 2, Figure 3 and Table 5 

illustrate the performance achieved by our Potential Game-

based AP allocation algorithm in terms of Data rate, 

Dissatisfaction, GMOS and PoA, respectively, against the 

state of the art. As observed in Table 4, the Best Response 

Strategy of our AP allocation algorithm outperforms the 

RSSI-based solution in terms of the data rate by 32% and the 

Network FF-based algorithm by 12%, when all 100 flows are 

connected to the network. The results in Table 4 also show 

that the Better Response Strategy outperforms the RSSI-

based approach and the Network FF-based algorithm by 30% 

and 10%, respectively. Finally, from the table we can observe 

                                                 
1 http://www.cisco.com/c/en/us/support/docs/voice/voice-quality/7934-

bwidth-consume.html (last access June 2019). 

that both games reach a value of average data rate close to 

the one achieved through the optimal algorithm. 

The results presented in Figure 2 show that using both 

strategies of our algorithm results in less flow dissatisfaction 

than the Network FF-based and RSSI-based approaches. In 

detail, from this figure we can say that when all 100 flows are 

connected to the network, the Best Response Strategy 

outperforms the Network FF-based algorithm by around 

48%, and the RSSI-based solution by 83%. The results also 

show that the Better Response Strategy outperforms the 

Network FF-based algorithm and the RSSI-based approach, 

by 38% and 79%, respectively. Furthermore, from the figure 

we can observe that in terms of Dissatisfaction, both games 

also obtain a result close to the one achieved through the 

optimal approach. Finally, the figure shows the 95% 

confidence interval bounds [41] for different values of flows, 

which confirms the low variability of the proposed solution.   

The results presented in Figure 3 show the performance in 

terms of the percentages of flows that have achieved at least 

a GMOS for 100 flows connected to the network. 

Specifically, in the figure, the left hand side presents the 

performance obtained in the case of Voice, whereas the right 

hand side presents the performance achieved in the case of 

Video. These results show that in the case of Voice, all the 

solutions can assure a GMOS to all the flows connected to 

the network. On the other hand, the results also show that our 

Potential Game-based AP allocation algorithm with both 

strategies outperforms both of the other solutions in terms of 

the percentage of flows experiencing a video streaming and 

achieving at least a GMOS. The Best Response Strategy and 

the Better Response Strategy outperform the Network FF-

based approach by 8% and 6%, respectively, and the RSSI-

based solution by 19% and 17%, respectively. Note that 

again in this case, both games obtain a result close to the one 

achieved through the optimal approach.  

Finally, the results in Table 5 show the estimated values 

2 https://support.google.com/youtube/answer/78358?hl=en-GB (last 
access June 2019).  

3 https://help.netflix.com/en/node/306 (last access June 2019). 

Application Bit Rate MOS Quality Damage 

VoiP G.729 40 kbps 3.92  

 
Good 

 

Detectable/
Not 

Disturbing 

VoiP G.726 60 kbps 3.85 
YouTube 500 kbps 4.5 

Premium YouTube 1 Mbps 4.5 

Netflix 2 Mbps 4.5 

Table 3: Bit Rate Requirements and MOS 

MOS Quality Damage 

5 Excellent Imperceptible 

4 Good Detectable/Not Disturbing 
3 Fair Lightly Disturbing 

2 Poor Disturbing 

1 Bad Very Disturbing 

Table 2: Mean Opinion Score (MOS) 



 

of PoA for different numbers of flows. In order to obtain 

these values, 10 different instances of the game have been 

computed for each of the 10 independent simulations. 

Specifically, for each independent simulation an estimated 

PoA has been calculated as the ratio between the optimal 

solution and the worst NE obtained from the 10 instances of 

the game. Then, the results illustrated in Table 5 are the 

values averaged for the 10 independent simulations. From 

the table we can see that the PoA is within 1.05 and 1.2 for 

all the evaluated number of flows, which illustrates an 

efficient gap between the game and the optimal solution. 

 

6.3. Impact of External Interference 

Although the previous results show the performance of our 

algorithm in a context where all the APs are under the 

management of the same SDWN controller, there are many 

situations where these APs are operating alongside other 

devices not managed by the controller but on the same radio 

channel or transmitting in the uplink direction. Such 

situations result in external interference to the APs’ 

operations. The presence of this interference could reduce 

the connection capacity offered by the APs. Therefore, the 

allocation of an AP that could satisfy a user under these 

constrained conditions becomes more challenging. 

To assess the performance of our algorithm in the presence 

of external interference, we added two sources of 

interference to our initial simulation scenario illustrated in 

subsection 6.1, which can be represented by any device 

transmitting on the same unlicensed band, such as wireless 

users’ devices that could generate uplink transmissions, or 

APs that are not under the management of the SDWN 

controller. Then, we repeated the experiment. Specifically, 

in this new experiment, the sources of external interference 

 
Figure 5: Good Mean Opinion Scores for 100 flows with external 

interference. 
 

 

  

 
Figure 4: Dissatisfaction as a function of number of flows with external 

interference. 
 

  

Solution 
Data Rate 

(kbps) 

Best Game 678 

Better Game 666 
Network FF 539 

Optimal 687 

RSSI 368 

Table 6: Average Data Bit rates for 100 Flows with External Interference 

Number of Flows PoA 

10 1.03 

20 1.08 

30 1.07 
40 1.14 

50 1.11 

60 1.10 
70 1.05 

80 1.06 

90 1.10 
100 1.20 

Table 5: Estimated Price of Anarchy (PoA) for different numbers of flows 

 
Figure 3: Good Mean Opinion Scores for 100 flows. 

  

 
Figure 2: Dissatisfaction as a function of number of flows. 

 

 

  

Solution 
Data Rate 

(kbps) 

Best Game 696 

Better Game 677 
Network FF 610 

Optimal 706 

RSSI 476 

Table 4: Average Data Bit rates for 100 Flows 



 

have been operative for certain periods of time during the 

simulation in different Radio Frequency (RF) channels that 

are selected randomly. We assumed that these sources 

interfered with two of the APs managed via the SDWN 

network, causing a reduction of the average SINR 

experienced in the affected APs by 2 dB and, therefore, a 

reduction of the available capacity in terms of their provided 

bit rates to the connected users. This assumption about the 

external interference in the simulated scenario and its impact 

on the affected APs considered in this subsection are 

representative of a detailed empirical analysis in [23]. 

The results shown in Table 6, Figure 4, and Figure 5 

illustrate the achieved performance in terms of Data rate, 

Dissatisfaction together with the 95% confidence interval 

bounds for different values of flows, and GMOS, 

respectively. These results show that, under these new 

conditions, our AP allocation algorithm with its two 

strategies incur a marginal reduction of the performance 

results previously illustrated in Table 4, Figure 2 and Figure 

3.  

For instance, the performance of the Best Response 

Strategy in terms of Data rate, Dissatisfaction and GMOS in 

the case of video streaming when 100 flows are connected, 

varied from 696 kbps, 5.4%, and 89.7% to 678 kbps, 6.3% 

and 88.7%, respectively. Note also that the optimal approach 

experiences a marginal reduction of its performance results. 

However, our proposed algorithm based on the potential 

game still achieved results close to the ones obtained through 

the optimal strategy. On the other hand, under the same 

conditions, the Network FF-based and the RSSI-based 

approaches experience a considerable reduction of the 

achieved performance illustrated in the previous subsection, 

especially in the case of 100 flows connected to the network. 

For instance, in the case of the Network FF-based approach, 

results in terms of Data rate, Dissatisfaction and GMOS in 

the case of video streaming for 100 connected flows, go 

down from 610 kbps, 10.4%, and 82.4% to 539 kbps, 14.4% 

and 77%, respectively.  

Table 7 summarizes the gains achieved through our 

Potential Game-based solutions with respect to the Network 

FF-based and the RSSI-based strategies in terms of Data 

rate, Dissatisfaction and GMOS in the case of video 

streaming (named DR, Dis., and MOS in the table, 

respectively) in both considered scenarios, i.e., when the 

external interference is not considered and when it is 

included in the performance evaluation. 

For instance, from the table we can observe that the Best 

Response Strategy improves on the Network FF-based 

approach by 12%, 48% and 8%, in terms of Data rate, 

Dissatisfaction and GMOS in the case of video streaming 

when the external interference is not considered in the 

scenario. These gains increase up to 21%, 56% and 13% 

when the external interference negatively affects the 

capacities of the APs managed by our SDWN controller.  

These results show that our algorithm still outperforms the 

two referenced solutions even in the presence of external 

interference. This is due to our algorithm’s adaptability to 

reallocate certain flows to different APs when the external 

interference causes a deviation from the NE, which forces 

the controller to play the potential game and reach a new NE.  

 

6.4. Analysis of Computational Complexity 

In the previous sections, we have demonstrated the benefits 

of our algorithm against the state of the art in terms of the 

performance results obtained for the STAs in the two 

different scenarios. In this subsection we analyse and 

compare the Computational Complexity in the cases of the 

Best Response Strategy, Better Response Strategy, optimal 

approach and Network FF-based solution, which all improve 

on the 802.11 standard approach based on the highest RSSI. 

Specifically, Figure 6 illustrates the computation time in 

seconds on a logarithmic axis needed to run all the 

considered algorithms in our MATLAB-based simulator for 

different numbers of flows. The simulations have been 

performed on an Intel Core i7-8700 CPU running at 3.20 

GHz and with 64 GB of RAM. This figure shows that 

although the optimal approach allows us to obtain the best 

performance results, it undoubtedly needs considerable 

computational time in the dense scenario considered in this 

paper, i.e., more than 4 hours in the case of 100 flows, 

compared to the other solutions based on the FF. In addition, 

it can be seen that for the optimal approach, the 

computational time increases exponentially as the number of 

flows grows, unlike for the solutions based on the potential 

game and the Network FF. Moreover, we can observe that 

even if the required times for the potential games are slightly 

higher than in the Network FF-based approach, they still 

require a low computational time. Specifically, in case of 100 

flows, the computational time is 0.1, 1.6 and 1.7 seconds in 

case of Network FF, Better Response Strategy and Best 

Response Strategy, respectively.  

 
6.5. Discussion 

The results illustrated in Section 6.2 show that our algorithm 

with its two strategies provides better performance than the 

 
Without External Interference With External Interference 

 Network FF RSSI Network FF RSSI 

 DR Dis. MOS DR Dis. MOS DR Dis. MOS DR Dis. MOS 

Best 12% 48% 8% 32% 83% 19% 21% 56% 13% 48% 84% 27% 

Better 10% 38% 6% 30% 79% 17% 19% 49% 12% 45% 80% 26% 

Table 7: Summary of the gains achieved through the Potential Game-based AP Selection 



 

Network FF and RSSI-based solutions in terms of Data rate, 

Dissatisfaction and GMOS in the case of video streaming, 

and results are close to the ones achieved through the optimal 

approach. Our algorithm also outperforms Network FF and 

RSSI-based solutions in the presence of external 

interference. In addition, we have illustrated the significant 

computational time of the optimal approach that makes it 

inefficient in the considered scenario. Moreover, although 

our Potential Game-based algorithm incurs higher 

computational complexity than the Network FF-based 

solution, this complexity is reduced even for a high number 

of flows, making the proposed strategies scalable as the 

traffic grows. 

In summary, these results prove that our game-based AP 

allocation solutions yield better results in terms of the 

performance experienced by the STAs at the expense of a 

bounded increase in the computational complexity. In 

addition, it must be noted that the Better Response Strategy 

slightly reduces the computational complexity with the Best 

Response Strategy (for example, 6% for 100 flows) at the 

expense of a minor reduction in the performance results as 

we can observe in tables 4, 6 and 7, and figures 2-5. 

Therefore, from our performance analysis we can claim that 

in the scenario considered in this paper, both the Better and 

Best Response Strategy provides a good trade-off between 

the performance results and computational complexity 

compared to the state of the art. 

 

7. Conclusion and Future Work 

This paper has proposed a novel AP allocation algorithm 

based on a centralised potential game developed in a SDWN-

based framework. The proposed algorithm includes two 

possible approaches named Best Response Strategy and 

Better Response Strategy. Both approaches support an 

optimised allocation of Wi-Fi STAs to manage APs and also 

a novel dynamic reallocation of the STAs due to, for 

example, external interference from sources inaccessible 

through our framework, which causes a decrease of the Wi-

Fi network capacity.  
In order to demonstrate the achievements of our algorithm, 

we have provided a comparison against the AP selection 

approach used by the IEEE 802.11 standards and another 

solution considered in the state of the art. We have 

highlighted how our algorithm built on the potential game 

achieves important improvements on the two considered 

approaches in terms of the data rate, dissatisfaction of Wi-Fi 

users and their QoE. Furthermore, we have illustrated how 

our solution obtains performance results close to the ones 

achieved through an optimal approach with a much lower 

computational complexity.  

As part of our future work, the algorithm presented in this 

paper will be implemented and evaluated in the SDWN-

based testbed being developed by the Wi-5 project [24]. Note 

that the OpenFlow protocol implemented in the controller 

southbound API has been extended in the Wi-5 SDWN 

platform in order to manage connection requests from STAs 

and their AP allocations. This capability will enable the 

assessment of: i) the merits of the algorithm presented in this 

paper in real-time scenarios and ii) the analysis of new 

metrics crucial in such scenarios, e.g. the convergence rate 

of the algorithm. Moreover, the FF formulation will be 

extended in order to include further metrics to define flow 

QoS requirements, such as delay and jitter.  

 
Appendix 1 

To solve the AP selection problem, papers [16] and [17] 

introduce a parameter called Network Fittingness Factor 

(netf), considered also in paper [19], and based on the FF 

concept illustrated in Section 3. netf includes a Standard 

Deviation Function (𝜎) indicating the change of the average 

FF that can occur when an AP j begins providing services to 

a new STA’s flow i. Specifically, for each AP j, the bit rate 

provided to each active flow is recalculated using equations 

(2) and (3) by taking into account the effect provoked by the 

connection of flow i. Considering the new values of the bit 

rates, the FFs of the active flows are updated using (4). Then, 

the standard deviation is computed through the following 

formula: 

 

𝜎𝑖,𝑗 = √∑ (𝑓𝑘,𝑗−𝑓𝑗̅)
2𝐾

𝑘=1

𝐾
  (13) 

 
where 𝑓𝑗̅  is defined as follows: 

 

𝑓𝑗̅ =
1

𝐾
∑ 𝑓𝑘,𝑗

𝐾
𝑘=1    (14) 

 

In (13) and (14), K is the number of all active flows in AP 

j that involves the other flows active in the AP with their FFs 

updated, and the new flow i. Considering that there are n 

APs, which can be allocated to flow i, netf  is used to optimise 

the following parameters: i) the FF of the AP allocated to the 

new data flow, and ii) the standard deviation factor to retain 

the global network performance as much as possible, in order 

to find the most suitable AP for the new flow. This 

optimisation is formulated as follows: 
 

 
Figure 6: Computation time for different numbers of flows 

 

 

  



 

𝑛𝑒𝑡𝑓𝑖
= 𝑎𝑟𝑔 𝑚𝑎𝑥𝑗∈{1,…,𝑛} {𝐹𝑖,𝑗}   (15) 

𝑤ℎ𝑒𝑟𝑒 𝐹𝑖,𝑗 = 𝑓𝑖,𝑗(1 − 𝜎𝑖,𝑗) 

 
Therefore, 𝑛𝑒𝑡𝑓𝑖

 calculated using (15) has the objective to 

optimise the performance of the new flow to the allocated 

AP by maximizing its FF, while also guaranteeing the overall 

network performance by reducing the negative effect on the 

other active flows by using the standard deviation. 

Let us focus on the algorithm implemented in the SDWN 

controller when a new flow i tries to connect. In this case, the 

Decision Making module collects all the link bit rate 

availabilities, which each AP can guarantee to flow i, from 

the Provided Bit Rates module and computed using (3). The 

Decision Making module also obtains from the Knowledge 

Database the information on all the other flows already 

active in the network, i.e., their bit rate demands and 

provided bit rates. Afterwards, for each AP j in the network, 

the Decision Making module considers all the gathered 

information to: 1) calculate the updated bit rates available for 

the flows in AP j through (3) by taking into account the 

impact of a possible connection to new flow i; 2) consider 

the bit rate demand of all the flows allocated to AP j to 

calculate the Standard Deviation Function (𝜎𝑖,𝑗) for AP j 

using (13); and 3) choose the most suitable AP for flow i 

based on the 𝑛𝑒𝑡𝑓𝑖
 in (15). 

As introduced in Section 6, the computational complexity 

of this approach is linearly related to the number of flows 

(i.e. m), denoted as O(m). All the details of the algorithm 

together with a further explanation of its computational 

complexity can be found in [17]. 
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