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Resumen 

El rápido incremento de dispositivos IoT (Internet of Things) está permitiendo la 

aparición de nuevas aplicaciones computacionales que pueden tener un sustancial 

impacto en la sociedad, pero que al mismo tiempo abre un número significativo de 

posibilidades de negocio para las empresas. No obstante, la rapidez de ese desarrollo en 

el IoT ha incentivado la aparición de protocolos de comunicación muy diferentes entre sí, 

como MQTT, MQTT-SN, HTTP REST o CoAP. La diferencia ya no está únicamente en 

el formato de los mensajes del protocolo (lo que se conoce como protocolo de 

comunicación), sino en el protocolo de interacción, esto es, en el número de mensajes que 

los procesos tienen que intercambiarse para realizar la comunicación. Por ejemplo, CoAP 

y HTTP funcionan bajo el paradigma REQUEST/RESPONSE (un mensaje de petición y 

un mensaje de respuesta); mientras que MQTT y MQTT-SN se comunican a través del 

paradigma PUBLISH/SUBSCRIBE, mucho más sofisticado (un proceso se registra 

(subscribe) para que le lleguen mensajes en cuanto haya una actualización (publish)). 

Todos estos aspectos hacen que la intercomunicación entre protocolos no sea directa y 

suponen una enorme barrera tecnológica para las pequeñas y medianas empresas 

europeas. 

En este contexto, y dada la escasa oferta de este tipo de soluciones, en este 

proyecto se estudia, se propone y se implementa un middleware que permite comunicar 

de forma transparente dispositivos IoT basados en protocolos IoT heterogéneos. Aunque 

la propuesta está centrada en los protocolos más habituales en este contexto, como son 

MQTT, MQTT-SN, CoAP y HTTP, otros protocolos podrían también integrarse de forma 

análoga. Dada la vital importancia de garantizar comunicaciones seguras, el middleware 

propuesto permite además la transferencia de información a través de canales con cifrado, 

mediante mecanismos como DTLS sobre UDP y TLS sobre TCP. Por último, la 

arquitectura del middleware se ha diseñado para que sea escalable con el número de 

dispositivos IoT conectados. Para ello, múltiples instancias del middleware se disponen 

en máquinas diferentes, y se comunican entre sí directamente, reduciendo la carga de 

trabajo y permitiendo la interoperabilidad de los datos. 

Para validar la aproximación, se realizan diversos análisis de rendimiento del 

middleware en diferentes escenarios propuestos, estudiando su rendimiento en términos 

de retado, diferenciando entre dispositivos sin limitación de recursos (en el centro de 

datos) y dispositivos de recursos limitados (fuera del centro de datos, edge computing). 
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1. Introducción 

Internet de las cosas (Internet of Things, IoT) es una tecnología diseñada para 

comunicar miles de dispositivos a través de internet, permitiendo enviar y recibir 

información, así como realizar diferentes acciones en función de dicha información. Esta 

tecnología emergente, cada vez toma más importancia en el campo de la recopilación de 

datos y toma de decisiones en tiempo real, ejemplos de ello son: la implantación de 

extensas redes de sensores (Wireless Sensor Network , WSN) o las cada vez más comunes 

comunicaciones máquina a máquina (Machine to Machine, M2M) planteadas para el 

desarrollo de ambiciosos proyectos como ciudades inteligentes (Smart Cities), la 

evolución de la Industria 4.0, coche autónomo  o simplemente la recopilación de grandes 

volúmenes de datos (Big Data). Todo esto ha impulsado extensos estudios sobre los 

protocolos de nivel de aplicación propuestos para las comunicaciones IoT, como por 

ejemplo [11]. 

Tras años de estudios y de evolución en los protocolos de nivel de aplicación, se 

conocen las ventajas e inconvenientes de cada una de las alternativas existentes, 

mostrando cada protocolo fortalezas y debilidades muy diversas en función de diferentes 

factores como pueden ser recursos hardware disponibles, ancho de banda requerido, 

latencia extremo a extremo, o tolerancia a fallos. A pesar de esto, actualmente no se 

dispone de un estándar que defina el protocolo a emplear en las comunicaciones IoT, lo 

que ha generado el despliegue de numerosas infraestructuras IoT trabajando bajo 

diferentes protocolos de nivel de aplicación, formando así un ecosistema altamente 

fragmentado y heterogéneo.  

El hecho de tener una gran heterogeneidad entre protocolos de aplicación da como 

resultado la necesidad de disponer de diversas aplicaciones o servicios trabajando bajo 

diferentes protocolos para poder publicar o recopilar toda la información que se necesita, 

además de adaptar los diferentes procesos de extracción, recopilación y unificación de 

datos. Desde un punto de vista económico, este aspecto representa una importante barrera 

para las pequeñas y medianas empresas que quieren desplegar negocios en este 

importante sector emergente. Por el contrario, las grandes multinacionales tecnológicas 

no europeas parten de una importante ventaja, puesto que al contar con gran cantidad de 

recursos (económicos y humanos), pueden desarrollar soluciones verticales que 

solucionan estos problemas de heterogeneidad. 

En este contexto, durante este proyecto se analizan las diferentes casuísticas a las 

que se enfrentan los diferentes protocolos de nivel de aplicación, se estudian las relaciones 

entre ellos y se desarrolla un middleware que haga las veces de broker1 de mensajes como 

pasarela entre clientes/servidores trabajando con diferentes protocolos de nivel de 

aplicación. Así pues, se implementa una solución software que permite intercomunicar 

de manera transparente los protocolos MQTT (Message Queuing Telemetry 

Transport)[38], CoAP (Constrained Application Protocol)[52]y HTTP (Hypertext 

Transfer Protocol)[17]. Se han elegido estos protocolos, puesto que como muestra la 

 
1 Broker de mensajes: agente intermediario de transferencia de mensajes, empleado para 

intercambiar mensajes entre diferentes aplicaciones emisoras y receptoras. 
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Figura 1, se tratan de los protocolos de nivel de aplicación más utilizados en aplicaciones 

IoT en la actualidad. 

 

Figura 1. Protocolos IoT más utilizados según [54] 

 

Por último, se analizan las consecuencias del uso de este middleware en términos 

de aumento de retardo, valorando así una solución orientada a la computación en la nube 

(cloud computing) y una solución orientada a la computación de borde (edge computing) 

mediante equipos de recursos limitados. 

Este documento está organizado de la siguiente manera. El Capítulo 2 presenta 

una revisión de los principales protocolos de nivel de aplicación más utilizados 

actualmente, así como diferentes soluciones de interoperabilidad existentes. En el 

Capítulo 3 se muestran diversas implementaciones software disponibles para utilizar en 

entornos IoT y se definen las que se emplearan en la solución técnica.  En el Capítulo 4 

se plantean los casos de uso que debe resolver el middleware, así como su arquitectura y 

funcionamiento. En el Capítulo 5 se definen los escenarios en los que se va a probar el 

sistema y en el Capítulo 6 se muestran los resultados obtenidos. Por último, en el Capítulo 

7 se exponen las conclusiones y las líneas futuras de trabajo. 
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1.1.  Objetivos y metodología 
 

1.1.1. Objetivos 

El objetivo principal del proyecto es estudiar y analizar la interoperabilidad entre 

los principales protocolos de nivel de aplicación para IoT, MQTT, CoAP y HTTP. A 

partir de ahí, se propone un sistema middleware que permite una comunicación 

transparente entre los diferentes protocolos de red. 

Tomando como referencia este objetivo general, se han establecido los siguientes 

objetivos parciales: 

1. Estudiar el estado del arte de los protocolos de nivel de aplicación. 

2. Familiarización con diferentes implementaciones software. 

3. Desarrollo software de la solución técnica junto con continuas 

verificaciones de su funcionamiento. 

4. Despliegue, estudio y análisis de resultados en un escenario IoT basado en 

cloud computing. 

5. Despliegue, estudio y análisis de resultados en un escenario IoT basado en 

edge computing. 

1.1.2. Metodología 

A continuación, se plantea la metodología seguida para la elaboración del trabajo, 

mostrándose las diferentes etapas por las que ha pasado el proyecto. 

1. En primer lugar, se establece la necesidad de estudiar el estado del arte 

relacionado con los principales protocolos de nivel de aplicación HTTP, 

MQTT, MQTT-SN y CoAP, así como en su interoperabilidad y las 

principales soluciones software existentes en las que se profundizará para 

desarrollar la solución técnica. 

2. Identificadas las características de los diferentes protocolos y las 

implementaciones software disponibles, se realiza un estudio sobre las 

diferentes implementaciones con el fin de familiarizarse con ellas para su 

posterior uso en el desarrollo del middleware propuesto. 

3. La siguiente etapa del proyecto, se centra en el desarrollo técnico del 

sistema middleware en el que se basa el proyecto. La solución se 

implementa sobre el lenguaje de programación Java utilizando la 

herramienta Maven, que permite integrar las diferentes librerías existentes 

de las que se ha partido y sobre las que se han añadido las funcionalidades 

necesarias. 

 

4. A partir de la solución técnica, se propone un primer escenario de 

aplicación basado en computación en la nube mediante el cual se estudia 

el rendimiento del middleware en un dispositivo sin limitación de recursos 

para la aplicación desarrollada. Para ello, se despliegan diversos clientes 

generando y recibiendo tráfico a través del middleware. A partir del tráfico 
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generado se mide tanto el retardo extremo a extremo como el tiempo de 

procesado aislado en el middleware. 

5. Con el fin de contrastar los resultados obtenidos en el primer escenario de 

uso, se propone un segundo escenario de aplicación basado en 

computación de borde de red, en el que se estudia el rendimiento del 

middleware en un dispositivo de recursos limitados comparándolo con el 

primer escenario. De forma análoga al proceso seguido en el primer 

escenario, se despliegan diversos clientes generando y recibiendo tráfico a 

través del middleware, a partir del tráfico generado se mide tanto el retardo 

extremo a extremo como el tiempo de procesado aislado en el middleware. 

 

1.1.3. Herramientas y recursos necesarios 

 En primer lugar, en cuanto a los recursos hardware se dispone de:  

̵ Dispositivo sin limitación de recursos para la aplicación desarrollada: una 

estación de trabajo Workstation Intel Xeon SkyLake-SP 3106 dual con 

480GB de disco SSD, 8TB de disco duro y 128 GB de memoria RAM. En 

él se implanta el middleware en el primer escenario de aplicación. 

̵ Dispositivos de recursos limitados: Raspberry Pi 3 model B, cuenta con un 

procesador Quad Core 1.2GHz y 1GB de memoria RAM. En él se 

despliegan las aplicaciones IoT y el middleware en el segundo escenario. 

En segundo lugar, en cuando a los recursos software necesarios: 

̵ Conocimientos sobre Maven [3], herramienta de gestión y construcción de 

proyectos Java. Es de gran utilidad a la hora de crear y compilar proyectos 

Java, también permite añadir y gestionar dependencias de forma sencilla. 

̵ Conocimientos en lenguajes de programación como Java o C que nos 

permiten analizar, emplear y modificar librerías de código abierto 

existentes para la creación y análisis del middleware propuesto. 

 

Por último, la Figura 2, muestra la evolución temporal que se ha seguido en la 

consecución de los objetivos parciales del proyecto. 

 

 

Figura 2. Diagrama de Gantt del proyecto
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2. Estado del arte 

A lo largo de este capítulo se exponen los fundamentos teóricos de los protocolos 

de nivel de aplicación empleados en redes IoT, los cuales se utilizarán como parte de la 

solución final. También se exponen las actuales soluciones que otorgan interoperabilidad 

en las comunicaciones. 

2.1.  Paradigmas de comunicación IoT 

En este apartado se detallan brevemente los dos paradigmas de transferencia de 

mensajes en los que se basan los protocolos de nivel de aplicación IoT que se estudian en 

capítulos posteriores.  

2.1.1. Paradigma Publicación / Suscripción  

El paradigma publicación/suscripción o más conocido como publish/subscribe en 

inglés, se trata de un modelo de envío de mensajes asíncrono en el cual los mensajes no 

se envían directamente entre clientes finales sino a través de una infraestructura 

intermedia comúnmente llamada broker.  

En la transferencia de información publish/subscribe intervienen los siguientes 

actores: 

̵ Publicador (Publisher): cliente encargado de generar la información sobre un 

tema y publicarla en la infraestructura. 

̵ Suscriptor (Subscriber): cliente interesado en recibir información sobre un 

tema. Este se suscribe a los temas de interés en la infraestructura y esta le 

notifica cada vez que recibe información sobre dichos temas. 

̵ Infraestructura (broker): situado entre el publisher y el subscriber. Se encarga 

de recibir las peticiones de suscripción de los clientes suscriptores, las 

publicaciones de información de los clientes publicadores y a su vez de 

retransmitirlas a los clientes suscritos a esos temas. 

Se basa en una estrategia de transferencia de información PUSH (o de recepción 

pasiva) en la que el broker notifica de forma proactiva a los clientes suscritos cada vez 

que recibe información, es por ello por lo que también se conoce como paradigma “uno 

a muchos” (one-to-many) en el cual, los clientes no necesitan conocerse entre sí, 

únicamente deben comunicarse con el broker. En la Figura 3 se muestra un ejemplo de 

comunicación publish/subscribe. 
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Figura 3. Comunicación modelo Publicación/Subscripción 

 

 

2.1.2. Paradigma Petición / Respuesta 

El paradigma petición/respuesta o también conocido como request/response en 

inglés, se trata de un modelo de mensajes comúnmente utilizado en arquitecturas de red 

cliente-servidor o REST (Representational State Transfer). 

En este modelo de comunicación intervienen los siguientes actores: 

̵ Servidor: aplicación capaz de atender peticiones de diferentes clientes 

proporcionando como respuesta a dicha petición la información o el 

servicio requerido. 

̵ Cliente: se trata del consumidor de los datos. Este se encarga de realizar 

peticiones al servidor con el fin de obtener información o servicios como 

respuesta. 

A diferencia del paradigma publish/subscribe, este se basa en una transferencia de 

información de tipo PULL donde el cliente genera una petición al servidor y este la 

contesta de forma reactiva. Por esta razón se considera un método “uno a uno”. En la 

Figura 4 se muestra un ejemplo de comunicación petición/respuesta. 

 

Figura 4. Arquitectura modelo Petición/Respuesta 
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2.2.  Principales protocolos de aplicación para IoT 

Cuando se habla de comunicaciones máquina a máquina o de redes de sensores, 

un aspecto fundamental a tener en cuenta es el protocolo de capa de aplicación a emplear. 

Las características más importantes a cumplir son principalmente, bajo consumo de ancho 

de banda, bajo consumo energético, retardo extremo a extremo del orden de milisegundos 

y bajos requerimientos hardware. Actualmente, los principales protocolos cumplen con 

dichas características de forma diferente lo que genera una gran dificultad a la hora de 

definir el protocolo de aplicación ideal para este tipo de comunicaciones, por lo que hoy 

por hoy no existe un único protocolo estandarizado para estas comunicaciones. 

En general, los protocolos de comunicación propuestos difieren en el paradigma 

de interacción, es decir, request/response o publish/subscribe descritos en la sección 

2.1.1. En primer lugar, como ya se ha comentado antes, request/response representa un 

intercambio de mensajes comúnmente conocido en arquitecturas cliente-servidor. Los dos 

protocolos más utilizados en este tipo de arquitecturas son HTTP y CoAP. Por otro lado, 

publish/subscribe representa un intercambio de mensajes asíncrono empleado en 

arquitecturas centralizadas mediante un broker de mensajes. Los protocolos más 

empleados en este tipo de arquitecturas son MQTT, MQTT-SN (MQTT for Sensor 

Networks) [53], AMQP (Advanced Message Queuing Protocol) [55] y DDS (Data 

Distribution Service) [44].  

En este capítulo, se exponen los principales protocolos de capa de aplicación 

empleados en IoT, centrándonos particularmente en MQTT, MQTT-SN, CoAP y HTTP 

ya que estos son los más empleados actualmente en este tipo de comunicaciones [54] tal 

y como muestra la Figura 1 y sobre los que posteriormente se centra el desarrollo de la 

solución técnica. 

 

2.2.1. MQTT (Message Queue Telemetry Protocol) 

MQTT se trata de un protocolo de mensajes originalmente desarrollado en 1999 

por Andy Standford-Clark (IBM) y Arlen Nipper (Arcom, ahora Cirrus Link) [28]. 

Diseñado bajo el paradigma publish/subscribe con el objetivo de proponer un protocolo 

de mensajes ligero, de bajo consumo energético y empleando el mínimo ancho de banda. 

Actualmente adoptado como estándar por OASIS [38] para las comunicaciones IoT.  

MQTT funciona sobre TCP (Transmission Control Protocol) como protocolo de 

transporte, el cual está orientado a conexión, garantizando la entrega fiable de paquetes 

además de otras características como control de flujo y control de congestión. Uno de los 

aspectos negativos de emplear TCP como protocolo de transporte, es el aumento del 

retardo experimentado durante el establecimiento de la conexión (envió de mensajes 

SYN, SYN/ACK y ACK) junto con un aumento del overhead debido al tamaño de la 

cabecera TCP y a la existencia de ACKs. Si bien es cierto, tal y como relatan los autores 

de [11] en comparación con otros protocolos de nivel de aplicación que emplean TCP, 

como por ejemplo HTTP, gracias a su liviano tamaño de paquete, se trata de un protocolo 
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muy bien considerado dentro del contexto de las comunicaciones entre dispositivos de 

recursos limitados. 

MQTT está basado en sesiones, esto quiere decir que, tras establecer la conexión 

TCP, el proceso completo de comunicación se divide en cuatro etapas, creación de la 

conexión MQTT, autenticación, comunicación y terminación de la sesión. Para ello se 

definen los siguientes tipos de mensajes. 

̵ CONNECT: mensaje enviado por el cliente como solicitud de conexión. 

Contiene información necesaria para el establecimiento de una sesión 

MQTT.  

̵ CONNACK: mensaje enviado por el broker como confirmación del 

CONNECT, sin este mensaje, el cliente debe cerrar la sesión. 

̵ PUBLISH: mensaje enviado por el cliente para publicar datos sobre un 

topic, contiene principalmente el nombre del tema, los datos y el nivel de 

QoS requerido. 

̵ PUBACK: mensaje de confirmación enviado como respuesta al 

PUBLISH, empleado en configuraciones con QoS 1. 

̵ PUBREC: mensaje enviado como respuesta al PUBLISH, empleado en 

configuraciones con QoS 2. 

̵ PUBREL: mensaje enviado como respuesta al PUBREC, empleado en 

configuraciones con QoS 2. 

̵ PUBCOMP: mensaje enviado como respuesta al PUBREL, es el cuarto y 

último paquete empleado en configuraciones con QoS 2. 

̵ SUBSCRIBE: mensaje enviado por el cliente al broker para crear una o 

más suscripciones a los topics de interés. El broker envía mensajes 

PUBLISH a modo de notificación cada vez que recibe datos sobre dichos 

topics. El paquete contiene también el máximo valor de QoS requerido con 

la que espera recibir los datos mensajes PUBLISH por parte del broker. 

̵ SUBACK: mensaje de confirmación enviado como respuesta al 

SUBSCRIBE. Contiene el valor máximo de QoS otorgado para cada 

suscripción. 

̵ UNSUSBCRIBE: mensaje enviado por el cliente al broker como 

cancelación de suscripción a un topic. 

̵ UNSUBACK: mensaje enviado por el broker al cliente como respuesta al 

UNSUBSCRIBE, confirmando la cancelación de la suscripción. 

̵ PINGREQ: paquete enviado por el cliente, puede usarse para indicar que 

el cliente sigue activo, para requerir que el broker comunique que sigue 

activo o para indicar que la conexión sigue activa. 
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̵ PINGRESP: paquete enviado por el broker en respuesta al PINGREQ, 

indica que el broker sigue activo. 

̵ DISCONNECT: paquete final de la sesión, enviado por el cliente 

indicando que se ha desconectado limpiamente.                  

Por último, se definen tres niveles de calidad de servicio, QoS 0, 1 y 2 [43]. 

̵ QoS 0: el receptor no envía confirmación sobre la recepción de un mensaje 

PUBLISH, por lo que el remitente tampoco realiza ningún reenvío, esto 

hace que no se garantice la recepción del mensaje. Se le conoce bajo el 

nombre “at most once delivery”. 

̵ QoS 1: el receptor confirma la recepción de un mensaje PUBLISH 

mediante un mensaje PUBACK, garantizando que el paquete se reciba al 

menos una vez, por lo que se le conoce como “at least once delivery”. 

̵ QoS 2: se trata del nivel más alto de calidad de servicio, empleado cuando 

no se acepta la perdida de mensajes ni su duplicación. Garantiza la entrega 

del mensaje exactamente una vez sin duplicados, por lo que se le conoce 

como “exactly once delivery”. 

A continuación, la  Figura 5 muestra un ejemplo de comunicación entre un cliente 

suscriptor y un cliente publicador a través de un broker, ambos clientes con Qos 0, 1 y 2 

respectivamente, incluyendo establecimiento y finalización de la comunicación MQTT. 

Cabe destacar que la configuración QoS por parte de los clientes publisher y subscriber 

es totalmente independiente por lo que no necesariamente ambos extremos de la 

comunicación deben interactuar bajo los mismos requisitos de QoS. 

 

                
QoS 0 QoS 1 
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Figura 5. Ejemplo de comunicación MQTT para diferentes niveles de QoS 

 

Por último, resulta interesante destacar que MQTT no define cifrado per se, por 

lo que los datos se transmiten como texto plano. Para garantizar comunicaciones seguras, 

es necesario implementar una capa de cifrado de forma independiente, comúnmente 

utilizando TLS a nivel de transporte (Transport Layer Security)  [9]. 

 

2.2.2. MQTT-SN (Message Queue Telemetry Protocol for Sensor Networks) 

MQTT-SN [53] se trata de una especificación de MQTT diseñada para redes de 

sensores donde el protocolo TCP resulta demasiado pesado. En redes de sensores donde 

se prioriza el ahorro energético, la diferencia entre usar TCP o UDP como protocolo de 

trasporte resulta muy significativa. Se trata de un proyecto promovido por OASIS que a 

pesar de ser una especificación publica, no está reconocida ni aprobada por el organismo 

de normalización OASIS, tal y como afirman en [29]. 

Así, MQTT-SN se basa en el funcionamiento de MQTT, pero emplea UDP como 

protocolo de transporte, disminuyendo la cantidad de bytes a transmitir, con el fin de 

reducir el consumo de ancho de banda y a su vez el consumo energético. 

MQTT-SN también está diseñado sobre el paradigma publish/subscribe, por lo 

que necesita un broker al igual que MQTT mediante el cual publicar y recibir 

información. Para ello, la especificación define la arquitectura mostrada en la Figura 6. 

QoS 2 
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Figura 6. Arquitectura de MQTT-SN, obtenida de [53] 

Como se puede ver en la arquitectura, se definen tres tipos de nodos diferentes. 

̵ MQTT-SN Client: clientes MQTT-SN que se conectan al broker MQTT a 

través del MQTT-SN Gateway. 

̵ MQTT-SN Gateway: puede o no estar integrado en el broker MQTT. Su 

función es la traducción entre MQTT-SN y MQTT. 

̵ MQTT-SN Forwarder: sirve como unión entre el cliente MQTT-SN y el 

MQTT-SN Gateway en caso de que este último no esté en la misma red 

del cliente. 

MQTT-SN, al igual que MQTT establece los niveles de QoS 0, 1 y 2, cuyo 

funcionamiento es similar al de MQTT. Adicionalmente, se define el nivel de  QoS -1 en 

mensajes de tipo PUBLISH. Este permite enviar publicaciones sin necesidad de crear una 

conexión con el broker, no se transmite el mensaje CONNECT de creación de la 

conexión, y únicamente se transmite el mensaje PUBLISH sin asegurarse de que la 

comunicación con el MQTT-SN sea correcta. Esta característica, guarda relación con 

CoAP puesto que, a nivel de aplicación, este no está orientado a conexión.   

 

2.2.3. CoAP (Constrained Application Protocol) 

CoAP es un protocolo de transferencia de mensajes estandarizado por el IETF en 

Junio de 2014 definido en el estándar RFC 7252 [52]. Su uso está destinado a dispositivos 

con recursos limitados. Diseñado bajo el paradigma petición/respuesta, proporciona un 

modelo de intercambio de mensajes para transferir datos de sensores como temperatura, 

humedad, ubicación… en arquitecturas de red tipo REST, permitiendo fácilmente su 

traducción a HTTP. Esto permite la integración de datos de sensores en servicios basados 

en web aportando gran valor en el ecosistema IoT tal y como lo detalla el instituto ETSI 

[16]. 

En su primera versión, RFC 7252 [52], CoAP se define sobre UDP (User 

Datagram Protocol) como protocolo de transporte en lugar de TCP reduciendo el 
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overhead a costa de eliminar la fiabilidad en la entrega de paquetes que este último 

garantiza. Debido a la perdida de la fiabilidad que supone el uso de UDP, en Febrero de 

2018, ETSI propone el uso de CoAP sobre TCP en el estándar RFC 8323 [5] con el fin 

de mejorar la fiabilidad en el uso de CoAP, evitando la pérdida de paquetes y garantizando 

mecanismos de control de flujo y de congestión. 

CoAP se divide estructuralmente en dos capas como se muestra en la Figura 7. 

 

Figura 7. Estructura de capas de CoAP 

La primera capa define el paradigma petición/respuesta tradicional, muy similar a 

HTTP. Esta capa establece los métodos GET, PUT, POST o DELETE que los clientes 

pueden emplear para generar peticiones sobre diferentes URI (Uniform Resource 

Identifier) dirigidas a un servidor y los diferentes códigos de respuesta. En redes de 

sensores, por ejemplo, un cliente puede usar el método GET en una petición dirigida a un 

servidor y como respuesta recibirá un paquete con los datos requeridos. Para llevar a cabo 

la comunicación, CoAP, en la segunda capa define cuatro tipos de mensajes: Confirmable 

(CON), Non-Confirmable (NON), Acknoledgement (ACK) y Reset (RST). Se pueden 

diferenciar dos posibles configuraciones, con mensajes confirmables y no confirmables 

dotando a CoAP de dos niveles de QoS diferentes, ver Figura 8. La confirmación de 

mensajes permite asegurar una comunicación fiable frente a pérdidas de paquetes a nivel 

de aplicación, supliendo en parte la carencia de fiabilidad en caso de emplear UDP como 

protocolo de transporte. Si lo comparamos con el protocolo MQTT descrito en la sección 

2.2.1 la configuración de QoS 0 de MQTT es equivalente al uso de mensajes NON y la 

configuración de QoS 1 de MQTT es equivalente al uso de mensajes CON.  

                                              

Figura 8. Tipos de mensajes CoAP (confirmables y no confirmables) 

 

Por otro lado, una funcionalidad de suma relevancia que le aporta valor añadido 

al protocolo CoAP y que va más allá del modelo petición/respuesta, se trata de la opción 

de OBSERVACIÓN. Se trata de una opción o flag adicional a la petición GET que 

 

Aplicación

Petición/Respuesta

Mensajes

UDP

CoAP
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permite a los clientes mantener la comunicación abierta y recibir notificaciones continuas 

de forma asíncrona por parte del servidor cada vez que cambia el estado del recurso 

solicitado, tal y como se muestra en la Figura 9. Esta funcionalidad acerca al protocolo 

CoAP al modelo publish/subscribe aportándole una gran flexibilidad.  

                    

Figura 9. Observación de CoAP 

 

Además, en un esfuerzo de acercar el protocolo CoAP de forma definitiva al 

paradigma publish/subscribe, IETF en Octubre de 2016 publico draft-ietf-core-coap-

pubsub [32] en el que se propone una arquitectura de publicación/suscripción centralizada 

en un broker para CoAP, siendo su última actualización en Abril de 2020. La Figura 10 

muestra la arquitectura propuesta por el IETF. 

 

Figura 10. Arquitectura publish/subscribe de CoAP propuesta. 

 

Por último, como capa de seguridad, inicialmente se define DTLS (Datagram 

Transport Layer Security) [47] como mecanismo de seguridad empleado sobre UDP en 

la versión original de CoAP, RFC 7252 [52]. Con la publicación de la RFC 8323 [5] en 

la que se incluye el uso de CoAP sobre TCP, se define también TLS [46] como 

mecanismo de seguridad.   
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2.2.4. HTTP (Hypertext Transfer Protocol) 

HTTP es un protocolo de nivel de aplicación basado en una arquitectura cliente-

servidor frecuentemente utilizado en servicios web. La versión comúnmente utilizada del 

protocolo es HTTP/1.1, definida en la RFC 2616 [17] en junio de 1999. Diseñado bajo el 

paradigma petición/respuesta, proporciona un modelo de intercambio de datos entre 

cliente y servidor basado en peticiones. 

Del mismo modo que CoAP, HTTP define los métodos GET, PUT, POST o 

DELETE mediante los cuales el cliente puede interactuar solicitando datos, actualizarlos 

o borrándolos respectivamente en un servidor. A pesar de no haber sido diseñado para 

escenarios IoT, autores como [4] [1] [58] [40] comparan el rendimiento de HTTP con 

protocolos como MQTT y CoAP. Si bien es cierto que el gasto de recursos es mucho 

mayor en HTTP frente a otros protocolos, son muchas las aplicaciones IoT basadas en 

HTTP actualmente. 

En relación con el protocolo de transporte utilizado, HTTP usa TCP aportando 

fiabilidad en la entrega de mensajes además de control de flujo y de congestión. Un detalle 

importante a tener en cuenta es que HTTP está diseñado para el envío esporádico de 

información, por lo que la creación de la conexión TCP cada vez que se inicia una 

comunicación, da como resultado un gran aumento del ancho de banda consumido frente 

a otros protocolos. Por otro lado, no ofrece opciones de QoS como si ocurre en MQTT y 

CoAP puesto que TCP garantiza la entrega correcta de los paquetes a nivel de transporte. 

Por último, como es bien sabido, HTTP emplea TLS como mecanismo de 

seguridad habilitando un canal de comunicaciones cifrado, conocido como HTTPS. 

 

2.2.5. Otros protocolos IoT 

Como ya se ha comentado, MQTT, CoAP y HTTP son los principales protocolos 

de nivel de aplicación empleados en la gran mayoría de soluciones IoT, a pesar de esto, 

existen otros protocolos de menor popularidad como DDS, AMQP y XMPP (Extensible 

Messaging and Presence Protocol). 

DDS se trata de un protocolo implementado bajo el paradigma publish/subscribe 

estandarizado por OMG [44] pero a diferencia de otros protocolos similares, DDS define 

una arquitectura peer-to-peer descentralizada en la que no se depende de un broker. Una 

de las ventajas de usar DDS es el amplio abanico de niveles de QoS definidos en el 

estándar [7] más de veinte niveles. Como protocolo de transporte, se definen tanto TCP 

como UDP implementando TLS o DTLS respectivamente. 

AMQP es otro protocolo publish/subscribe definido por OASIS en [55] pensado 

para transmitir flujos de datos y transacciones comerciales en tiempo real. Evita 

soluciones propietarias, ofreciendo como potencial la reducción de costes de 

implementación empresarial. AMQP define dos versiones totalmente diferentes, AMQP 

0.9.1 establece una arquitectura centralizada en un broker de mensajes mientras que 

AMQP 1.0 únicamente propone el protocolo sin especificar la arquitectura, pudiéndose 
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usar en comunicaciónes peer-to-peer. Como protocolo de transporte emplea TCP 

garantizando comunicaciones seguras gracias a TLS y define 3 niveles de QoS diferentes. 

Por último, XMPP es un protocolo estandarizado por el IETF en los estándares 

RFC 6120 [49] y RFC 6121 [50], diseñado originalmente para mensajería de texto 

instantánea entre aplicaciones basado en XML (Extensible Markup Language) y diseñado 

para soportar interacción cliente-servidor y publish/subscribe. Como protocolo de 

transporte emplea TCP y también incorpora TLS como mecanismo de seguridad. A 

diferencia de otros protocolos, no define diferenciación en niveles de QoS, al igual que 

HTTP.  

Finalmente, se muestra la Tabla 1 en la que se resumen brevemente los principales 

fundamentos de los protocolos descritos a lo largo del capítulo. 

 

 

2.3. Protocolos de transporte para comunicaciones seguras 

Las aplicaciones IoT al igual que el resto de los servicios de información basados 

en redes de comunicaciones están expuestos a entornos de red conflictivos, por lo que 

resulta impensable desarrollar un sistema de comunicación que no garantice 

confidencialidad, autenticidad e integridad. Es por ello, por lo que en esta sección se van 

a introducir brevemente los protocolos de nivel de transporte TLS y DTLS utilizados 

comúnmente por las aplicaciones IoT y que se emplean en la solución técnica del 

proyecto. 

2.3.1. TLS (Transport Layer Security) 

TLS es un protocolo diseñado para garantizar privacidad e integridad en las 

comunicaciones de datos entre clientes o servidores de red. Se pueden diferenciar varias 

versiones. Las versiones más modernas y recomendadas son TLS 1.2 definida en el 

estándar RFC 5246 [9] y TLS 1.3 definida en el estándar RFC 8446 [46], ya que versiones 

anteriores han quedado obsoletas. 

Se trata de un protocolo orientado a conexión, antes de empezar la transmisión de 

datos de aplicación se realiza el conocido TLS Handshake en el que se realiza la 

autenticación del cliente y servidor, la negociación del cipher suite con el que se cifran 

Protocolo Paradigma Prot. Trasporte QoS Seguridad 

MQTT Pub-Sub TCP 3 niveles TLS/SSL 

CoAP Req-Resp UDP/TCP 2 niveles DTLS y TLS 

HTTP Req-Resp TCP - TLS/SSL 

DDS Pub-Sub TCP/UDP Mas de 20 niveles TLS y DTLS 

AMQP Pub-Sub y Req-Resp TCP 3 niveles TLS/SSL 

XMPP Pub-Sub y Req-Resp TCP - TLS/SSL 

 

Tabla 1. características principales de los protocolos de aplicación IoT 
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los datos y el intercambio de claves. La Figura 11 muestra el intercambio de mensajes 

durante el TLS 1.2 handshake.  

 

Figura 11. Handshake de TLS 1.2 

* Indica mensajes opcionales o dependientes de la situación, no siempre enviados. 

 

Durante el handshake se producen tres eventos a destacar: 

̵ Negociación del Cipher Suite: cada extremo de la comunicación enumera 

los algoritmos de cifrado que admite y en esta fase de negociación, se fija 

el algoritmo de cifrado a emplear. 

̵ Autenticación: ambos extremos de la comunicación se autentican 

mediante el uso de certificados (el cliente se autentica bajo petición del 

servidor). 

̵ Intercambio de claves: el cifrado de los datos de aplicación se realiza 

mediante criptografía de clave simétrica, una misma clave compartida por 

el cliente y el servidor. Para el establecimiento de dicha clave entre ambos, 

se emplea criptografía de clave asimétrica (clave pública y privada), el 

cliente envía una secuencia aleatoria al servidor cifrada mediante la clave 

pública del servidor. Con esta secuencia, ambos generan la clave simétrica 

empleada para cifrar las comunicaciones posteriores. El handshake 

concluye con el envío de un mensaje de finalización cifrado con la clave 

secreta simétrica. 
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2.3.2. DTLS (Datagram Transport Layer Security) 

DTLS es un protocolo de nivel de transporte que garantiza seguridad en las 

comunicaciones basadas en UDP, definido por el ETSI en el estándar RFC 6347 [47]. 

DTLS se basa en el protocolo TLS utilizado en comunicaciones sobre UDP. 

El funcionamiento de DTLS es similar al funcionamiento de TLS, inicialmente se 

realiza un intercambio de mensajes, handshake¸ en el que se establecen la configuración 

de la sesión y a continuación se transmiten los datos de forma segura y cifrada.  

 

2.4.  Interoperabilidad entre protocolos 

Como se ha plasmado en la sección 2.3, en torno al ecosistema IoT existe un gran 

conjunto de protocolos de nivel de aplicación basados en paradigmas y arquitecturas muy 

diferentes. La falta de un protocolo unificado, estandarizado y normalizado para las 

comunicaciones IoT provoca que actualmente, cada fabricante cree sus propios 

protocolos y los diseñadores de servicios basados en IoT como por ejemplo las redes de 

sensores, Smart cities, Smart grid, o la industria 4.0 usen diferentes protocolos de 

aplicación sin preocuparse siquiera por homogeneizar dichas comunicaciones.  

Esto puede dar como resultado escenarios IoT heterogéneos a causa de las 

diferencias entre protocolos, ya sea debido al paradigma de comunicación 

(petición/respuesta o publicación/suscripción) o a características intrínsecas de los 

protocolos. Esta situación deriva en problemas tales como la dependencia de hardware 

propietario para poder utilizar protocolos de comunicación privados o la necesidad de 

disponer de aplicaciones compatibles con cada protocolo para obtener datos de diferentes 

proveedores. 

Partiendo de la definición de interoperabilidad, la cual se define como “la 

habilidad de dos o más sistemas o componentes para intercambiar información y usar la 

información que se ha intercambiado” según IEEE en [31], nos encontramos ante una 

comunidad que presenta grandes dificultades de interoperabilidad. 

Por este motivo, cada vez son más los esfuerzos realizados por buscar puntos de 

unión entre los diferentes protocolos expuestos con el fin de lograr la mayor 

interoperabilidad posible entre ellos. Es así como surgen iniciativas de proyectos software 

que permitan unificar las comunicaciones entre protocolos.  

Es común encontrar sistemas proxy entre CoAP y HTTP debido a la similitud de 

los protocolos tanto arquitectural como semántica. Ambos protocolos utilizan el 

protocolo de interacción petición/respuesta, se fundamentan en la arquitectura cliente-

servidor y comparten gran parecido en cuanto a los mensajes definidos en los dos 

estándares (son similares semánticamente). Estos aspectos facilitan en gran medida la 

traducción entre ambos protocolos, de manera que puede realizarse a través de una 

plataforma software intermedia. De esta manera, si se desea acceder a datos accesibles a 

través de CoAP, mediante tecnologías tradicionales fundamentadas en http, una 
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comunicación indirecta, a través de una plataforma que realiza la traducción, puede ser 

de gran interés. Existen implementaciones como crosscoap [24] o la de los autores [35]. 

Por otro lado, también se pueden encontrar sistemas que habilitan la comunicación 

entre HTTP y MQTT. No obstante, en este caso, debido a la diferencia entre los 

protocolos, la interoperabilidad bidireccional no resulta tan sencilla. Teniendo en cuenta 

que MQTT está basado en un modelo de interacción publish/subscribe mediante una 

arquitectura centralizada en un broker, y HTTP se basa en un modelo petición/respuesta 

mediante una arquitectura cliente-servidor, estos sistemas se fundamentan en la 

traducción de los métodos PUT y POST de HTTP, que permiten actualizar los datos en 

el servidor, en mensajes MQTT PUBLISH, permitiendo generar datos en un broker 

MQTT a través de HTTP. Por otro lado, si lo que se quiere es obtener información 

publicada mediante MQTT desde peticiones HTTP GET, es habitual encontrarnos con 

implementaciones que retienen los datos publicados por los clientes MQTT en un servidor 

HTTP y este responde las peticiones con los datos almacenados. Actualmente existen 

proyectos como [1] [25] [26] y [30]. 

Por último, lo que resulta más interesante dadas las tendencias de protocolos 

predominantes en IoT actualmente, se trata de un sistema de mensajería que permita una 

interoperabilidad total entre MQTT, CoAP y HTTP con la posibilidad de añadir futuros 

protocolos. Bajo estas condiciones, el proyecto que cuenta con más solidez y dispone de 

una implementación de código abierto plug and play y funcional se trata del broker 

Ponte, del cual se habla continuación. 

 

2.4.1. Ponte 

Ponte [45] [8] es un sistema de mensajería que actúa como pasarela entre los 

protocolos MQTT, CoAP y HTTP, desarrollado por Eclipse Foundation [13], actualmente 

se encuentra en fase de incubación tal y como indican en la documentación oficial. Pese 

a que no se trata de una solución final, es posible encontrar el código de la última versión 

en Github [23].  

Se trata de un proyecto diseñado sobre el entorno de trabajo Node.Js y de rápida 

instalación, únicamente requiere disponer de la versión node.js 0.10 y la última versión 

disponible de NPM (sistema de gestión de paquetes por defecto de node.js). 

En su documentación oficial se detalla la arquitectura mostrada en la Figura 12. 

 

Figura 12. Arquitectura de Ponte, obtenida de [45] 
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Se diferencian tres interfaces diferentes, un servidor HTTP, un servidor MQTT y 

un servidor CoAP, además de diferentes herramientas de almacenamiento e indexación 

de datos. 

El servidor MQTT está diseñado para funcionar como broker, se corresponde con 

una implementación de código abierta llamada Mosquito [15] que pertenece a Eclipse 

Foundation. Este se encarga de procesar las diferentes publicaciones y suscripciones 

MQTT. 

El servidor CoAP implementa una interfaz que permite manejar peticiones con los 

métodos GET, PUT, POST y DELETE típicos del patrón REST. Permite a un cliente 

CoAP publicar datos a través de los métodos PUT y POST al igual que obtener 

información de ellos a través del método GET. Tiene total compatibilidad con la opción 

de observación por lo que es fácilmente equiparable al paradigma publish/subscribe de 

MQTT. 

Por otro lado, el servidor HTTP funciona de forma similar al servidor CoAP, 

mediante los métodos PUT y POST permite a un cliente HTTP publicar datos en el 

sistema mientras que con el método GET permite obtener los datos. Es importante 

destacar que HTTP no dispone de la funcionalidad de suscripción como MQTT o de 

observación como CoAP, por lo que los datos publicados deben ser retenidos por el 

broker Ponte, para poder indexarlos desde HTTP en caso de recibir una petición GET. 

Resulta interesante destacar los aspectos que, de momento no se abordan en el 

broker Ponte y que consideramos que son de utilidad para garantizar la mayor 

interoperabilidad posible y en las mejores condiciones. En primer lugar, desde el punto 

de vista de CoAP, Ponte únicamente da servicio a aplicaciones basadas en clientes CoAP 

que generan mensajes PUT/POST sobre el broker. Sin embargo, no se contempla la 

posibilidad de dar servicio a aplicaciones basadas en servidores CoAP tradicionales 

definidos en el estándar, que son los más utilizados en despliegues típicos. Por otro lado, 

Ponte, si bien en su documentación oficial indica que se encuentra en desarrollo, 

actualmente no incorpora ningún mecanismo de cifrado en las comunicaciones. Por 

último, dado el auge de la implantación de arquitecturas IoT basadas en edge computing, 

resultaría interesante disponer de una versión de Ponte que permitiera aumentar la 

escalabilidad del sistema en escenarios con diferentes broker interconectados, 

característica que actualmente no posee. 

Todos estos aspectos se abordan en este proyecto mediante el desarrollo de un 

middleware que además de las funcionalidades proporcionadas por Ponte, da servicio a 

servidores CoAP tradicionales y permite comunicaciones tanto cifradas mediante 

TLS/DTLS como sin cifrar. Además, se propone una solución que permite tener múltiples 

instancias del broker interconectadas, posibilitando la escalabilidad del sistema. 
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3. Implementaciones software existentes 

En este capítulo se muestran las principales librerías software existentes y se 

aborda la elección de las librerías utilizadas durante el desarrollo técnico. A continuación, 

se muestra una breve revisión de las implementaciones más destacadas de MQTT, 

MQTT-SN y CoAP. 

3.1.  Implementaciones CoAP 

En la Tabla 2 se muestran las librerías más conocidas y utilizadas por la 

comunidad CoAP, junto a sus características principales. 

 

 

3.2.  Implementaciones MQTT 
 

En la Tabla 3 se muestran las librerías más conocidas y utilizadas por la 

comunidad MQTT, junto a sus características principales. 

Nombre Lenguaje Cliente/Bróker 

Versiones 

del 

protocolo 

TLS Licencia Referencia 

Mosquitto C Cliente y broker 5.0, 3.1.1 y 3.1 Si EPL/EDL [15] 

Paho 

MQTT 

C, C++, 

Java, 

JavaScript, 

Python, 

Go 

Cliente 3.1.1 y 3.1 Si EPL [14] 

Nombre Lenguaje 
RFC 

implementada 

Cliente / 

Servidor 
Características Licencia Referencia 

Aiocoap Python 3 7252 
Cliente y 

servidor 

Blockwise 

Transfers y Observe 
MIT [2] 

Californium Java 7252 
Cliente y 

servidor 

Observe, Blockwise 

Transfers y DTLS 
EPL + EDL [12] 

CoAPThon Python 7252 
Cliente y 

servidor 

Blockwise 

Transfers, Observe, 

DTLS 

MIT [6] 

Libcoap C 7252 
Cliente y 

servidor 

Blockwise 

Transfers, Observe 

y DTLS 

BSD/GPL [33] 

Node-coap JavaScript 7252 
Cliente y 

servidor 

Blockwise 

Transfers 
MIT [41] 

 

Tabla 2. Implementaciones de CoAP 
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wolfMQTT C Cliente 5.0 y 3.1.1 Si GPL [57] 

Moquette Java Broker 3.1. Si EPL [37] 

HiveMQ 

CE 
Java Broker 5.0 y 3.x Si Apache v2 [27] 

HiveMQ 

Client 
Java Cliente 5.0 y 3.1.1 SI Apache v2 [27] 

 

Tabla 3. Implementaciones de MQTT 

 

3.3.  Implementaciones MQTT-SN 

MQTT-SN se trata de un protocolo relativamente nuevo, por lo que no posee la 

suficiente madurez como MQTT o CoAP. Esto hace que existan escasas 

implementaciones y no tan contrastadas y utilizadas como ocurre con los otros protocolos. 

A continuación, la Tabla 4 muestra alguna implementación disponible en Github de 

MQTT-SN. 

Nombre Lenguaje 
Cliente/GW 

/Forwarder 

Versiones del 

protocolo 
Licencia Referencia 

Mqtt-sn-tools C Cliente y forwarder 1.2 MIT [22] 

Mqtt-sn C Cliente y gateway 1.2 MPL [18] 

Paho.mqtt-

sn.embedded-c 
C 

Cliente (incompleto) 

y gateway 
1.2 

EPL y 

EDL 
[20] 

Mqtt-sn-

gateway 
Java Gateway 1.2 

EDL y 

EPL 
[21] 

Mqttsn Python Cliente 1.2 MIT [39] 

 

Tabla 4. Implementaciones de MQTT-SN 
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3.4.  Implementaciones elegidas 

Para el desarrollo técnico del proyecto se ha elegido Java como lenguaje de 

programación. Entre los motivos por lo que se ha escogido Java se encuentran los 

siguientes: se trata de un lenguaje multiplataforma que funciona sobre la máquina virtual 

de Java (JVM) por lo que es fácilmente portable entre distintos sistemas operativos, es un 

lenguaje orientado a objetos, gracias a esto se definen estructuras de fácil manipulación, 

se conoce como un buen lenguaje del lado del servidor [10] y permite implementar 

programación concurrente multihilo de forma sencilla.  

Las librerías seleccionadas han sido: 

• Moquette MQTT basada en Eclipse Paho para el broker MQTT 

• Eclipse Californium para la arquitectura CoAP 

• Mqtt-sn-tools para los clientes MQTT-SN 

• Paho.mqtt-sn.embedded-c para el MQTT-SN Gateway 

• Oracle HTTP para el servidor HTTP 

Moquette y Californium son librerías desarrolladas y respaldadas por Eclipse 

Foundation en la cual participan empresas como IBM, Oracle, RedHat, Bosch o Huawei, 

esto garantiza estabilidad y continuas actualizaciones de software. Además, cuentan con 

una gran comunidad de desarrolladores donde encontrar ayuda y soporte. Por otro lado, 

Oracle HTTP se encuentra integrada entre los paquetes de Java contando con una extensa 

documentación en su API. Por último, la elección de las librerías de MQTT-SN se basó 

en heurística, las librerías existentes cuentan con características similares, por lo que se 

eligieron las librerías más sencillas de usar y que no mostraban fallos en su ejecución. 
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4. Solución técnica 

En este capítulo se aborda el desarrollo técnico de un middleware de mensajería 

que permite la intercomunicación de clientes IoT utilizando diferentes protocolos de nivel 

de aplicación, MQTT, CoAP y HTTP. El proyecto software completo, se encuentra 

disponible en el repositorio de Github [19]. Adicionalmente, el Anexo 1 se muestra 

detalladamente la estructura de clases del proyecto. 

4.1.  Planteamiento del sistema 

Como punto de partida se definen los casos de uso que se quieren tratar y los 

diferentes tipos de mensajes que se ven implicados. 

Recepción de un mensaje PUBLISH MQTT  

En caso de recibir un mensaje MQTT de tipo PUBLISH dirigido a un topic, se 

retransmite a todos los clientes MQTT suscritos a dicho topic (funcionamiento tradicional 

de un broker MQTT). A su vez, si existe algún cliente CoAP con una relación de 

observación establecida sobre ese topic (GET Observe), internamente el sistema traduce 

el mensaje MQTT recibido y lo reenvía en forma de notificacion CoAP a los clientes 

CoAP que observan dicho topic. Por último, el contenido del mensaje se almacena en la 

memoria del servidor CoAP y del servidor HTTP para poder acceder a él a través de 

consultas HTTP GET y CoAP GET simples (únicamente se guarda el ultimo valor 

actualizado). 

Recepción de un mensaje PUT/POST CoAP 

En caso de recibir un mensaje CoAP de tipo PUT/POST dirigido a un topic, se 

retransmite a todos los clientes CoAP que tengan una relación de observación establecida 

sobre ese topic (GET Observe). A su vez, internamente el sistema traduce el mensaje 

PUT/POST CoAP en un mensaje PUBLISH MQTT, de esta manera el broker MQTT 

notifica a todos los clientes MQTT suscritos a ese topic. Del mismo modo que antes, el 

contenido del mensaje se almacena en la memoria del servidor CoAP y del servidor HTTP 

para poder acceder a él a través de consultas HTTP GET y CoAP GET simples 

(únicamente se guarda el ultimo valor actualizado). 

Recepción de un mensaje PUT/POST HTTP 

En caso de recibir un mensaje HTTP de tipo PUT/POST dirigido a un topic, el 

sistema internamente lo traduce a un mensaje PUT/POST CoAP y lo interpreta como tal, 

notificando a todos los clientes CoAP que tengan una relación de observación establecida 

con ese topic (GET Observe). También lo traduce a un mensaje PUBLISH MQTT, de 

esta manera el broker MQTT notifica a todos los clientes MQTT suscritos a ese topic. 

Del mismo que en los casos anteriores, el contenido del mensaje se almacena en la 

memoria del servidor CoAP y del servidor HTTP para poder acceder a él a través de 

consultas HTTP GET y CoAP GET simples (únicamente se guarda el ultimo valor 

actualizado). 
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 Con estos tres casos de uso, se tienen bajo control todas las posibles publicaciones 

de información en el middleware a través de los distintos protocolos. Por otro lado, un 

caso de uso concreto e importante es el hecho de darle servicio a servidores CoAP 

tradicionales. Si se recuerda el diseño arquitectural de CoAP, lejos de tratarse de un 

modelo publish/subscribe se diseñó como modelo request/response basándose en una 

arquitectura cliente-servidor. Con los casos abordados anteriormente, desde el punto de 

vista de CoAP, el middleware únicamente da servicio a aplicaciones basadas en clientes 

CoAP que generan mensajes PUT/POST de forma proactiva para publicar datos. Sin 

embargo, uno de los principales objetivos de este sistema, es permitir integrar todas 

aquellas aplicaciones basadas en servidores CoAP que recopilan datos y los comunican 

de forma reactiva como respuesta a una petición GET, aunando así los dos paradigmas, 

publish/subscribe y request/response, esto resulta fundamental puesto que, como se 

detalla en la sección 2.2.3, el estándar define CoAP como un modelo cliente-servidor y 

su funcionamiento publish/subscribe actualmente es una propuesta sin estandarizar, por 

lo que de momento existen infinidad de fabricantes y proveedores que basan sus servicios 

en servidores CoAP. Este funcionamiento, tal y como se ha comentado en el apartado 

2.4.1, es una de las carencias del broker Ponte que se propone añadir. Para ello se definen 

los siguientes procedimientos y casos de uso. 

Descubrimiento de topics 

Debido a que un servidor CoAP no transmite datos de forma proactiva sino de 

forma reactiva tras la recepción de una petición, el middleware debe conocer qué topics 

están alojados en los servidores a los que da servicio. Para ello el sistema, debe consultar 

a todos los servidores CoAP qué topics contiene y almacenarse esta información en 

memoria para poder ser utilizada más tarde. Se emplea la funcionalidad de 

descubrimiento de recursos disponible en el estándar CoAP, los servidores constan de la 

URI .well-known/core, realizando una petición a dicha URI el servidor devuelve 

información de todos los topics que contiene. Por lo que el middleware define un cliente 

CoAP para cada servidor a los que da servicio y a través de peticiones GET a esta URI 

descubre todos los topics disponibles. 

Recepción de un mensaje SUBSCRIBE MQTT 

En caso de recibir un mensaje MQTT de tipo SUBSCRIBE sobre un topic, el 

broker MQTT añade ese cliente a la lista de suscripciones de ese topic y en el momento 

en que se recibe un mensaje MQTT PUBLISH sobre ese topic, el cliente es notificado, 

Figura 13 (a). Del mismo modo pasa con los mensajes PUT/POST CoAP o PUT/POST 

HTTP debido a la traducción interna entre protocolos comentada anteriormente, Figura 

13 (b) y Figura 13 (c). Adicionalmente, el sistema consulta si ese topic corresponde con 

un topic alojado en un servidor CoAP. En caso positivo, crea un cliente CoAP que 

establece una relación de observación con dicho servidor (envía un GET Observe) 

obteniendo los datos, cada vez que el servidor los actualice e internamente se traducirá 

por un PUBLISH MQTT que se reenviara por la interfaz MQTT notificando al cliente 

suscrito, Figura 13 (d). Cabe destacar, que para mejorar la eficiencia y ahorrar el consumo 

de ancho de banda, esto último solo se realiza para la primera suscripción, en caso de 

tener más de un cliente MQTT suscrito al mismo topic no se replica el tráfico entre el 

middleware y el servidor CoAP, sino que se utiliza la misma conexión. 
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Figura 13. Caso de uso de suscripción MQTT a un topic. 

              

Recepción de un mensaje GET OBSERVE CoAP 

En caso de recibir un mensaje CoAP de tipo GET OBSERVE sobre un topic, se 

añade la relación de observación entre ese cliente y el topic, de forma que si se recibe un 

mensaje CoAP de tipo PUT/POST dirigido a ese topic se notificara a dicho cliente con 

los datos nuevos, Figura 14 (b). Del mismo modo pasa con los mensajes recibidos de tipo 

PUT/POST HTTP o MQTT PUBLISH gracias a la traducción interna entre protocolos 

que realiza el sistema, Figura 14 (c) Figura 14 (a) respectivamente. Adicionalmente, el 

sistema consulta si ese topic se corresponde con un topic alojado en un servidor CoAP. 

En caso positivo, crea un cliente CoAP que establece una relación de observación con 

dicho servidor (envía un GET Observe) obteniendo los datos, cada vez que el servidor los 

actualice e internamente se actualizan los datos en el topic del middleware notificando al 

cliente observador, Figura 14 (d). Al igual que antes, esto último solo se realiza para la 

primera suscripción (independientemente de que sea MQTT o CoAP), en caso de tener 

más de un cliente suscrito al mismo topic no se replica el tráfico entre el middleware y el 

servidor CoAP, sino que se utiliza la misma conexión. 

a) b) 

c) d) 
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Figura 14. Caso de uso GET OBSERVE CoAP 

 

Con los casos de uso descritos hasta el momento, se cubre la publicación y 

recepción de datos basados en eventos en tiempo real (un actor genera datos y otro actor 

en tiempo real es notificado). Sin embargo, CoAP y HTTP permiten obtener datos 

mediante petición/respuesta a través de los métodos HTTP GET y CoAP GET (no 

observe). En este caso no se busca obtener datos en tiempo real, sino el ultimo valor 

almacenado sobre un topic. Para ello se definen los siguientes casos de uso. 

Recepción de un mensaje CoAP GET (no observe)  

En caso de recibir un mensaje CoAP de tipo GET (no observe) sobre un topic, 

primero se consulta si el topic se corresponde con un topic alojado en un servidor CoAP. 

En caso positivo, se crea un cliente CoAP que retransmite la petición GET al servidor 

CoAP obteniendo la última información actualizada y se responde al cliente original con 

dicha información, Figura 15 (a). En caso de no corresponder con un topic alojado en un 

servidor CoAP, se trata de un recurso publicado mediante un mensaje PUT/POST CoAP, 

PUT/POST HTTP o mediante un mensaje PUBLISH, por lo que se responde con el ultimo 

valor publicado en el middleware, Figura 15 (b). Por esta razón se almacena el último 

dato publicado.  

a) b) 

c) d) 
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Figura 15. Caso de uso CoAP GET (no observación) 

 

Recepción de un mensaje HTTP GET 

En caso de recibir un mensaje HTTP de tipo GET sobre un topic, primero, se 

realiza el mismo proceso que en con la recepción de un mensaje CoAP GET. Si el topic 

está alojado en un servidor CoAP, se crea un cliente CoAP que retransmite la petición 

GET al servidor CoAP. Con la información obtenida responde a la petición HTTP, Figura 

16 (a). En caso de no corresponder con un topic alojado en un servidor CoAP, se trata de 

un recurso publicado mediante un mensaje PUT/POST CoAP, PUT/POST HTTP o 

mediante un mensaje PUBLISH, por lo que se responderá con el ultimo valor publicado 

en el middleware, Figura 16 (b). 

 

                 

 

Figura 16. Caso de uso HTTP GET 

 

A fin de evitar conflictos con los nombres de los topics en estos dos últimos casos 

de uso, se define una limitación en la configuración en los nombres de los topics: es 

fundamental que los nombres de los topics alojados en los servidores CoAP no sean 

iguales entre ellos y tampoco iguales a los topics publicados mediante mecanismos 

publish/subscribe. 

 

a) b) 

a) b) 
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4.2.  Arquitectura del sistema 

En cuanto a la solución software, se define una arquitectura basada en un broker 

MQTT, un broker CoAP y un servidor HTTP independientes. Como nexo, se define una 

arquitectura de clases de java que implementa todos los procedimientos necesarios para 

realizar la gestión interna de topics entre los tres servicios y la correcta traducción de 

protocolos para cada caso de uso. La arquitectura superficial se muestra en la Figura 17. 

 

 

Figura 17. Arquitectura del middleware 

 

El desarrollo de las interfaces MQTT y HTTP resulta inmediata a partir de la 

documentación oficial de cada librería, permitiendo realizar todo lo anteriormente 

comentado. Sin embargo, la librería CoAP Californium implementa la RFC 7252, que 

por sí sola no permite tener una estructura publish/subscribe basada en un broker CoAP 

tal y como se define en draft-ietf-core-coap-pubsub. Por esto, es necesario modificar la 

librería para añadir esta funcionalidad, ya que resulta necesaria para este proyecto.  

Afortunadamente, existe un proyecto desarrollado por Thomas Wiss en la universidad de 

Suecia disponible en Github [56], entre otras cosas contiene una modificación de la 

librería CoAP Californium en la que se implementa una API publish/subscribe para 

CoAP. Por lo tanto, en la interfaz CoAP se implementa un broker CoAP basado en dicho 

proyecto. 

La principal diferencia a tener en cuenta entre la librería Californium que 

implementa la especificación RFC 7252 de CoAP y la librería modificada de Californium 

que implemente el draft propuesto para una arquitectura publish/subscribe es la siguiente. 

Del lado del servidor, la librería Californium CoAP está diseñada para poner en marcha 

un servidor que contiene diferentes topics, en este caso bajo diferentes URIs configuradas 

de forma estática en el código de la aplicación del servidor. Son los gestores de las URIs 

los que manejan las peticiones entrantes dirigidas a ellas. Los clientes CoAP pueden 
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generar peticiones con diferentes métodos para obtener datos o modificarlos. Sin 

embargo, es imposible generar peticiones PUT/POST de publicación sobre URIs no 

existentes en el servidor, de forma que no resulta viable tener una arquitectura de 

publicación/suscripción dinámica. Para esto, el draft propone la configuración de la URI 

/ps/ en el servidor, de forma que las publicaciones de tipo PUT/POST vayan dirigidas a 

dicha URI y los topics que se publican, se añaden como child topic de /ps como muestra 

el ejemplo de la Figura 18. De esta forma, aunque el topic no exista dentro del servidor 

CoAP, el funcionamiento interno de la URI /ps/ es el encargado de crear los topic 

dinámicamente. Este funcionamiento viene añadido en la librería de Californium 

modificada por Thomas Wiss. 

 

 

Figura 18. Ejemplo de la estructura de topic propuesta en CoAP publish/subscribe 

 

Una vez explicadas las librerías utilizadas, a continuación, se detalla la 

arquitectura de middleware implementada mediante diferentes clases de Java. 

El sistema está basado en tres interfaces independientes, cada una procesa los 

mensajes recibidos de cada protocolo. El hecho de tener tres procesos independientes 

genera la necesidad de poder comunicarlos entre ellos, para ello se plantean dos 

posibilidades, mediante memoria compartida o mediante paso de mensajes. Dadas las 

grandes diferencias de construcción de las librerías empleadas y del funcionamiento de 

cada protocolo, se propone la comunicación de los tres procesos mediante paso de 

mensajes. De esta forma no es necesario modificar en gran medida las librerías 

seleccionadas. 

La comunicación entre los procesos y la traducción de protocolos se realiza en el 

Protocolo de Comunicación (MQTT, CoAP o HTTP), ver Figura 17, teniendo una 

instancia para cada proceso: Protocolo de comunicación MQTT, Protocolo de 

comunicación CoAP y Protocolo de comunicación HTTP. En ellos, se programa el 

funcionamiento necesario para cumplir con los casos de uso propuestos anteriormente en 

la sección 4.1. La sincronización entre procesos se lleva a cabo a través de la instancia 

GestorRecursos, ver Figura 17. Este gestor contiene información actualizada sobre los 

topics publicados, información sobre los topics alojados en servidores CoAP y sobre los 

clientes suscritos a cada topic. Por lo tanto, cada Protocolo de comunicación, antes de 

realizar la traducción de mensajes pertinente, consulta la información necesaria en el 

GestorRecursos, consiguiendo así sincronización entre procesos para su posterior 

comunicación. 
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Cada Protocolo de comunicación tras analizar la información necesaria, realiza la 

traducción y comunicación mediante paso de mensajes con los otros dos procesos 

restantes. A continuación, se muestran diferentes diagramas de flujo que representan los 

procesos de comunicación entre interfaces. 

Protocolo de comunicación MQTT 

 

Figura 19. Diagrama de flujo de la interfaz MQTT 

En la Figura 19 se observa el diagrama de flujo de la interfaz MQTT para los 

siguientes casos: 

̵ Recepción de un mensaje MQTT PUBLISH: en este caso, si el mensaje 

proviene de un cliente MQTT PUBLISH, el Protocolo de comunicación 

MQTT informa al Gestor de recursos de la recepción del mensaje dirigido 

al topic. El gestor actualiza la información de control sobre el topic y a 

continuación se envía un mensaje CoAP PUT con los datos del topic a la 

interfaz CoAP. Cuando esta interfaz lo recibe, se encarga de notificar a los 

clientes CoAP que tienen una relación de observación a ese topic. 

Adicionalmente, se actualiza el servidor HTTP con dichos datos para 

poder acceder a ellos a través de peticiones HTTP GET. Por otro lado, si 

el mensaje MQTT PUBLISH ha sido generado por el broker CoAP o por 

el servidor HTTP, no se hace nada puesto que es fruto de la traducción de 

un mensaje CoAP PUT/POST o HTTP PUT/POST y el broker MQTT 

únicamente notifica a los clientes MQTT SUBSCRIBER. 

̵ Recepción de un mensaje MQTT SUBSCRIBE: en este caso, el Protocolo 

de comunicación MQTT lo primero que hace es consultar la información 

de control sobre el topic al que hace referencia el mensaje a través del 

Gestor de recursos. Si se trata de un topic alojado en un servidor CoAP, 

notifica al Gestor de recursos sobre el usuario suscriptor. Esto permite 
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llevar la cuenta de los usuarios que están suscritos. A continuación, 

comprueba a través del Gestor de recursos si ya existe un Observador 

creado a dicho topic alojado en el servidor CoAP. Si ya existe uno, 

únicamente deja al cliente MQTT suscrito al topic en el broker MQTT. En 

caso de que no exista un Observador, lo crea y deja al cliente MQTT 

suscrito al topic en el broker MQTT. Por otro lado, si no se trata de un 

topic alojado en un servidor CoAP, únicamente deja al cliente MQTT 

suscrito en el broker MQTT 

Protocolo de comunicación CoAP 

 

Figura 20. Diagrama de flujo de la interfaz CoAP 

En la Figura 20, se observa el diagrama de flujo de la interfaz CoAP para los 

siguientes casos: 

̵ Recepción de un mensaje CoAP PUT/POST: en este caso, si el mensaje 

proviene de un cliente CoAP PUT/POST, el Protocolo de comunicación 

CoAP informa al Gestor de recursos de la recepción del mensaje dirigido 

al topic. El gestor actualiza la información de control sobre el topic y a 

continuación se envía un mensaje MQTT PUBLISH con los datos del topic 

a la interfaz MQTT. Cuando esta interfaz lo recibe, se encarga de notificar 

a los clientes MQTT suscritos ese topic. Adicionalmente, se actualiza el 

servidor HTTP con dichos datos para poder acceder a ellos a través de 
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peticiones HTTP GET. Por otro lado, si el mensaje CoAP PUT/POST ha 

sido generado por el broker MQTT o por el servidor HTTP, no se hace 

nada, puesto que es fruto de la traducción de un mensaje MQTT PUBLISH 

o HTTP PUT/POST y el broker CoAP únicamente notifica a los clientes 

CoAP que tienen una relación de observación establecida con ese topic. 

̵ Recepción de un mensaje CoAP GET: en primer lugar, se consulta la 

información sobre ese topic en el Gestor de recursos. Si se trata de un topic 

alojado en un servidor CoAP existen dos posibilidades: a) si se trata de una 

petición GET simple, se retransmite la petición al servidor y con la 

información obtenida se responde a la petición del cliente, o b) si se trata 

de una petición GET Observe, se notifica al Gestor de recursos sobre el 

usuario observador. Esto permite llevar la cuenta de los usuarios que están 

observando. A continuación, se comprueba a través del Gestor de recursos 

si ya existe un Observador creado a dicho topic alojado en el servidor 

CoAP. Si ya existe uno, el gestor únicamente deja al cliente CoAP 

observando el topic en el broker CoAP. En caso de que no exista un 

Observador, lo crea y deja al cliente CoAP suscrito al topic en el broker 

CoAP. En caso de que no sea un topic alojado en un servidor CoAP existen 

dos posibilidades: a) si es una petición GET simple se consulta si se 

dispone de información almacenada (publicada mediante un mensaje 

MQTT PUBLISH, CoAP PUT/POST o HTTP PUT/POST). En caso 

afirmativo se contesta con dicha información y en caso negativo se 

contesta con el código de error 4.04 NOT FOUND, o b) si se trata de una 

petición GET Observe se deja al cliente observando el topic en el broker 

CoAP. 

Protocolo de comunicación HTTP 

 

Figura 21. Diagrama de flujo de la interfaz HTTP 
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En la Figura 21, se observa el diagrama de flujo de la interfaz HTTP para los 

siguientes casos: 

̵ Recepción de un mensaje HTTP PUT/POST: en este caso, el Protocolo de 

comunicación HTTP informa al Gestor de recursos de la recepción del 

mensaje dirigido al topic. El gestor actualiza la información de control 

sobre el topic y a continuación se envía un mensaje MQTT PUBLISH con 

los datos del topic a la interfaz MQTT. Cuando esta interfaz lo recibe, se 

encarga de notificar a los clientes MQTT suscritos ese topic y se envía un 

mensaje CoAP PUT con los datos del topic a la interfaz CoAP, que se 

encarga de notificar a los clientes que tienen una relación de observación 

establecida. 

̵ Recepción de un mensaje HTTP GET: en primer lugar, se consulta la 

información sobre ese topic en el Gestor de recursos. Si se trata de un topic 

alojado en un servidor CoAP se retransmite la petición GET al servidor 

CoAP y con la información recibida se responde la petición original. En 

cambio, si no se trata de un topic alojado en un servidor CoAP existen dos 

opciones: a) si se dispone de información publicada a través de mensajes 

MQTT PUBLISH, CoAP PUT/POST o HTTP PUT/POST se contesta a la 

petición con dicha información, o b) si no existe información almacenada, 

se contesta con el código de error 404 NOT FOUND. 

Adicionalmente, se definen dos elementos más: Gestor de descubridores y 

Descubridor. El primero de ellos dispone de una lista de servidores CoAP a los que se da 

servicio a través del middleware. Es el encargado de crear un proceso Descubridor por 

cada servidor CoAP. Se encarga de realizar peticiones CoAP GET a la URI /.well-

known/core del servidor. La respuesta que obtiene cada Descubridor contiene la lista de 

topics de los que dispone el servidor CoAP al que le consulta. Esta información se le 

comunica al Gestor de recursos para emplearse como información de control. 

Por último, resulta interesante destacar los mecanismos de cifrado introducidos 

en el middleware. A diferencia de Ponte, el sistema desarrollado permite la creación de 

canales de comunicación seguros a través DTLS y TLS. En este caso, las interfaces CoAP, 

MQTT y HTTP permiten dos tipos de conexiones diferentes: conexiones sin cifrar y 

conexiones cifradas. En el caso de las conexiones cifradas, en la interfaz CoAP se ha 

integrado el uso de DTLS sobre UDP y en el caso de las interfaces MQTT y HTTP se ha 

integrado el uso de TLS sobre TCP. En los tres casos se utilizan certificados digitales 

como medio de autenticación del servidor y del cliente, aunque también es posible el uso 

de una clave secreta preestablecida (pre-shared key) como medio de autenticación. La 

creación de los certificados digitales se detalla en el Anexo 2. 
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4.3.  Solución middleware escalable 

El gran aumento de las aplicaciones de publicación/recepción de datos y el 

consecuente crecimiento de las redes IoT, junto con el auge de la migración de los 

elementos arquitecturales a ubicaciones perimetrales de red, establece la necesidad de 

plantear soluciones escalables que permitan adaptarse al crecimiento continuo del número 

de usuarios de manera fluida. Cabe destacar que esta solución ha venido inspirada por el 

trabajo [34], en el cual proponen una arquitectura distribuida dinámica de brokers MQTT 

como solución a arquitecturas centralizadas en un único broker. 

La solución inicial implementada en las secciones 4.1 y 4.2, establece un sistema 

estático que no permite desplegar de forma distribuida el middleware desarrollado. Por 

este motivo, en esta sección se exponen elementos y funcionamientos añadidos sobre la 

arquitectura base, que permiten desplegar el middleware en más de un dispositivo 

garantizándose la comunicación entre ellos. Como ya se ha comentado antes, esta es una 

característica que se echa en falta en el broker Ponte y que se aborda a continuación.  

El objetivo de querer garantizar la escalabilidad del middleware, implica 

directamente la necesidad de intercomunicar múltiples dispositivos en los que se instale 

dicho middleware, permitiendo así una arquitectura distribuida. Para realizar dicha 

comunicación entre dispositivos se ha elegido el protocolo MQTT, debido a que es un 

protocolo orientado a entornos publish/subscribe cuyo funcionamiento resulta ideal para 

cumplir con este objetivo. El diseño del middleware distribuido se basa en una 

arquitectura en forma de árbol donde los nodos de la red se configuran de forma estática 

evitando lazos cerrados entre ellos. 

Partiendo de la arquitectura base del middleware expuesta en el apartado 4.2, y 

teniendo en cuenta que el elemento Gestor de recursos es el encargado de almacenar la 

información de control para el correcto funcionamiento de los diferentes Protocolos de 

comunicación, se añaden dos listas nuevas: una lista que contiene la dirección IP y el ID 

del resto de middlewares a los que cada uno se conecta y una lista de topics externos en 

el Gestor de recursos. Esta nueva lista de topics, almacena la información de los topic 

que son publicados en otros middlewares distribuidos que forman la red. Esta es la única 

información adicional que se precisa para cumplir con el objetivo propuesto y que, a 

continuación, se muestra cómo se emplea y actualiza de forma dinámica en los diferentes 

casos de uso implicados. 

̵ Recepción de un mensaje PUBLISH MQTT: en primer lugar, se 

comprueba el emisor del mensaje mediante el ClientId del mensaje MQTT 

y la lista de dispositivos que almacena el Gestor de recursos. Si el mensaje 

proviene de un dispositivo middleware distribuido, el Protocolo de 

comunicación MQTT informa al Gestor de recursos de dicho topic y de la 

fuente de origen. Adicionalmente el Protocolo de comunicación MQTT 

propaga el mensaje PUBLISH a los siguientes dispositivos que ejecutan el 

middleware; de esta forma se distribuye la información por toda la 

arquitectura distribuida. Por otro lado, si el mensaje proviene de un cliente 

MQTT publisher y es la primera vez que se recibe una publicación sobre 
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dicho topic, el Protocolo de comunicación MQTT propaga el mensaje 

PUBLISH a todos los dispositivos distribuidos de la lista; de esta forma se 

actualiza la información en todos. El funcionamiento comentado se 

representa en la Figura 22, en azul se resaltan los bloques añadidos frente 

al diagrama de flujo del sistema no escalable. 

 

Figura 22. Diagrama de flujo de la recepción de un mensaje MQTT PUBLISH (middleware escalable) 

 

̵ Recepción de un mensaje PUT/POST CoAP o HTTP: en este caso, el 

mensaje únicamente puede haber sido enviado por un cliente CoAP o 

HTTP. El Protocolo de comunicación CoAP o HTTP, consulta en el 

Gestor de recursos si es la primera vez que se recibe una publicación sobre 

el topic al que va dirigido el mensaje. En caso afirmativo se envía un 

mensaje MQTT PUBLISH al resto de dispositivos que ejecutan el 
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middleware; de esta forma se les informa sobre la existencia dicho topic a 

todos. El funcionamiento comentado se representa en la Figura 23, en azul 

se resaltan los bloques añadidos frente al diagrama de flujo del sistema no 

escalable. 

 

Figura 23. Diagrama de flujo de la recepción de un mensaje PUT/POST CoAP/HTTP (middleware distribuido) 

 

̵ Recepción de un mensaje SUBSCRIBE MQTT o GET OBSERVE CoAP: 

en este caso el Protocolo de comunicación MQTT o CoAP consulta si ese 

topic se corresponde con un topic que ha sido publicado en otro dispositivo 

distribuido de la red que ejecuta el middleware, a través del Gestor de 

recursos. En caso afirmativo, el Protocolo de comunicación MQTT o 

CoAP crea un cliente MQTT SUBSCRIBER que se suscribe a dicho 

dispositivo sobre ese topic. Cada vez que reciba una notificación sobre ese 

topic se notifica a todos los clientes MQTT suscritos y a todos los clientes 

CoAP observadores. Es importante destacar que esto solo se realiza para 

la primera suscripción MQTT u observación CoAP que se recibe, lo que 

permite disminuir el tráfico generado. En caso de que se cancelen todas las 

suscripciones MQTT y todas las relaciones de observación CoAP sobre 
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ese topic, el middleware debe cancelar la suscripción MQTT a los demás 

dispositivos que ejecutan el middleware. En la Figura 24 y Figura 25 se 

muestra el comportamiento tanto frente a un mensaje MQTT SUBSCRIBE 

como a un mensaje CoAP GET OBSERVE respectivamente, resaltando en 

azul los bloques añadidos frente a los diagramas de flujo del sistema no 

escalable. 

̵ Recepción de un mensaje CoAP GET (no observe) o HTTP GET: en este 

caso el Protocolo de comunicación MQTT o CoAP consulta si ese topic se 

corresponde con un topic que ha sido publicado en otro dispositivo 

distribuido de la red que ejecuta el middleware, a través del Gestor de 

recursos. En caso afirmativo, el Protocolo de comunicación CoAP o HTTP 

crea un cliente CoAP o un cliente HTTP que propaga la petición CoAP 

GET o HTTP GET hacia el dispositivo que ejecuta el middleware 

distribuido correspondiente. Por último, se responde a la petición original 

con la información obtenida. En la Figura 25 y Figura 26 se muestra el 

comportamiento frente tanto a un mensaje CoAP GET como a un mensaje 

HTTP GET respectivamente, resaltando en azul los bloques añadidos 

frente a los diagramas de flujo del sistema no escalable. 
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Figura 24. Diagrama de flujo de la recepción de un mensaje MQTT SUBSCRIBE (middleware distribuido) 

 



Capítulo 4: Solución técnica 

 

39 

 

 

Figura 25. Diagrama de flujo de la recepción de un mensaje CoAP GET (middleware distribuido) 
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Figura 26. Diagrama de flujo de la recepción de un mensaje HTTP GET (middleware distribuido) 

 

Adicionalmente, el elemento Descubridor que se encarga de descubrir los 

diferentes topics alojados en servidores CoAP, también genera un mensaje MQTT 

PUBLISH a cada dispositivo que ejecuta el middleware de forma distribuida. De esta 

manera también comunica la existencia de este tipo de topics. 

Del mismo modo que se comentaba en el apartado 4.2, a fin de evitar conflictos 

con los nombres de los topics, se define una limitación en la configuración en los nombres 

de los topics: es necesario que los nombres de los topics que se publican en diferentes 

sistemas middleware distribuidos sean diferentes e independientes entre ellos. 

Por último, la Figura 27 muestra un pequeño ejemplo de comunicación de clientes 

IoT ubicados en diferentes redes interconectados a través de la arquitectura de 

middlewares distribuida. El ejemplo está formado por un cliente MQTT que publica de 

datos sobre un topic en el middleware ubicado en la red 1. A su vez un cliente MQTT se 

suscribe a dicho topic y un cliente CoAP observa el topic, ambos sobre el middleware 

ubicado en la red 2. En la figura se observa por un lado la capacidad de intercomunicar 

clientes que trabajan con diferentes protocolos y también muestra la escalabilidad del 

middleware. 
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Figura 27. Ejemplo de comunicación distribuida 
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5. Descripción de los escenarios de aplicación 

En este capítulo, se describen los escenarios de pruebas considerados en el trabajo, 

con los que se pretenden estudiar los diferentes aspectos, tanto positivos como negativos, 

que surgen al utilizar el sistema middleware desarrollado y explicado en el Capítulo 4. 

Se proponen dos casos de estudio. El primero de ellos se basa en el análisis de la 

sobrecarga añadida que aparece al utilizar el middleware en caso de ubicarlo en un centro 

de datos cloud, siguiendo el modelo de computación para IoT en el que los datos se 

transmiten a recursos computacionales de un centro de datos remoto, donde se dispone 

típicamente de máquinas sin limitaciones. El segundo de ellos, acercándonos a las 

tendencias actuales, se propone el estudio del middleware en caso de alojarlo en el borde 

(“edge” en inglés) de la red IoT, siguiendo el modelo de computación perimetral o edge 

computing en inglés. En este último caso, los recursos computacionales suelen ubicarse 

cerca de donde se generan los datos, pero suelen estar limitados en cuanto a la memoria 

disponible, la capacidad de la CPU o el almacenamiento.  

 

5.1.  Escenario 1: Middleware ubicado en la nube 

Para el primer escenario se propone la topología de red mostrada en la Figura 28. 

Como se puede observar, la red de sensores y el middleware se encuentran ubicados en 

localizaciones diferentes.  

 

Figura 28. Arquitectura IoT escenario 1 

 

La red de sensores se encuentra en una red local privada doméstica, los 

dispositivos empleados para los clientes/servidores IoT son Raspberry Pi 3 model B que 

disponen de un procesador Quad Core 1.2GHz y 1GB de memoria RAM, características 

más que suficientes para aplicaciones IoT. 

Entre los dispositivos IoT, para obtener los resultados se han implementado los 

siguientes: 

̵ Cliente MQTT PUBLISHER 

̵ Cliente MQTT SUBSCRIBER 

̵ Cliente MQTT-SN PUBLISHER 
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̵ Cliente MQTT-SN SUBSCRIBER 

̵ Cliente CoAP PUT 

̵ Cliente CoAP GET y GET Observe 

̵ Servidor CoAP 

̵ Cliente HTTP GET 

̵ Cliente HTTP PUT 

Como se ha explicado en la sección 2.2.2, los clientes MQTT-SN se comunican a 

través del MQTT-SN Gateway, que también se ejecuta sobre una Raspberry Pi 3 model 

B. 

El middleware se encuentra en un equipo ubicado en la red del laboratorio de 

investigación de la Universidad de Zaragoza. El dispositivo empleado se trata de una 

estación de trabajo Workstation Intel Xeon SkyLake-SP 3106 dual con 480GB de disco 

SSD, 8TB de disco duro y 128 GB de memoria RAM. Con esta configuración se pretende 

simular un entorno cloud sin limitación de recursos en el que el tiempo de procesamiento 

del middleware no se vea afectado negativamente por los recursos del dispositivo. 

Respecto al software utilizado para los dispositivos IoT, se han empleado las 

siguientes librerías para desarrollar las aplicaciones de los clientes. 

̵ CoAP PubSub (java) [56]para los clientes CoAP. 

̵ Californium CoAP y CoAP PubSub (java) [12] [56] para el servidor 

CoAP. 

̵ Moquette (java) [37] para el broker MQTT 

̵ Eclipse Paho MQTT (java) [14] para los clientes MQTT. 

̵ Mqtt-sn-tools (C) [22] para los clientes MQTT-SN. 

̵ Eclipse Paho MQTT-SN Embedded (C) [20] para el GW MQTT-SN. 

̵ Oracle HTTP (java) para los clientes y servidor HTTP. 
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5.2.  Escenario 2: Middleware ubicado en el borde de la red 

Para el segundo escenario, se propone la topología de red mostrada en la Figura 

29. Como se puede observar, la red de sensores y el middleware está ubicado en la misma 

ubicación, siendo esta una red privada doméstica. 

 

Figura 29. Arquitectura IoT escenario 2 

 

En este caso, los dispositivos empleados son los mismos tanto para 

clientes/servidores IoT como para el middleware, son también Raspberry Pi 3 model B. 

A diferencia del Escenario 1, la limitación en recursos del dispositivo que aloja el 

middleware repercute directamente en la capacidad de cómputo de este y por ende en el 

retardo de las comunicaciones como se muestra en el Capítulo 6.  

El software y hardware empleado para los dispositivos IoT es el mismo que el 

mencionado en el Escenario 1. 

Con esta configuración se pretende simular un entorno de computación perimetral 

o edge computing, con infraestructura de red basada en dispositivos de recursos limitados. 

De esta forma se estudian los efectos de esta arquitectura frente a la arquitectura propuesta 

en el Escenario 1 en términos de retardo.  
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6. Resultados 

El objetivo principal es estudiar la latencia extremo a extremo en un entorno de 

red real para los escenarios comentados en el Capítulo 5, haciendo hincapié en el retardo 

introducido por el middleware como resultado de la traducción de mensajes entre 

protocolos.  Para ello se plantea la siguiente metodología. 

Para poder medir el retardo extremo a extremo en comunicaciones de tipo 

publish/subscribe, es necesario muestrear el instante temporal en el que el cliente que 

genera datos envía el mensaje y el instante temporal en el que el cliente receptor lo recibe. 

Para ello, el cliente publisher transmite el timestamp2 de unix capturado en el momento 

del envío del mensaje, por otro lado, el cliente subscriber captura el timestamp de unix en 

el momento de la recepción del mensaje y se calcula la diferencia. Es importante destacar 

que es fundamental tener los clientes sincronizados3 temporalmente para que las medidas 

sean correctas. 

Por otro lado, también resulta interesante poder medir el tiempo consumido en 

comunicaciones de tipo petición/respuesta, como pueden ser la interacción mediante 

HTTP GET o CoAP GET.  En este caso, no se mide el retardo extremo a extremo, sino 

que se mide el tiempo de ida y vuelta de la combinación petición-respuesta, también 

conocido como RTT (Round Trip Time). Para ello, el cliente registra el timestamp de unix 

en el momento del envío de la petición y se calcula la diferencia con el timestamp del 

momento de la recepción de la respuesta. 

La Figura 30 muestra la metodología seguida durante la medición del retardo 

extremo a extremo. 

 

Figura 30. Esquema de medición del retardo extremo-extremo 

 

 
2 Timestamp: marca temporal de unix, se define como la cantidad de segundos transcurridos desde 

el 1 de enero de 1970. 
3 Para sincronizar diferentes máquinas bajo un mismo reloj se emplea el protocolo NTP (Network 

Time protocolo) [36] o el protocolo PTP (Precision Time Protocol) [48] en aplicaciones de mayor 

precisión.  
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Adicionalmente, se pretende calcular de forma aislada el tiempo de procesado 

interno en el middleware de cada tipo de comunicación, tanto para comunicaciones 

directas entre protocolos como para comunicaciones en las que interviene la traducción 

de protocolos. Para ello se captura en la interfaz de red del dispositivo en el que se ejecuta 

el middleware. Este estudio, se centra comunicaciones publish /subscribe, ya que son más 

habituales en aplicaciones orientadas a comunicaciones en tiempo real. Para ello se toma 

como referencia el instante temporal en el que se recibe el mensaje del cliente publisher 

y se calcula la diferencia con el instante temporal en el que se captura el envío de la 

notificación a los clientes subscriber.  

 

6.1.  Resultados escenario 1 

Con el objetivo de verificar el funcionamiento del sistema y de obtener medidas 

representativas de su utilización, y dada la gran variedad de posibles combinaciones 

disponibles en las comunicaciones IoT, se han propuesto diferentes casos en función de 

los diferentes niveles de QoS y para comunicaciones cifradas y no cifradas. 

Tiempo medio extremo-extremo y RTT 

En primer lugar, para comunicaciones no cifradas y niveles de QoS 0 y 1 

respectivamente, se comparan los distintos retardos extremo a extremo medios en 

comunicaciones del tipo publicación/suscripción. Para ello se definen: un cliente MQTT 

Suscriptor, un cliente MQTT-SN Suscriptor y un cliente CoAP observador y se procede 

a publicar datos mediante: un cliente MQTT Publisher, un cliente MQTT-SN Publisher, 

un cliente CoAP PUT, un servidor CoAP y un cliente HTTP PUT respectivamente. Con 

el fin de ser equitativo entre protocolos, la configuración de QoS 0 de MQTT/MQTT-SN 

se compara con CoAP usando mensajes NON y la configuración de QoS 1 de 

MQTT/MQTT-SN con CoAP usando mensajes CON. Como HTTP no diferencia niveles 

de QoS, solo se compara con la configuración QoS 0 de MQTT/MQTT-SN y mensajes 

NON de CoAP. Los resultados se muestran en la Figura 31 y Figura 32. 
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Figura 31. Retardo medio extremo-extremo QoS 0 (MQTT/MQTT-SN) y mensajes NON (CoAP) sin TLS/DTLS, 

escenario 1 

 

 

Figura 32. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON (CoAP) sin TLS/DTLS, 

escenario 1 

 

Siguiendo la misma metodología, se realizan las mismas pruebas para 

comunicaciones cifradas y niveles de QoS 0 y 1. En este caso no se incluyen resultados 

para clientes MQTT-SN puesto que no cuentan con implementación TLS. Los resultados 

se muestran en la Figura 33 y Figura 34. 
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Figura 33. Retardo medio extremo-extremo QoS 0 (MQTT/MQTT-SN) y mensajes NON (CoAP) con TLS/DTLS, 

escenario 1 

 

 

Figura 34. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON (CoAP) con TLS/DTLS, 

escenario 1 

De este primer estudio, se puede ver una tendencia en cuanto a la diferencia de 

tiempos. En primer lugar, en todos los casos se puede observar una diferencia de tiempos 

clara en las comunicaciones que requieren traducción de protocolos (en torno a 10-12 

milisegundos de diferencia) como pueden ser:  

̵ Transmisor Cliente CoAP y receptores MQTT o MQTT-SN 

̵ Transmisor Servidor CoAP y receptores MQTT o MQTT-SN 

̵ Transmisor MQTT y receptor CoAP 

̵ Transmisor MQTT-SN y receptor CoAP 

̵ Transmisor HTTP y receptores CoAP, MQTT y MQTT-SN 

Se observa además que el retardo es mayor para el caso en el que se transmite 

mediante un servidor CoAP. Esto es así porque la observación del topic en el servidor 
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CoAP se realiza mediante un cliente CoAP integrado en el middleware. Esto hace que 

esta comunicación y su posterior traducción interna del middleware añadan un retardo 

adicional. En el resto de los casos, la diferencia entre retardos se debe únicamente al 

tiempo de procesado empleado por el middleware durante la traducción de protocolos. 

Un aspecto a destacar es la escasa diferencia en el retardo experimentado por los 

receptores MQTT y MQTT-SN, siendo de 1 o 2 milisegundos, esto es debido a que la 

comunicación fuera de la red de sensores entre el middleware y el MQTT-SN Gateway 

se realiza mediante MQTT. 

Por último, resulta importante destacar que, en la mayoría de los casos, la 

utilización del mismo protocolo en transmisión y en la recepción resulta más eficiente en 

términos de retardo, como era de esperar, siendo la mejor opción en términos de retardo 

el protocolo MQTT-SN. 

Por otro lado, se analizan también las comunicaciones de tipo petición/respuesta 

en comunicaciones sin cifrar y cifradas para los clientes HTTP y CoAP obteniendo 

información a través de peticiones GET. 

          

 

Figura 35. Retardo medio RTT para una petición GET a un topic en memoria (a), y a un recurso alojado en un 

servidor CoAP (b) sin TLS/DTLS, escenario 1 

          

 

Figura 36. Retardo medio RTT para una petición GET a un topic en memoria (a), y a un recurso alojado en un 

servidor CoAP (b) con TLS/DTLS, escenario 1 

a) b) 

a) b) 
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Como se ve en la Figura 35 y la Figura 36, se realizan peticiones GET desde 

clientes CoAP y HTTP dirigidas al middleware. En las imágenes de la izquierda ( Figura 

35 a) y Figura 36 a)), el recurso se ha publicado desde clientes publisher tipo MQTT, 

MQTT-SN, CoAP PUT/POST o HTTP PUT/POST, por lo que la última información 

recibida se encuentra almacenada en memoria y el middleware contesta directamente con 

ella. En las imágenes de la derecha (Figura 35 b) y Figura 36 b)), se trata de un recurso 

alojado en un servidor CoAP, por lo que de forma proactiva el middleware retransmite la 

petición GET al servidor para poder acceder a la información.  

Como era de esperar en el segundo caso (Figura 35 b) y Figura 36 b)), el retardo 

es mayor para ambos protocolos puesto que el middleware no contesta con la petición 

directamente, sino que la retransmite y espera a recibir la información para contestar. En 

ambos casos, el retardo RTT medio es menor para el cliente CoAP frente al cliente HTTP. 

Esto no es debido a la traducción de protocolos en sí, sino a la diferencia de 

funcionamiento entre ambos protocolos. CoAP funciona sobre UDP y no está orientado 

a conexión frente a HTTP que funciona sobre TCP y en cada petición GET debe 

establecer la conexión TCP. Esto incrementa el número de paquetes y bytes transmitidos 

y por ende el retardo total. 

En el caso de comunicaciones cifradas, la diferencia entre CoAP y HTTP se 

reduce drásticamente puesto que al emplear CoAP sobre DTLS, este establece la conexión 

segura mediante un handshake inicial muy similar al de HTTP sobre TLS, por lo que el 

número de mensajes intercambiados y de bytes transmitidos se asemeja. 

Tiempo medio de procesado en el middleware 

Tanto los retardos medios extremo a extremo como los retardos RTT han sido 

medidos en un escenario de red real. Esto nos permite tener una idea del comportamiento 

del sistema, pero no de forma estricta, puesto que el estado de la red puede variar de una 

realización a otra y las medidas pueden sufrir variaciones. Por esta razón, como medida 

más precisa se pretende aislar el tiempo de procesado interno del middleware a partir de 

capturas de Tcpdump realizadas en la máquina en la que dicho middleware se ejecuta. La 

Tabla 5 muestra un resultado más preciso del tiempo empleado por el middleware en 

procesar cada tipo de mensaje en las diferentes configuraciones.  



Capítulo 6: Resultados 

 

51 

 

 

  Tiempo (ms) de procesado en comunicaciones publish/subscribe 

  Sin cifrado Con cifrado 

Transmisor Receptor QoS 0 y NONs QoS 1 y NONs Qos 0 y NONs QoS 1 y NONs 

CoAP 

CoAP 2,14 2,58 3,20 3,64 

MQTT 9,27 10,39 11,24 13,12 

MQTT-SN 9,35 10,72 - - 

MQTT 

CoAP 10,74 11,45 10,05 12,49 

MQTT 1,74 2,13 2,21 3,16 

MQTT-SN 1,77 2,48 - - 

MQTT-SN 

CoAP 10,15 10,81 - - 

MQTT 1,64 2,11 - - 

MQTT-SN 1,53 2,38 - - 

Servidor 
CoAP 

CoAP 8,65 11,31 9,10 11,69 

MQTT 17,65 22,94 18,81 22,15 

MQTT-SN 17,94 23,29 - - 

HTTP 

CoAP 4,34 - 5,07 - 

MQTT 14,95 - 14,42 - 

MQTT-SN 15,61 - - - 
 

Tabla 5. Tiempo medio de procesado en comunicaciones publish/subscribe, escenario 1 

 

Tal y como se comentaba anteriormente, las comunicaciones que requieren 

traducción de protocolos incrementan el tiempo de procesado interno del middleware 

entre 8ms y 22ms, siendo las más elevadas en el caso de recibir información desde un 

servidor CoAP. Adicionalmente, se ve cómo el uso de un nivel de QoS 1 (MQTT/MQTT-

SN) y mensajes CON (CoAP) no introduce grandes efectos negativos frente a emplear un 

nivel de calidad de servicio inferior, siendo la diferencia del orden de 1ms. Por último, 

emplear comunicaciones cifradas también introduce en media 1ms o 2ms de retardo extra 

debido a las operaciones de cifrado y descifrado realizadas. 

Ancho de banda medio consumido en la red de sensores 

Dada la flexibilidad que aporta el middleware a la hora de seleccionar un 

protocolo de transmisión de datos, para completar el estudio, se analiza el ancho de banda 

consumido por los nodos transmisores en la red de sensores, en términos de bytes por 

segundo. Para la realización de este estudio se han empleado en todos los casos clientes 

que publican datos cada 2 segundos cuya carga útil es de 13 bytes. Las Figura 37,Figura 

38,Figura 39 yFigura 40 muestran los resultados para las diferentes configuraciones. 
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Figura 37. Ancho de banda medio consumido por los diferentes clientes con QoS 0 (MQTT/MQTT-SN) y mensajes 

NON (CoAP) y HTTP sin TLS/DTLS 

 

Figura 38. Ancho de banda medio consumido por los diferentes clientes con QoS 1 (MQTT/MQTT-SN) y mensajes 

CON (CoAP) sin TLS/DTLS 
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Figura 39. Ancho de banda medio consumido por los diferentes clientes con QoS 0 (MQTT) y mensajes NON (CoAP) 

y HTTP con TLS/DTLS 

 

Figura 40. Ancho de banda medio consumido por los diferentes clientes con QoS 1 (MQTT) y mensajes CON (CoAP) 

con TLS/DTLS 

En primer lugar, como era de esperar, el protocolo HTTP se trata el protocolo que 

más ancho de banda consume, siendo en media aproximadamente 10 veces mayor que el 

ancho de banda consumido por el resto de los protocolos. No se trata de un 

comportamiento anómalo puesto que HTTP no fue diseñado para aplicaciones IoT, sino 

para aplicaciones de transferencia de información más complejas y sin restricciones ni 

energéticas ni de ancho de banda. 

En segundo lugar, el protocolo que más recursos consume se trata de MQTT tanto 

en configuración de QoS 0 o 1. Tampoco es de extrañar, ya que emplea como protocolo 

de transporte TCP, lo que hace que el tamaño de la cabecera de nivel de transporte sea 
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mayor a los protocolos que emplean UDP y además incluye la confirmación de paquetes 

mediante mensajes ACK. 

Por último, existe gran similitud en el ancho de banda consumido por el cliente 

MQTT-SN, cliente CoAP y servidor CoAP puesto que los tres funcionan sobre UDP 

como protocolo de transporte y el número y tamaño de los paquetes es similar tanto para 

configuraciones de QoS 0 / mensajes NON como para QoS 1 / mensajes CON, siendo el 

cliente MQTT-SN en media el que menos ancho de banda consume en comunicaciones 

no cifradas. 

 

6.2.  Resultados escenario 2 

Mediante la realización de este escenario, se pretenden analizar el efecto en 

términos de retardo que supondría utilizar el middleware desarrollado en un dispositivo 

de bajos recursos como es una Raspberry Pi 3. Esto es de gran interés debido a la 

tendencia actual de acercar los nodos de cómputo al borde de la red (Edge computing) 

disminuyendo así el tiempo de transmisión en escenarios basados en computación en la 

nube (cloud computing).  

Para poder realizar un análisis correcto, se han seleccionado los casos de uso más 

restrictivos, en este caso las configuraciones con QoS 1 (MQTT/MQTT-SN) y 

mensajes CON (CoAP) con y sin cifrado. En este caso, únicamente se han estudiado las 

comunicaciones de tipo publish/subscribe que, en principio, están destinadas a 

comunicaciones en tiempo real. 

Tiempo medio extremo-extremo y RTT 

Del mismo modo que en el Escenario 1, en la Figura 41 y Figura 42 se representan 

los retardos extremo-extremo experimentado en las comunicaciones. A primera vista se 

visualiza una diferencia de tiempos mucho mayor entre protocolos heterogéneos, siendo 

esta de entre 40 y 60 ms. 
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Figura 41. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON (CoAP) sin TLS/DTLS, 

escenario 2 

 

Figura 42. Retardo medio extremo-extremo QoS 1 (MQTT) y mensajes CON (CoAP) con TLS/DTLS, escenario 2 

A continuación, la Figura 43 y Figura 44 muestran una comparativa detallada 

entre los resultados obtenidos en el Escenario 1 con los obtenidos en este escenario en lo 

referente a cada protocolo de forma independiente. 
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Figura 43. Comparativa de retado medio extremo-extremo entre el escenario 1 y escenario 2, sin TLS/DTLS 

 

Figura 44. Comparativa de retado medio extremo-extremo entre el escenario 1 y escenario 2, con TLS/DTLS 
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Se observa una mejora en el retardo extremo a extremo en las comunicaciones en 

las que los extremos (transmisor y receptor) emplean el mismo protocolo, como, por 

ejemplo: 

̵ Transmisor CoAP - Receptor CoAP 

̵ Transmisor MQTT/MQTT-SN - Receptor MQTT/MQTT-SN  

Esto resulta coherente puesto que el hecho de ubicar el middleware en el borde de 

la red de sensores hace que disminuya el retardo producido por el tiempo de transmisión 

de los datos hasta el middleware en caso de estar ubicado en la nube. 

Por otro lado, el retardo extremo a extremo empeora en las comunicaciones en la 

que los extremos (transmisor y receptor) emplean protocolos diferentes, como, por 

ejemplo: 

̵ Transmisor CoAP - Receptor MQTT/MQTT-SN 

̵ Transmisor MQTT/MQTT-SN - Receptor CoAP 

A primera vista, los resultados no resultan coherentes puesto que el objetivo de 

ubicar el middleware en el borde de la red de sensores es disminuir el retardo producido 

por el tiempo de transmisión de los datos hasta el middleware y con ello el retardo 

extremo a extremo en la comunicación. A pesar de esto, emplear un dispositivo de 

recursos limitados influye en el tiempo que emplea el middleware en realizar la traducción 

de protocolos en comunicaciones heterogéneas, pudiendo llegar a ser más significativo 

que el tiempo de transmisión de los datos. 
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Tiempo medio de procesado en el middleware 

Siguiendo la metodología realizada en el Escenario 1, el estudio del retardo 

extremo a extremo otorga una medida orientativa sobre el comportamiento del sistema, 

pero no se puede tomar como una medida representativa. Por ello, a continuación, se 

adjunta la Tabla 6 en la que se muestra el tiempo empleado por el middleware en tratar 

las comunicaciones, obtenido a partir de capturas de Tcpdump. 

    Tiempo (ms) de procesado en el middleware 

Transmisor Receptor QoS 1 y CONs Sin cifrado QoS1 y CONs Con cifrado 

CoAP 

CoAP 13,60 14,58 

MQTT 55,41 59,88 

MQTT-SN 58,61 - 

MQTT 

CoAP 62,22 72,60 

MQTT 7,69 12,05 

MQTT-SN 10,86 - 

MQTT-SN 

CoAP 61,47 - 

MQTT 8,26 - 

MQTT-SN 10,79 - 

Servidor CoAP 

CoAP 23,72 27,81 

MQTT 61,46 66,96 

MQTT-SN 63,84 - 

 

Tabla 6. Tiempo medio de procesado en comunicaciones publish/subscribe, escenario 2 

A partir de los resultados representados en la Tabla 6, se puede afirmar que, en 

este caso, en lo referente a comunicaciones heterogéneas, implantar el middleware en el 

borde de la red de sensores en un dispositivo de bajos recursos hardware puede resultar 

perjudicial en términos de retardo en las comunicaciones puesto que el tiempo de 

procesado predomina frente al tiempo de transmisión. 

Por último, en la Tabla 7 se muestra de manera cuantitativa la diferencia en tiempo 

de procesado entre el Escenario 1 y el Escenario 2. 
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   QoS 1 y CONs Sin cifrado QoS 1 y CONs Con cifrado 
   Tiempo (ms) Factor de 

proporción  

Tiempo (ms) Factor de 
proporción  Transmisor Receptor Escenario 1 Escenario 2 Escenario 1 Escenario 2 

CoAP 

CoAP 2,58 13,60 x 5,3 3,64 14,58 x 4,0 

MQTT 10,39 55,41 x 5,3 13,12 59,88 x 4,6 

MQTT-SN 10,72 58,61 x 5,5 - - - 

MQTT 

CoAP 11,45 62,22 x 5,4 12,49 72,60 x 5,8 

MQTT 2,13 7,69 x 3,6 3,16 12,05 x 3,8 

MQTT-SN 2,48 10,86 x 4,4 - - - 

MQTT-SN 

CoAP 10,81 61,47 x 5,7 - - - 

MQTT 2,11 8,26 x 3,9 - - - 

MQTT-SN 2,38 10,79 x 4,5 - - - 

Servidor 
CoAP 

CoAP 11,31 23,72 x 2,1 11,69 27,81 x 2,4 

MQTT 22,94 61,46 x 2,7 22,15 66,96 x 3,0 

MQTT-SN 23,29 63,84 x 2,7 - - - 

 

Tabla 7. Comparativa entre tiempos de procesado por el middleware entre el escenario1 y escenario 2 

Como se venía comentando, se ve claramente como en el Escenario 2 aumenta el 

tiempo empleado por el middleware para tratar los mensajes viéndose multiplicado en un 

factor 2 en el mejor de los casos o en un factor casi de 6 en el peor de los casos. Comentar 

que este comportamiento no es único de las comunicaciones en las que existe traducción 

de protocolos, sino que ocurre de manera casi homogénea en todas las comunicaciones 

para el mismo protocolo transmisor. 
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7. Conclusiones y líneas futuras 

Tras el desarrollo del middleware y su respectivo análisis de características y 

prestaciones, se presentan las conclusiones obtenidas a partir del trabajo realizado. A 

continuación, se plantean las conclusiones y las posibles líneas de trabajos futuros con el 

fin de profundizar en estas tecnologías. 

7.1.  Conclusiones 

Internet of Things ofrece la posibilidad de mantener comunicado cualquier 

dispositivo electrónico, pudiendo recibir y procesar información en tiempo real. Este 

nuevo paradigma plantea nuevos modos de toma de decisiones basados en esta 

disponibilidad de información y nuevas oportunidades para las empresas.  

El informe IoT 2020 Bussines Report [51] publicado por la firma Schneider 

Electric, muestra como dos de cada tres empresas planeaban implementar soluciones IoT 

vía aplicaciones móviles ya en 2016, bajo la creencia de que esta tecnología aportara valor 

a sus negocios en términos de: creación de nuevas oportunidades de negocio, mejora de 

la eficiencia en su actividad y un incremento de los beneficios a largo plazo. Esto nos 

indica claramente quienes son los principales agentes impulsores de las tecnologías IoT, 

las pequeñas y medianas empresas (PYME), quienes a su vez también sufren las 

principales dificultades como la gran heterogeneidad en los protocolos de comunicación 

IoT. 

Las PYME conforman la columna vertebral de la economía europea, sin embargo, 

no tienen la experiencia ni las habilidades suficientes en tecnologías heterogéneas tan 

utilizadas en IoT como son cloud, edge o HPC (High Performance Computing) o los 

diferentes protocolos de comunicaciones empleados (MQTT, CoAP, HTTP). Por esta 

razón, se considera que el sistema middleware propuesto a lo largo de este proyecto puede 

tener un gran impacto en este tipo de compañías, acercando y facilitando todo tipo de 

aplicaciones IoT a entornos en los que se cuenta con un menor potencial de recursos. 

Bajo esta situación y como se ha visto a lo largo del documento, en este trabajo 

de fin de máster, se plantea la necesidad de soluciones software que permitan la 

comunicación heterogénea entre diferentes tecnologías IoT, y se ha implementado un 

sistema middleware que cubre dichas necesidades.  

Para ello, se proponen varios objetivos parciales: familiarizarse con los principales 

protocolos de aplicación IoT y sus implementaciones software, el desarrollo de un 

middleware que permite la interconexión transparente entre ellos a partir de dichas 

herramientas software, y su posterior evaluación de prestaciones en escenarios basados 

en cloud computing y en edge computing. 

Gracias a las diferentes librerías de código libre, se ha podido implementar el 

sistema middleware propuesto, viendo cómo es posible desplegar servicios de red que 

permiten homogeneizar las comunicaciones IoT en un ecosistema tan heterogéneo como 

es el actual. Esto otorga una gran flexibilidad a la hora de desplegar nuevos servicios IoT 

o unificar y reutilizar las aplicaciones y servicios IoT existentes. 
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Por otro lado, se han estudiado diferentes alternativas en cuanto a la ubicación del 

middleware: en la nube o en el borde de la red. Se ha visto como la gran disponibilidad 

de recursos hardware que se pueden emplear en escenarios basados en la nube afecta 

positivamente al tiempo de cómputo empleado en la traducción de protocolos llevada a 

cabo en el middleware, frente a escenarios basados en el borde de la red. En 

contraposición a esto, también se ha verificado como, el hecho de ubicar el middleware 

en la nube afecta negativamente al retardo de transmisión que sufren las comunicaciones 

frente a ubicaciones en el borde de red. Por este motivo resulta fundamental tener en 

cuenta el compromiso entre tiempo de procesado y tiempo de transmisión a la hora de 

decidir qué estrategia tomar o incluso diseñar alternativas dinámicas que permitan 

conmutar de una a otra. 

Por último, a pesar de que se ha trabajado con protocolos totalmente diferentes y, 

por ende, las librerías empleadas están desarrolladas bajo estructuras muy diferentes, los 

objetivos propuestos al inicio del proyecto han sido completados satisfactoriamente. 

7.2.  Trabajos futuros 

Como se ha plasmado durante el desarrollo del proyecto, Internet o Things, cloud 

computing y edge/fog computing son tecnologías emergentes con un gran futuro por 

delante tanto tecnológico como económico, por lo que resultaría interesante llevar a cabo 

los siguientes posibles trabajos futuros: 

• Estudio e integración del  middleware desarrollado en entornos reales: 

son muchas las plataformas que ofrecen servicios de computación en la 

nube como por ejemplo: Amazon Web Services, Google Cloud, Azure. 

Resulta interesante integrar este tipo de software en plataformas 

profesionales como las mencionadas puesto que además de ofrecer una 

gran potencia computacional, disponen de innumerables servicios 

orientados a la manipulación de grandes volúmenes de datos (Big Data). 

El middleware desarrollado junto con este tipo de soluciones, dotarían de 

gran flexibilidad a pequeñas y medianas empresas que buscan la 

transformación digital de su actividad. 

• Conmutación dinámica entre cloud y edge: tal y como se ha plasmado 

en este proyecto, a la hora de desplegar el middleware en un entorno cloud 

o en un entorno perimetral, es importante tener en cuenta el compromiso 

entre el tiempo de transmisión de la información y el retardo de procesado 

introducido por el middleware. Por esta razón, siguiendo el paradigma 

cloud computing continuum, resultaría interesante diseñar alternativas que 

permitan conmutar entre una arquitectura y otra en función de las 

características de la red en cada momento.  

• Escalabilidad dinámica del middleware: el sistema diseñado en este 

proyecto permite desplegar el middleware de forma distribuida en 

diferentes equipos. La solución implementada es estática, los equipos 

distribuidos se deben configurar de forma estática construyendo un árbol. 

Con el afán de aportar un mayor dinamismo, resultaría interesante valorar 
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alternativas similares al Spaning Tree tradicional en el cual los dispositivos 

que forman la arquitectura distribuida se autoconfiguran dinámicamente 

formando un árbol lógico. Esto aporta una gran flexibilidad en caso de 

perdidas o de congestión en los enlaces. 
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Anexos 

Anexo 1: Diagrama de clases del middleware 

A continuación, en la Figura 45 se muestra el diagrama de clases del middleware. 

Es necesario aclarar que las librerías empleadas para las interfaces MQTT, CoAP y 

HTTP: Moquette, Californium CoAP PubSub y HTTP Oracle son sumamente extensas y 

en este diagrama, únicamente se muestran las clases empleadas para el desarrollo del 

proyecto. 

 

 

Figura 45. Diagrama de clases del midddleware 

 

En primer lugar, se emplean las clases: Server (MQTT), PubSubBroker (CoAP) 

y HttpServer, que pertenecen a las librerías mencionadas. Mediante estas clases se crean 

las instancias de los tres servidores que reciben los mensajes de los tres protocolos. En 

estas clases se configuran los parámetros de los servidores. 

A continuación, se tienen las clases: PublishListener, BrokerMessageDeliver, 

PubsubTopic y HTTPHandler. Estas clases son las encargadas de manejar los mensajes 

que se reciben en los tres servidores. Dichos mensajes son los que se analizan 

posteriormente en las clases de niveles superiores para llevar a cabo el funcionamiento 

del middleware. A continuación, se explica brevemente el funcionamiento de cada clase. 

̵ PublishListener: esta clase permite analizar los mensajes MQTT entrantes 

a través de los métodos onPublish(…), onSubscribe(…), entre otros. Desde 

estos métodos se invoca el método iniciarComunicación(…) de la clase 

ProtocoloComunicaciónMQTT para iniciar la conversión a los protocolos 

CoAP y HTTP en caso de que sea necesario. 
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̵ BrokerMessageDeliver: esta clase permite analizar los mensajes CoAP 

entrantes mediante el método deliverRequest(…). Esta clase se emplea 

para analizar si el mensaje va dirigido a un recurso existente o no. En caso 

de que exista el recurso en el broker CoAP, se pasa la petición al objeto 

correspondiente de la clase PubsubTopic y este se encarga de gestionar la 

petición. Por esta razón, en la clase BrokerMessageDeliver se realiza una 

primera comprobación de si la petición va dirigida a un topic alojado en 

un servidor CoAP. En caso positivo se invoca el método 

iniciarComunicación(…) en el ProtocoloComunicaciónCoAP. Si no se 

realizara esta acción aquí, el metodo deliverRequest(…) responde a la 

petición mediante el código de error 4.04 NOT FOUND puesto que no se 

trata de un recurso publicado en el broker. 

̵ PubSubTopic: cada instancia de esta clase, que contiene los métodos 

handleGet(…), handlePut(…), handlePost(…) entre otros, hace referencia 

a un topic. En caso de que el topic haya sido publicado, existirá una 

instancia de esta clase que gestione las peticiones entrantes a este topic. En 

los métodos nombrados, es donde se invoca el método 

iniciarComunicación(…) en el ProtocoloComunicaciónCoAP para iniciar 

la conversión a los protocolos MQTT y HTTP en caso de que sea 

necesario. 

̵ HTTPHandler: esta clase permite analizar los mensajes HTTP recibidos 

a través del método handle(…). En este se verifica si la petición recibida 

contiene un mensaje GET, PUT/POST entre otros. A partir de aquí se 

invoca el método iniciarComunicación(…) en la clase 

ProtocoloComunicaciónHTTP para iniciar la conversión a los protocolos 

MQTT y HTTP en caso de que sea necesario. 

Cabe destacar que la clase PublishListener extiende la clase 

AbstractInterceptHandler de la librería Moquette, las clases BrokerMessageDeliver y 

PubSubTopic son clases del proyecto CoAP_PubSub y la clase HTTPHandler extiende 

la clase HttpHandler de la librería de Oracle HTTP. El resto de clase explicadas a 

continuación se han desarrollado durante el proyecto. 

Las siguientes clases en las que se basa la arquitectura del middleware son: 

ProtocoloComunicaciónMQTT, ProtocoloComunicaciónCoAP y 

ProtocoloComunicaciónHTTP. Estas son las encargadas de realizar las acciones 

necesarias para permitir la intercomunicación entre los protocolos MQTT, CoAP y 

HTTP. Para la traducción de los mensajes entre protocolos, estas tres clases consultan y 

actualizan de forma dinámica la información de control sobre los topics almacenada en 

el objeto de la clase GestorRecursos. Las tres clases cuentan con los siguientes métodos: 

̵ iniciarComunicación(…): cuando se recibe un mensaje, este método es el 

encargado de gestionar su posible traducción a otro protocolo. En caso de 

tratarse de un PUBLISH MQTT se traduce a un PUT/POST COAP o 

HTTP y viceversa. Si lo que se recibe es un mensaje de tipo MQTT 

SUBSCRIBE o un mensaje de tipo GET CoAP o HTTP se comprueba si 

es un topic alojado en un servidor CoAP o en un middleware distribuido y 

se actúa en consecuencia, tal y como se detalla en la memoria del proyecto. 
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̵ cancelarCounicación(…): a través de este método se gestiona la 

desconexión de los diferentes usuarios que se encuentran suscritos u 

observando un topic. A través de él se informa al GestorRecursos para 

tener control sobre ello. 

Los tres ProtocolosComunicacion(MQTT, CoAP y HTTP) emplean instancias de 

las clases MQTTClient y ClientPubSub. Estas clases implementan clientes MQTT y 

CoAP que se encargan de generar los mensajes MQTT PUBLISH y CoAP PUT/POST 

fruto de la traducción de los mensajes recibidos.  

Una vez visto donde se reciben y se manejan los mensajes entrantes da cada 

protocolo, la siguiente clase importante es la clase GestorRecursos.  En ella se guarda la 

información de control necesaria para la comunicación y sincronización entre los 

diferentes ProtocolosComunicacion(MQTT, CoAP, HTTP). En ella, existen tres atributos 

importantes: topicList, topicListTotal y topicListExternos. En estas listas se almacena la 

información necesaria sobre topics alojados en servidores CoAP, topics publicados 

mediante publicaciones MQTT-CoAP-HTTP y topics recibidos desde otros middlewares 

distribuidos respectivamente. En relación con estas listas, existen métodos como 

informarTopic(..), informarTopicTotal(…) o informarTopicExterno(..), mediante los 

cuales se actualiza la información de control necesaria sobre esos topics. También existen 

los métodos comprobarTopic(…), comprobarTopicTotal(…) y 

comprobarTopicExterno(..), mediante los cuales se consulta la existencia de un topic en 

las distintas listas. Además, en relación con los usuarios suscritos a los diferentes topics, 

los métodos informarUsuario(…) e informarUsuarioTopicExterno(…) se emplean para 

añadir o borrar información sobre los usuarios activos. Por último, en esta clase, se 

almacena la lista de los identificadores y la dirección IP de los diferentes middlewares 

distribuidos que forman la red. 

A su vez, la clase GestorRecursos utiliza instancias de la clase Topic. Esta clase 

representa un topic que ha sido publicado desde un cliente MQTT, CoAP o HTTP o que 

se encuentra en un servidor CoAP y se almacena en la lista topicList y topicListTotal 

dentro de GestorRecursos. Contiene información sobre el nombre, el protocolo desde el 

cual ha sido publicado, el contenido, la lista de usuarios que están suscritos y un objeto 

de la clase Observador. En el caso de que se realice una petición GET CoAP o HTTP o 

un mensaje MQTT SUBSCRIBE hacia un topic alojado en un servidor CoAP, es 

necesario lanzar un cliente CoAP creando una relación de observación en el servidor. 

Para ello se genera la instancia de la clase Observador que también se almacena en la 

clase Topic. Este es un proceso que controla una instancia de la clase 

ClienteSubObservador, la cual contiene el cliente CoAP con el que se establece la 

comunicación con el servidor. Los datos recibidos en el objeto Observador son traducidos 

y transmitidos internamente mediante el GestorRecursos. 

 Adicionalmente, la clase GestorRecursos utiliza instancias de la clase 

TopicExterno. Cada instancia de esta clase representa un topic que ha sido notificado 

desde otro middleware distribuido y las instancias de esta clase se almacenan en la lista 

topicListExternos dentro del GestorRecursos. Contiene información sobre el nombre del 

topic, la identidad del middleware desde el que ha sido notificado, una lista de usuarios 

suscritos y un objeto de la clase Suscriptor. Este último contiene un cliente MQTT 

mediante el cual se realiza una suscripción MQTT a un middleware distribuido en el caso 
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de recibir una petición GET CoAP o HTTP o un mensaje MQTT PUBLISH hacia un 

topic controlado por otro middleware de la red. 

Por último, se define la clase GestorDescubridores, que contiene principalmente 

una lista con las direcciones IP de todos los servidores CoAP a los que el middleware da 

servicio. Este se encarga de generar una instancia de la clase Descubridor para cada 

servidor CoAP. Cada objeto Descubridor contiene un cliente CoAP que se encarga de 

realizar una petición GET a la URI .well-known/core  del servidor CoAP correspondiente. 

La respuesta obtenida contiene todos los topics alojados en este servidor. A continuación, 

esta información se le comunica al objeto GestorRecursos.  
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Anexo 2: Creación de certificados digitales  

Para la utilización de canales cifrados mediante los protocolos TLS y DTLS es 

necesario la creación de certificados digitales tanto para el servidor como para los 

diferentes clientes. Para ello se emplea la herramienta Keytool disponible en Linux. Esta 

herramienta permite crear almacenes de claves e importar y exportar certificados de los 

almacenes. A continuación, se muestra un pequeño de código Shell a modo de ejemplo, 

obtenido de la página oficial de Eclipse Californium Scandium. 

#!/bin/bash 

 

KEY_STORE=keyStore.jks 

KEY_STORE_PWD=endPass 

TRUST_STORE=trustStore.jks 

TRUST_STORE_PWD=rootPass 

VALIDITY=365 

 

 

#creating root key and certificate 

echo "creating root key and certificate..." 

keytool -genkeypair -alias root -keyalg EC -dname 'C=CA,L=Ottawa,O=Eclipse 

IoT,OU=Californium,CN=cf-root' \ 

        -ext BC=ca:true -validity $VALIDITY -keypass $TRUST_STORE_PWD -keystore 

$TRUST_STORE -storepass $TRUST_STORE_PWD 

      

    

         

#creating CA key and certificate 

echo "creating CA key and certificate..." 

keytool -genkeypair -alias ca -keyalg EC -dname 'C=CA,L=Ottawa,O=Eclipse 

IoT,OU=Californium,CN=cf-ca' \ 

        -ext BC=ca:true -validity $VALIDITY -keypass $TRUST_STORE_PWD -keystore 

$TRUST_STORE -storepass $TRUST_STORE_PWD 

 

keytool -keystore $TRUST_STORE -storepass $TRUST_STORE_PWD -certreq -alias ca | \ 

  keytool -keystore $TRUST_STORE -storepass $TRUST_STORE_PWD -alias root -gencert -

validity $VALIDITY -ext BC=0 -rfc | \ 

  keytool -alias ca -importcert -keystore $TRUST_STORE -storepass $TRUST_STORE_PWD 

   

   

 

#creating server key and certificate 

echo "creating server key and certificate..." 

keytool -genkeypair -alias server -keyalg EC -dname 'C=CA,L=Ottawa,O=Eclipse 

IoT,OU=Californium,CN=cf-server' \ 

        -validity $VALIDITY -keypass $KEY_STORE_PWD -keystore $KEY_STORE -storepass 

$KEY_STORE_PWD 

 

keytool -keystore $KEY_STORE -storepass $KEY_STORE_PWD -certreq -alias server | \ 

  keytool -keystore $TRUST_STORE -storepass $TRUST_STORE_PWD -alias ca -gencert -

validity $VALIDITY -rfc > server.pem 

 

keytool -alias server -importcert -keystore $KEY_STORE -storepass $KEY_STORE_PWD -

trustcacerts -file server.pem 

 

 

 

#creating client key and certificate 

echo "creating client key and certificate..." 

keytool -genkeypair -alias client -keyalg EC -dname 'C=CA,L=Ottawa,O=Eclipse 

IoT,OU=Californium,CN=cf-client' \ 

        -validity $VALIDITY -keypass $KEY_STORE_PWD -keystore $KEY_STORE -storepass 

$KEY_STORE_PWD 

 

keytool -keystore $KEY_STORE -storepass $KEY_STORE_PWD -certreq -alias client | \ 

  keytool -keystore $TRUST_STORE -storepass $TRUST_STORE_PWD -alias ca -gencert -

validity $VALIDITY -rfc > client.pem 

 

keytool -alias client -importcert -keystore $KEY_STORE -storepass $KEY_STORE_PWD -

trustcacerts -file client.pem 
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Para la creación de los certificados se usa una cadena de confianza de varios 

niveles: 

1. Par de claves privada/publica junto con un certificado autofirmado que en 

conjunto representan la identidad de la CA raíz (root). 

2. Par de claves privada/publica junto con un certificado firmado con la clave 

de la CA raíz que en conjunto representan la identidad de la CA 

intermediaria. 

3. Par de claves privada/publica junto con un certificado firmado con la clave 

de la CA intermediaria que en conjunto representan la identidad de un 

servidor. 

4. Par de claves privada/publica junto con un certificado firmado con la clave 

de la CA intermediaria que en conjunto representan la identidad de un 

cliente. 

Las claves y certificados se almacenan en dos almacenes de claves: keyStore.jks y 

trustStore.jks, explicados a continuación. 

1. keyStore.jks: contiene las claves y cadenas de certificados para el cliente y 

el servidor, 

2. trustStore.jks: contiene el certificado autofirmado de la CA raíz, así como 

la cadena de certificados de la CA intermedia. Estos certificados se usan 

como certificados de confianza para verificar la identidad de cliente y 

servidor. 

Se recomienda el uso de cadenas multinivel para que, en caso de que la clave 

privada de una CA intermediaria se vea comprometida, la CA raíz pueda revocar su 

certificado y no comprometer la seguridad total de la cadena. Para ello se recomienda 

encarecidamente mantener almacenada la clave privada de la CA raíz en hardware no 

accesible desde la red y correctamente protegida. 

 

 

 

 

 

 

 

 

 

 

 


