
Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Trabajo Fin de Máster

Diseño e implementación de un middleware

CoAP-MQTT-HTTP para la mejora de la

interoperabilidad de los protocolos de

aplicación en redes IoT

Design and implementation of a CoAP-MQTT-HTTP

middleware to improve the interoperability of

application protocols in IoT networks

Autor/es

Asier Carbonel Martínez

Director/es

José Ramón Gallego Martínez

Rafael Tolosana Calasanz

Escuela de Ingeniería y Arquitectura (EINA) / Universidad de Zaragoza

2020

Resumen

El rápido incremento de dispositivos IoT (Internet of Things) está permitiendo la

aparición de nuevas aplicaciones computacionales que pueden tener un sustancial

impacto en la sociedad, pero que al mismo tiempo abre un número significativo de

posibilidades de negocio para las empresas. No obstante, la rapidez de ese desarrollo en

el IoT ha incentivado la aparición de protocolos de comunicación muy diferentes entre sí,

como MQTT, MQTT-SN, HTTP REST o CoAP. La diferencia ya no está únicamente en

el formato de los mensajes del protocolo (lo que se conoce como protocolo de

comunicación), sino en el protocolo de interacción, esto es, en el número de mensajes que

los procesos tienen que intercambiarse para realizar la comunicación. Por ejemplo, CoAP

y HTTP funcionan bajo el paradigma REQUEST/RESPONSE (un mensaje de petición y

un mensaje de respuesta); mientras que MQTT y MQTT-SN se comunican a través del

paradigma PUBLISH/SUBSCRIBE, mucho más sofisticado (un proceso se registra

(subscribe) para que le lleguen mensajes en cuanto haya una actualización (publish)).

Todos estos aspectos hacen que la intercomunicación entre protocolos no sea directa y

suponen una enorme barrera tecnológica para las pequeñas y medianas empresas

europeas.

En este contexto, y dada la escasa oferta de este tipo de soluciones, en este

proyecto se estudia, se propone y se implementa un middleware que permite comunicar

de forma transparente dispositivos IoT basados en protocolos IoT heterogéneos. Aunque

la propuesta está centrada en los protocolos más habituales en este contexto, como son

MQTT, MQTT-SN, CoAP y HTTP, otros protocolos podrían también integrarse de forma

análoga. Dada la vital importancia de garantizar comunicaciones seguras, el middleware

propuesto permite además la transferencia de información a través de canales con cifrado,

mediante mecanismos como DTLS sobre UDP y TLS sobre TCP. Por último, la

arquitectura del middleware se ha diseñado para que sea escalable con el número de

dispositivos IoT conectados. Para ello, múltiples instancias del middleware se disponen

en máquinas diferentes, y se comunican entre sí directamente, reduciendo la carga de

trabajo y permitiendo la interoperabilidad de los datos.

Para validar la aproximación, se realizan diversos análisis de rendimiento del

middleware en diferentes escenarios propuestos, estudiando su rendimiento en términos

de retado, diferenciando entre dispositivos sin limitación de recursos (en el centro de

datos) y dispositivos de recursos limitados (fuera del centro de datos, edge computing).

Agradecimientos

En primer lugar, agradezco a mi madre el apoyo transmitido en todo momento,

así como todo el ánimo recibido durante la realización de este proyecto.

En segundo lugar, dar las gracias a todos los profesores que he tenido durante

estos años por su buen hacer docente. Especialmente agradezco el continuo trabajo,

esfuerzo y afán de ayudar durante la realización de este proyecto de mis tutores José

Ramón Gallego Martínez y Rafael Tolosana Calasanz.

Por último, agradezco a mis amigos haber estado en todo momento a mi lado

durante mis años de estudio y sobre todo en esta última etapa como estudiante.

Tabla de contenido

1. Introducción .. 1

1.1. Objetivos y metodología ... 3

1.1.1. Objetivos .. 3

1.1.2. Metodología ... 3

1.1.3. Herramientas y recursos necesarios ... 4

2. Estado del arte ... 5

2.1. Paradigmas de comunicación IoT ... 5

2.1.1. Paradigma Publicación / Suscripción .. 5

2.1.2. Paradigma Petición / Respuesta ... 6

2.2. Principales protocolos de aplicación para IoT .. 7

2.2.1. MQTT (Message Queue Telemetry Protocol) ... 7

2.2.2. MQTT-SN (Message Queue Telemetry Protocol for Sensor Networks) 10

2.2.3. CoAP (Constrained Application Protocol) ... 11

2.2.4. HTTP (Hypertext Transfer Protocol) .. 14

2.2.5. Otros protocolos IoT .. 14

2.3. Protocolos de transporte para comunicaciones seguras 15

2.3.1. TLS (Transport Layer Security) .. 15

2.3.2. DTLS (Datagram Transport Layer Security) .. 17

2.4. Interoperabilidad entre protocolos .. 17

2.4.1. Ponte .. 18

3. Implementaciones software existentes ... 20

3.1. Implementaciones CoAP .. 20

3.2. Implementaciones MQTT ... 20

3.3. Implementaciones MQTT-SN .. 21

3.4. Implementaciones elegidas ... 22

4. Solución técnica ... 23

4.1. Planteamiento del sistema ... 23

4.2. Arquitectura del sistema ... 28

4.3. Solución middleware escalable ... 34

5. Descripción de los escenarios de aplicación .. 42

5.1. Escenario 1: Middleware ubicado en la nube ... 42

5.2. Escenario 2: Middleware ubicado en el borde de la red 44

6. Resultados .. 45

6.1. Resultados escenario 1 .. 46

6.2. Resultados escenario 2 .. 54

7. Conclusiones y líneas futuras ... 60

7.1. Conclusiones ... 60

7.2. Trabajos futuros .. 61

Bibliografía ... 63

Anexos ... 67

Anexo 1: Diagrama de clases del middleware.. 67

Anexo 2: Creación de certificados digitales ... 71

Tabla de figuras

Figura 1. Protocolos IoT más utilizados según [54] ... 2

Figura 2. Diagrama de Gantt del proyecto ... 4

Figura 3. Comunicación modelo Publicación/Subscripción... 6

Figura 4. Arquitectura modelo Petición/Respuesta .. 6

Figura 5. Ejemplo de comunicación MQTT para diferentes niveles de QoS 10

Figura 6. Arquitectura de MQTT-SN, obtenida de [53] ... 11

Figura 7. Estructura de capas de CoAP .. 12

Figura 8. Tipos de mensajes CoAP (confirmables y no confirmables) 12

Figura 9. Observación de CoAP ... 13

Figura 10. Arquitectura publish/subscribe de CoAP propuesta. 13

Figura 11. Handshake de TLS 1.2 .. 16

Figura 12. Arquitectura de Ponte, obtenida de [45] ... 18

Figura 13. Caso de uso de suscripción MQTT a un topic. ... 25

Figura 14. Caso de uso GET OBSERVE CoAP ... 26

Figura 15. Caso de uso CoAP GET (no observación) .. 27

Figura 16. Caso de uso HTTP GET .. 27

Figura 17. Arquitectura del middleware ... 28

Figura 18. Ejemplo de la estructura de topic propuesta en CoAP publish/subscribe 29

Figura 19. Diagrama de flujo de la interfaz MQTT ... 30

Figura 20. Diagrama de flujo de la interfaz CoAP ... 31

Figura 21. Diagrama de flujo de la interfaz HTTP ... 32

Figura 22. Diagrama de flujo de la recepción de un mensaje MQTT PUBLISH

(middleware escalable) ... 35

Figura 23. Diagrama de flujo de la recepción de un mensaje PUT/POST CoAP/HTTP

(middleware distribuido) .. 36

Figura 24. Diagrama de flujo de la recepción de un mensaje MQTT SUBSCRIBE

(middleware distribuido) .. 38

Figura 25. Diagrama de flujo de la recepción de un mensaje CoAP GET (middleware

distribuido) ... 39

Figura 26. Diagrama de flujo de la recepción de un mensaje HTTP GET (middleware

distribuido) ... 40

Figura 27. Ejemplo de comunicación distribuida ... 41

Figura 28. Arquitectura IoT escenario 1 ... 42

Figura 29. Arquitectura IoT escenario 2 ... 44

Figura 30. Esquema de medición del retardo extremo-extremo 45

Figura 31. Retardo medio extremo-extremo QoS 0 (MQTT/MQTT-SN) y mensajes NON

(CoAP) sin TLS/DTLS, escenario 1 ... 47

Figura 32. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON

(CoAP) sin TLS/DTLS, escenario 1 ... 47

Figura 33. Retardo medio extremo-extremo QoS 0 (MQTT/MQTT-SN) y mensajes NON

(CoAP) con TLS/DTLS, escenario 1 .. 48

Figura 34. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON

(CoAP) con TLS/DTLS, escenario 1 .. 48

Figura 35. Retardo medio RTT para una petición GET a un topic en memoria (a), y a un

recurso alojado en un servidor CoAP (b) sin TLS/DTLS, escenario 1 49

Figura 36. Retardo medio RTT para una petición GET a un topic en memoria (a), y a un

recurso alojado en un servidor CoAP (b) con TLS/DTLS, escenario 1 49

Figura 37. Ancho de banda medio consumido por los diferentes clientes con QoS 0

(MQTT/MQTT-SN) y mensajes NON (CoAP) y HTTP sin TLS/DTLS 52

Figura 38. Ancho de banda medio consumido por los diferentes clientes con QoS 1

(MQTT/MQTT-SN) y mensajes CON (CoAP) sin TLS/DTLS 52

Figura 39. Ancho de banda medio consumido por los diferentes clientes con QoS 0

(MQTT) y mensajes NON (CoAP) y HTTP con TLS/DTLS .. 53

Figura 40. Ancho de banda medio consumido por los diferentes clientes con QoS 1

(MQTT) y mensajes CON (CoAP) con TLS/DTLS ... 53

Figura 41. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON

(CoAP) sin TLS/DTLS, escenario 2 ... 55

Figura 42. Retardo medio extremo-extremo QoS 1 (MQTT) y mensajes CON (CoAP) con

TLS/DTLS, escenario 2 .. 55

Figura 43. Comparativa de retado medio extremo-extremo entre el escenario 1 y escenario

2, sin TLS/DTLS .. 56

Figura 44. Comparativa de retado medio extremo-extremo entre el escenario 1 y escenario

2, con TLS/DTLS ... 56

Figura 45. Diagrama de clases del midddleware .. 67

Tabla de tablas

Tabla 1. características principales de los protocolos de aplicacion IoT........................ 15

Tabla 2. Implementaciones de CoAP ... 20

Tabla 3. Implementaciones de MQTT .. 21

Tabla 4. Implementaciones de MQTT-SN ... 21

Tabla 5. Tiempo medio de procesado en comunicaciones publish/subscribe, escenario 1

 .. 51

Tabla 6. Tiempo medio de procesado en comunicaciones publish/subscribe, escenario 2

 .. 58

Tabla 7. Comparativa entre tiempos de procesado por el middleware entre el escenario1

y escenario 2 ... 59

Lista de acrónimos

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

CoAP Constrained Application Protocol

CPU Central Processing Unit

DDS Data Distribution Service

DTLS Datagram Transport Layer Security

ETSI Instituto Europeo de Normas de Telecomunicaciones

E2E End to End

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IoT Internet of Things

MQTT Message Queuing Telemetry Transport

MQTT-SN Message Queuing Telemetry Transport for Sensor Networks

M2M Machine to Machine

QoS Quality of Service

RAM Random Access Memory

REST Representational State Transfer

RFC Request for Comments

RTT Round Trip Time

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

URI Uniform Resource Identifier

WSN Wireless Sensor Networks

XMPP Extensible Messaging and Presence Protocol

Capítulo 1: Introducción

1

1. Introducción

Internet de las cosas (Internet of Things, IoT) es una tecnología diseñada para

comunicar miles de dispositivos a través de internet, permitiendo enviar y recibir

información, así como realizar diferentes acciones en función de dicha información. Esta

tecnología emergente, cada vez toma más importancia en el campo de la recopilación de

datos y toma de decisiones en tiempo real, ejemplos de ello son: la implantación de

extensas redes de sensores (Wireless Sensor Network , WSN) o las cada vez más comunes

comunicaciones máquina a máquina (Machine to Machine, M2M) planteadas para el

desarrollo de ambiciosos proyectos como ciudades inteligentes (Smart Cities), la

evolución de la Industria 4.0, coche autónomo o simplemente la recopilación de grandes

volúmenes de datos (Big Data). Todo esto ha impulsado extensos estudios sobre los

protocolos de nivel de aplicación propuestos para las comunicaciones IoT, como por

ejemplo [11].

Tras años de estudios y de evolución en los protocolos de nivel de aplicación, se

conocen las ventajas e inconvenientes de cada una de las alternativas existentes,

mostrando cada protocolo fortalezas y debilidades muy diversas en función de diferentes

factores como pueden ser recursos hardware disponibles, ancho de banda requerido,

latencia extremo a extremo, o tolerancia a fallos. A pesar de esto, actualmente no se

dispone de un estándar que defina el protocolo a emplear en las comunicaciones IoT, lo

que ha generado el despliegue de numerosas infraestructuras IoT trabajando bajo

diferentes protocolos de nivel de aplicación, formando así un ecosistema altamente

fragmentado y heterogéneo.

El hecho de tener una gran heterogeneidad entre protocolos de aplicación da como

resultado la necesidad de disponer de diversas aplicaciones o servicios trabajando bajo

diferentes protocolos para poder publicar o recopilar toda la información que se necesita,

además de adaptar los diferentes procesos de extracción, recopilación y unificación de

datos. Desde un punto de vista económico, este aspecto representa una importante barrera

para las pequeñas y medianas empresas que quieren desplegar negocios en este

importante sector emergente. Por el contrario, las grandes multinacionales tecnológicas

no europeas parten de una importante ventaja, puesto que al contar con gran cantidad de

recursos (económicos y humanos), pueden desarrollar soluciones verticales que

solucionan estos problemas de heterogeneidad.

En este contexto, durante este proyecto se analizan las diferentes casuísticas a las

que se enfrentan los diferentes protocolos de nivel de aplicación, se estudian las relaciones

entre ellos y se desarrolla un middleware que haga las veces de broker1 de mensajes como

pasarela entre clientes/servidores trabajando con diferentes protocolos de nivel de

aplicación. Así pues, se implementa una solución software que permite intercomunicar

de manera transparente los protocolos MQTT (Message Queuing Telemetry

Transport)[38], CoAP (Constrained Application Protocol)[52]y HTTP (Hypertext

Transfer Protocol)[17]. Se han elegido estos protocolos, puesto que como muestra la

1 Broker de mensajes: agente intermediario de transferencia de mensajes, empleado para

intercambiar mensajes entre diferentes aplicaciones emisoras y receptoras.

Capítulo 1: Introducción

2

Figura 1, se tratan de los protocolos de nivel de aplicación más utilizados en aplicaciones

IoT en la actualidad.

Figura 1. Protocolos IoT más utilizados según [54]

Por último, se analizan las consecuencias del uso de este middleware en términos

de aumento de retardo, valorando así una solución orientada a la computación en la nube

(cloud computing) y una solución orientada a la computación de borde (edge computing)

mediante equipos de recursos limitados.

Este documento está organizado de la siguiente manera. El Capítulo 2 presenta

una revisión de los principales protocolos de nivel de aplicación más utilizados

actualmente, así como diferentes soluciones de interoperabilidad existentes. En el

Capítulo 3 se muestran diversas implementaciones software disponibles para utilizar en

entornos IoT y se definen las que se emplearan en la solución técnica. En el Capítulo 4

se plantean los casos de uso que debe resolver el middleware, así como su arquitectura y

funcionamiento. En el Capítulo 5 se definen los escenarios en los que se va a probar el

sistema y en el Capítulo 6 se muestran los resultados obtenidos. Por último, en el Capítulo

7 se exponen las conclusiones y las líneas futuras de trabajo.

Capítulo 1: Introducción

3

1.1. Objetivos y metodología

1.1.1. Objetivos

El objetivo principal del proyecto es estudiar y analizar la interoperabilidad entre

los principales protocolos de nivel de aplicación para IoT, MQTT, CoAP y HTTP. A

partir de ahí, se propone un sistema middleware que permite una comunicación

transparente entre los diferentes protocolos de red.

Tomando como referencia este objetivo general, se han establecido los siguientes

objetivos parciales:

1. Estudiar el estado del arte de los protocolos de nivel de aplicación.

2. Familiarización con diferentes implementaciones software.

3. Desarrollo software de la solución técnica junto con continuas

verificaciones de su funcionamiento.

4. Despliegue, estudio y análisis de resultados en un escenario IoT basado en

cloud computing.

5. Despliegue, estudio y análisis de resultados en un escenario IoT basado en

edge computing.

1.1.2. Metodología

A continuación, se plantea la metodología seguida para la elaboración del trabajo,

mostrándose las diferentes etapas por las que ha pasado el proyecto.

1. En primer lugar, se establece la necesidad de estudiar el estado del arte

relacionado con los principales protocolos de nivel de aplicación HTTP,

MQTT, MQTT-SN y CoAP, así como en su interoperabilidad y las

principales soluciones software existentes en las que se profundizará para

desarrollar la solución técnica.

2. Identificadas las características de los diferentes protocolos y las

implementaciones software disponibles, se realiza un estudio sobre las

diferentes implementaciones con el fin de familiarizarse con ellas para su

posterior uso en el desarrollo del middleware propuesto.

3. La siguiente etapa del proyecto, se centra en el desarrollo técnico del

sistema middleware en el que se basa el proyecto. La solución se

implementa sobre el lenguaje de programación Java utilizando la

herramienta Maven, que permite integrar las diferentes librerías existentes

de las que se ha partido y sobre las que se han añadido las funcionalidades

necesarias.

4. A partir de la solución técnica, se propone un primer escenario de

aplicación basado en computación en la nube mediante el cual se estudia

el rendimiento del middleware en un dispositivo sin limitación de recursos

para la aplicación desarrollada. Para ello, se despliegan diversos clientes

generando y recibiendo tráfico a través del middleware. A partir del tráfico

Capítulo 1: Introducción

4

generado se mide tanto el retardo extremo a extremo como el tiempo de

procesado aislado en el middleware.

5. Con el fin de contrastar los resultados obtenidos en el primer escenario de

uso, se propone un segundo escenario de aplicación basado en

computación de borde de red, en el que se estudia el rendimiento del

middleware en un dispositivo de recursos limitados comparándolo con el

primer escenario. De forma análoga al proceso seguido en el primer

escenario, se despliegan diversos clientes generando y recibiendo tráfico a

través del middleware, a partir del tráfico generado se mide tanto el retardo

extremo a extremo como el tiempo de procesado aislado en el middleware.

1.1.3. Herramientas y recursos necesarios

 En primer lugar, en cuanto a los recursos hardware se dispone de:

̵ Dispositivo sin limitación de recursos para la aplicación desarrollada: una

estación de trabajo Workstation Intel Xeon SkyLake-SP 3106 dual con

480GB de disco SSD, 8TB de disco duro y 128 GB de memoria RAM. En

él se implanta el middleware en el primer escenario de aplicación.

̵ Dispositivos de recursos limitados: Raspberry Pi 3 model B, cuenta con un

procesador Quad Core 1.2GHz y 1GB de memoria RAM. En él se

despliegan las aplicaciones IoT y el middleware en el segundo escenario.

En segundo lugar, en cuando a los recursos software necesarios:

̵ Conocimientos sobre Maven [3], herramienta de gestión y construcción de

proyectos Java. Es de gran utilidad a la hora de crear y compilar proyectos

Java, también permite añadir y gestionar dependencias de forma sencilla.

̵ Conocimientos en lenguajes de programación como Java o C que nos

permiten analizar, emplear y modificar librerías de código abierto

existentes para la creación y análisis del middleware propuesto.

Por último, la Figura 2, muestra la evolución temporal que se ha seguido en la

consecución de los objetivos parciales del proyecto.

Figura 2. Diagrama de Gantt del proyecto

Capítulo 2: Estado del arte

5

2. Estado del arte

A lo largo de este capítulo se exponen los fundamentos teóricos de los protocolos

de nivel de aplicación empleados en redes IoT, los cuales se utilizarán como parte de la

solución final. También se exponen las actuales soluciones que otorgan interoperabilidad

en las comunicaciones.

2.1. Paradigmas de comunicación IoT

En este apartado se detallan brevemente los dos paradigmas de transferencia de

mensajes en los que se basan los protocolos de nivel de aplicación IoT que se estudian en

capítulos posteriores.

2.1.1. Paradigma Publicación / Suscripción

El paradigma publicación/suscripción o más conocido como publish/subscribe en

inglés, se trata de un modelo de envío de mensajes asíncrono en el cual los mensajes no

se envían directamente entre clientes finales sino a través de una infraestructura

intermedia comúnmente llamada broker.

En la transferencia de información publish/subscribe intervienen los siguientes

actores:

̵ Publicador (Publisher): cliente encargado de generar la información sobre un

tema y publicarla en la infraestructura.

̵ Suscriptor (Subscriber): cliente interesado en recibir información sobre un

tema. Este se suscribe a los temas de interés en la infraestructura y esta le

notifica cada vez que recibe información sobre dichos temas.

̵ Infraestructura (broker): situado entre el publisher y el subscriber. Se encarga

de recibir las peticiones de suscripción de los clientes suscriptores, las

publicaciones de información de los clientes publicadores y a su vez de

retransmitirlas a los clientes suscritos a esos temas.

Se basa en una estrategia de transferencia de información PUSH (o de recepción

pasiva) en la que el broker notifica de forma proactiva a los clientes suscritos cada vez

que recibe información, es por ello por lo que también se conoce como paradigma “uno

a muchos” (one-to-many) en el cual, los clientes no necesitan conocerse entre sí,

únicamente deben comunicarse con el broker. En la Figura 3 se muestra un ejemplo de

comunicación publish/subscribe.

Capítulo 2: Estado del arte

6

Figura 3. Comunicación modelo Publicación/Subscripción

2.1.2. Paradigma Petición / Respuesta

El paradigma petición/respuesta o también conocido como request/response en

inglés, se trata de un modelo de mensajes comúnmente utilizado en arquitecturas de red

cliente-servidor o REST (Representational State Transfer).

En este modelo de comunicación intervienen los siguientes actores:

̵ Servidor: aplicación capaz de atender peticiones de diferentes clientes

proporcionando como respuesta a dicha petición la información o el

servicio requerido.

̵ Cliente: se trata del consumidor de los datos. Este se encarga de realizar

peticiones al servidor con el fin de obtener información o servicios como

respuesta.

A diferencia del paradigma publish/subscribe, este se basa en una transferencia de

información de tipo PULL donde el cliente genera una petición al servidor y este la

contesta de forma reactiva. Por esta razón se considera un método “uno a uno”. En la

Figura 4 se muestra un ejemplo de comunicación petición/respuesta.

Figura 4. Arquitectura modelo Petición/Respuesta

Capítulo 2: Estado del arte

7

2.2. Principales protocolos de aplicación para IoT

Cuando se habla de comunicaciones máquina a máquina o de redes de sensores,

un aspecto fundamental a tener en cuenta es el protocolo de capa de aplicación a emplear.

Las características más importantes a cumplir son principalmente, bajo consumo de ancho

de banda, bajo consumo energético, retardo extremo a extremo del orden de milisegundos

y bajos requerimientos hardware. Actualmente, los principales protocolos cumplen con

dichas características de forma diferente lo que genera una gran dificultad a la hora de

definir el protocolo de aplicación ideal para este tipo de comunicaciones, por lo que hoy

por hoy no existe un único protocolo estandarizado para estas comunicaciones.

En general, los protocolos de comunicación propuestos difieren en el paradigma

de interacción, es decir, request/response o publish/subscribe descritos en la sección

2.1.1. En primer lugar, como ya se ha comentado antes, request/response representa un

intercambio de mensajes comúnmente conocido en arquitecturas cliente-servidor. Los dos

protocolos más utilizados en este tipo de arquitecturas son HTTP y CoAP. Por otro lado,

publish/subscribe representa un intercambio de mensajes asíncrono empleado en

arquitecturas centralizadas mediante un broker de mensajes. Los protocolos más

empleados en este tipo de arquitecturas son MQTT, MQTT-SN (MQTT for Sensor

Networks) [53], AMQP (Advanced Message Queuing Protocol) [55] y DDS (Data

Distribution Service) [44].

En este capítulo, se exponen los principales protocolos de capa de aplicación

empleados en IoT, centrándonos particularmente en MQTT, MQTT-SN, CoAP y HTTP

ya que estos son los más empleados actualmente en este tipo de comunicaciones [54] tal

y como muestra la Figura 1 y sobre los que posteriormente se centra el desarrollo de la

solución técnica.

2.2.1. MQTT (Message Queue Telemetry Protocol)

MQTT se trata de un protocolo de mensajes originalmente desarrollado en 1999

por Andy Standford-Clark (IBM) y Arlen Nipper (Arcom, ahora Cirrus Link) [28].

Diseñado bajo el paradigma publish/subscribe con el objetivo de proponer un protocolo

de mensajes ligero, de bajo consumo energético y empleando el mínimo ancho de banda.

Actualmente adoptado como estándar por OASIS [38] para las comunicaciones IoT.

MQTT funciona sobre TCP (Transmission Control Protocol) como protocolo de

transporte, el cual está orientado a conexión, garantizando la entrega fiable de paquetes

además de otras características como control de flujo y control de congestión. Uno de los

aspectos negativos de emplear TCP como protocolo de transporte, es el aumento del

retardo experimentado durante el establecimiento de la conexión (envió de mensajes

SYN, SYN/ACK y ACK) junto con un aumento del overhead debido al tamaño de la

cabecera TCP y a la existencia de ACKs. Si bien es cierto, tal y como relatan los autores

de [11] en comparación con otros protocolos de nivel de aplicación que emplean TCP,

como por ejemplo HTTP, gracias a su liviano tamaño de paquete, se trata de un protocolo

Capítulo 2: Estado del arte

8

muy bien considerado dentro del contexto de las comunicaciones entre dispositivos de

recursos limitados.

MQTT está basado en sesiones, esto quiere decir que, tras establecer la conexión

TCP, el proceso completo de comunicación se divide en cuatro etapas, creación de la

conexión MQTT, autenticación, comunicación y terminación de la sesión. Para ello se

definen los siguientes tipos de mensajes.

̵ CONNECT: mensaje enviado por el cliente como solicitud de conexión.

Contiene información necesaria para el establecimiento de una sesión

MQTT.

̵ CONNACK: mensaje enviado por el broker como confirmación del

CONNECT, sin este mensaje, el cliente debe cerrar la sesión.

̵ PUBLISH: mensaje enviado por el cliente para publicar datos sobre un

topic, contiene principalmente el nombre del tema, los datos y el nivel de

QoS requerido.

̵ PUBACK: mensaje de confirmación enviado como respuesta al

PUBLISH, empleado en configuraciones con QoS 1.

̵ PUBREC: mensaje enviado como respuesta al PUBLISH, empleado en

configuraciones con QoS 2.

̵ PUBREL: mensaje enviado como respuesta al PUBREC, empleado en

configuraciones con QoS 2.

̵ PUBCOMP: mensaje enviado como respuesta al PUBREL, es el cuarto y

último paquete empleado en configuraciones con QoS 2.

̵ SUBSCRIBE: mensaje enviado por el cliente al broker para crear una o

más suscripciones a los topics de interés. El broker envía mensajes

PUBLISH a modo de notificación cada vez que recibe datos sobre dichos

topics. El paquete contiene también el máximo valor de QoS requerido con

la que espera recibir los datos mensajes PUBLISH por parte del broker.

̵ SUBACK: mensaje de confirmación enviado como respuesta al

SUBSCRIBE. Contiene el valor máximo de QoS otorgado para cada

suscripción.

̵ UNSUSBCRIBE: mensaje enviado por el cliente al broker como

cancelación de suscripción a un topic.

̵ UNSUBACK: mensaje enviado por el broker al cliente como respuesta al

UNSUBSCRIBE, confirmando la cancelación de la suscripción.

̵ PINGREQ: paquete enviado por el cliente, puede usarse para indicar que

el cliente sigue activo, para requerir que el broker comunique que sigue

activo o para indicar que la conexión sigue activa.

Capítulo 2: Estado del arte

9

̵ PINGRESP: paquete enviado por el broker en respuesta al PINGREQ,

indica que el broker sigue activo.

̵ DISCONNECT: paquete final de la sesión, enviado por el cliente

indicando que se ha desconectado limpiamente.

Por último, se definen tres niveles de calidad de servicio, QoS 0, 1 y 2 [43].

̵ QoS 0: el receptor no envía confirmación sobre la recepción de un mensaje

PUBLISH, por lo que el remitente tampoco realiza ningún reenvío, esto

hace que no se garantice la recepción del mensaje. Se le conoce bajo el

nombre “at most once delivery”.

̵ QoS 1: el receptor confirma la recepción de un mensaje PUBLISH

mediante un mensaje PUBACK, garantizando que el paquete se reciba al

menos una vez, por lo que se le conoce como “at least once delivery”.

̵ QoS 2: se trata del nivel más alto de calidad de servicio, empleado cuando

no se acepta la perdida de mensajes ni su duplicación. Garantiza la entrega

del mensaje exactamente una vez sin duplicados, por lo que se le conoce

como “exactly once delivery”.

A continuación, la Figura 5 muestra un ejemplo de comunicación entre un cliente

suscriptor y un cliente publicador a través de un broker, ambos clientes con Qos 0, 1 y 2

respectivamente, incluyendo establecimiento y finalización de la comunicación MQTT.

Cabe destacar que la configuración QoS por parte de los clientes publisher y subscriber

es totalmente independiente por lo que no necesariamente ambos extremos de la

comunicación deben interactuar bajo los mismos requisitos de QoS.

QoS 0 QoS 1

Capítulo 2: Estado del arte

10

Figura 5. Ejemplo de comunicación MQTT para diferentes niveles de QoS

Por último, resulta interesante destacar que MQTT no define cifrado per se, por

lo que los datos se transmiten como texto plano. Para garantizar comunicaciones seguras,

es necesario implementar una capa de cifrado de forma independiente, comúnmente

utilizando TLS a nivel de transporte (Transport Layer Security) [9].

2.2.2. MQTT-SN (Message Queue Telemetry Protocol for Sensor Networks)

MQTT-SN [53] se trata de una especificación de MQTT diseñada para redes de

sensores donde el protocolo TCP resulta demasiado pesado. En redes de sensores donde

se prioriza el ahorro energético, la diferencia entre usar TCP o UDP como protocolo de

trasporte resulta muy significativa. Se trata de un proyecto promovido por OASIS que a

pesar de ser una especificación publica, no está reconocida ni aprobada por el organismo

de normalización OASIS, tal y como afirman en [29].

Así, MQTT-SN se basa en el funcionamiento de MQTT, pero emplea UDP como

protocolo de transporte, disminuyendo la cantidad de bytes a transmitir, con el fin de

reducir el consumo de ancho de banda y a su vez el consumo energético.

MQTT-SN también está diseñado sobre el paradigma publish/subscribe, por lo

que necesita un broker al igual que MQTT mediante el cual publicar y recibir

información. Para ello, la especificación define la arquitectura mostrada en la Figura 6.

QoS 2

Capítulo 2: Estado del arte

11

Figura 6. Arquitectura de MQTT-SN, obtenida de [53]

Como se puede ver en la arquitectura, se definen tres tipos de nodos diferentes.

̵ MQTT-SN Client: clientes MQTT-SN que se conectan al broker MQTT a

través del MQTT-SN Gateway.

̵ MQTT-SN Gateway: puede o no estar integrado en el broker MQTT. Su

función es la traducción entre MQTT-SN y MQTT.

̵ MQTT-SN Forwarder: sirve como unión entre el cliente MQTT-SN y el

MQTT-SN Gateway en caso de que este último no esté en la misma red

del cliente.

MQTT-SN, al igual que MQTT establece los niveles de QoS 0, 1 y 2, cuyo

funcionamiento es similar al de MQTT. Adicionalmente, se define el nivel de QoS -1 en

mensajes de tipo PUBLISH. Este permite enviar publicaciones sin necesidad de crear una

conexión con el broker, no se transmite el mensaje CONNECT de creación de la

conexión, y únicamente se transmite el mensaje PUBLISH sin asegurarse de que la

comunicación con el MQTT-SN sea correcta. Esta característica, guarda relación con

CoAP puesto que, a nivel de aplicación, este no está orientado a conexión.

2.2.3. CoAP (Constrained Application Protocol)

CoAP es un protocolo de transferencia de mensajes estandarizado por el IETF en

Junio de 2014 definido en el estándar RFC 7252 [52]. Su uso está destinado a dispositivos

con recursos limitados. Diseñado bajo el paradigma petición/respuesta, proporciona un

modelo de intercambio de mensajes para transferir datos de sensores como temperatura,

humedad, ubicación… en arquitecturas de red tipo REST, permitiendo fácilmente su

traducción a HTTP. Esto permite la integración de datos de sensores en servicios basados

en web aportando gran valor en el ecosistema IoT tal y como lo detalla el instituto ETSI

[16].

En su primera versión, RFC 7252 [52], CoAP se define sobre UDP (User

Datagram Protocol) como protocolo de transporte en lugar de TCP reduciendo el

Capítulo 2: Estado del arte

12

overhead a costa de eliminar la fiabilidad en la entrega de paquetes que este último

garantiza. Debido a la perdida de la fiabilidad que supone el uso de UDP, en Febrero de

2018, ETSI propone el uso de CoAP sobre TCP en el estándar RFC 8323 [5] con el fin

de mejorar la fiabilidad en el uso de CoAP, evitando la pérdida de paquetes y garantizando

mecanismos de control de flujo y de congestión.

CoAP se divide estructuralmente en dos capas como se muestra en la Figura 7.

Figura 7. Estructura de capas de CoAP

La primera capa define el paradigma petición/respuesta tradicional, muy similar a

HTTP. Esta capa establece los métodos GET, PUT, POST o DELETE que los clientes

pueden emplear para generar peticiones sobre diferentes URI (Uniform Resource

Identifier) dirigidas a un servidor y los diferentes códigos de respuesta. En redes de

sensores, por ejemplo, un cliente puede usar el método GET en una petición dirigida a un

servidor y como respuesta recibirá un paquete con los datos requeridos. Para llevar a cabo

la comunicación, CoAP, en la segunda capa define cuatro tipos de mensajes: Confirmable

(CON), Non-Confirmable (NON), Acknoledgement (ACK) y Reset (RST). Se pueden

diferenciar dos posibles configuraciones, con mensajes confirmables y no confirmables

dotando a CoAP de dos niveles de QoS diferentes, ver Figura 8. La confirmación de

mensajes permite asegurar una comunicación fiable frente a pérdidas de paquetes a nivel

de aplicación, supliendo en parte la carencia de fiabilidad en caso de emplear UDP como

protocolo de transporte. Si lo comparamos con el protocolo MQTT descrito en la sección

2.2.1 la configuración de QoS 0 de MQTT es equivalente al uso de mensajes NON y la

configuración de QoS 1 de MQTT es equivalente al uso de mensajes CON.

Figura 8. Tipos de mensajes CoAP (confirmables y no confirmables)

Por otro lado, una funcionalidad de suma relevancia que le aporta valor añadido

al protocolo CoAP y que va más allá del modelo petición/respuesta, se trata de la opción

de OBSERVACIÓN. Se trata de una opción o flag adicional a la petición GET que

Aplicación

Petición/Respuesta

Mensajes

UDP

CoAP

Capítulo 2: Estado del arte

13

permite a los clientes mantener la comunicación abierta y recibir notificaciones continuas

de forma asíncrona por parte del servidor cada vez que cambia el estado del recurso

solicitado, tal y como se muestra en la Figura 9. Esta funcionalidad acerca al protocolo

CoAP al modelo publish/subscribe aportándole una gran flexibilidad.

Figura 9. Observación de CoAP

Además, en un esfuerzo de acercar el protocolo CoAP de forma definitiva al

paradigma publish/subscribe, IETF en Octubre de 2016 publico draft-ietf-core-coap-

pubsub [32] en el que se propone una arquitectura de publicación/suscripción centralizada

en un broker para CoAP, siendo su última actualización en Abril de 2020. La Figura 10

muestra la arquitectura propuesta por el IETF.

Figura 10. Arquitectura publish/subscribe de CoAP propuesta.

Por último, como capa de seguridad, inicialmente se define DTLS (Datagram

Transport Layer Security) [47] como mecanismo de seguridad empleado sobre UDP en

la versión original de CoAP, RFC 7252 [52]. Con la publicación de la RFC 8323 [5] en

la que se incluye el uso de CoAP sobre TCP, se define también TLS [46] como

mecanismo de seguridad.

Capítulo 2: Estado del arte

14

2.2.4. HTTP (Hypertext Transfer Protocol)

HTTP es un protocolo de nivel de aplicación basado en una arquitectura cliente-

servidor frecuentemente utilizado en servicios web. La versión comúnmente utilizada del

protocolo es HTTP/1.1, definida en la RFC 2616 [17] en junio de 1999. Diseñado bajo el

paradigma petición/respuesta, proporciona un modelo de intercambio de datos entre

cliente y servidor basado en peticiones.

Del mismo modo que CoAP, HTTP define los métodos GET, PUT, POST o

DELETE mediante los cuales el cliente puede interactuar solicitando datos, actualizarlos

o borrándolos respectivamente en un servidor. A pesar de no haber sido diseñado para

escenarios IoT, autores como [4] [1] [58] [40] comparan el rendimiento de HTTP con

protocolos como MQTT y CoAP. Si bien es cierto que el gasto de recursos es mucho

mayor en HTTP frente a otros protocolos, son muchas las aplicaciones IoT basadas en

HTTP actualmente.

En relación con el protocolo de transporte utilizado, HTTP usa TCP aportando

fiabilidad en la entrega de mensajes además de control de flujo y de congestión. Un detalle

importante a tener en cuenta es que HTTP está diseñado para el envío esporádico de

información, por lo que la creación de la conexión TCP cada vez que se inicia una

comunicación, da como resultado un gran aumento del ancho de banda consumido frente

a otros protocolos. Por otro lado, no ofrece opciones de QoS como si ocurre en MQTT y

CoAP puesto que TCP garantiza la entrega correcta de los paquetes a nivel de transporte.

Por último, como es bien sabido, HTTP emplea TLS como mecanismo de

seguridad habilitando un canal de comunicaciones cifrado, conocido como HTTPS.

2.2.5. Otros protocolos IoT

Como ya se ha comentado, MQTT, CoAP y HTTP son los principales protocolos

de nivel de aplicación empleados en la gran mayoría de soluciones IoT, a pesar de esto,

existen otros protocolos de menor popularidad como DDS, AMQP y XMPP (Extensible

Messaging and Presence Protocol).

DDS se trata de un protocolo implementado bajo el paradigma publish/subscribe

estandarizado por OMG [44] pero a diferencia de otros protocolos similares, DDS define

una arquitectura peer-to-peer descentralizada en la que no se depende de un broker. Una

de las ventajas de usar DDS es el amplio abanico de niveles de QoS definidos en el

estándar [7] más de veinte niveles. Como protocolo de transporte, se definen tanto TCP

como UDP implementando TLS o DTLS respectivamente.

AMQP es otro protocolo publish/subscribe definido por OASIS en [55] pensado

para transmitir flujos de datos y transacciones comerciales en tiempo real. Evita

soluciones propietarias, ofreciendo como potencial la reducción de costes de

implementación empresarial. AMQP define dos versiones totalmente diferentes, AMQP

0.9.1 establece una arquitectura centralizada en un broker de mensajes mientras que

AMQP 1.0 únicamente propone el protocolo sin especificar la arquitectura, pudiéndose

Capítulo 2: Estado del arte

15

usar en comunicaciónes peer-to-peer. Como protocolo de transporte emplea TCP

garantizando comunicaciones seguras gracias a TLS y define 3 niveles de QoS diferentes.

Por último, XMPP es un protocolo estandarizado por el IETF en los estándares

RFC 6120 [49] y RFC 6121 [50], diseñado originalmente para mensajería de texto

instantánea entre aplicaciones basado en XML (Extensible Markup Language) y diseñado

para soportar interacción cliente-servidor y publish/subscribe. Como protocolo de

transporte emplea TCP y también incorpora TLS como mecanismo de seguridad. A

diferencia de otros protocolos, no define diferenciación en niveles de QoS, al igual que

HTTP.

Finalmente, se muestra la Tabla 1 en la que se resumen brevemente los principales

fundamentos de los protocolos descritos a lo largo del capítulo.

2.3. Protocolos de transporte para comunicaciones seguras

Las aplicaciones IoT al igual que el resto de los servicios de información basados

en redes de comunicaciones están expuestos a entornos de red conflictivos, por lo que

resulta impensable desarrollar un sistema de comunicación que no garantice

confidencialidad, autenticidad e integridad. Es por ello, por lo que en esta sección se van

a introducir brevemente los protocolos de nivel de transporte TLS y DTLS utilizados

comúnmente por las aplicaciones IoT y que se emplean en la solución técnica del

proyecto.

2.3.1. TLS (Transport Layer Security)

TLS es un protocolo diseñado para garantizar privacidad e integridad en las

comunicaciones de datos entre clientes o servidores de red. Se pueden diferenciar varias

versiones. Las versiones más modernas y recomendadas son TLS 1.2 definida en el

estándar RFC 5246 [9] y TLS 1.3 definida en el estándar RFC 8446 [46], ya que versiones

anteriores han quedado obsoletas.

Se trata de un protocolo orientado a conexión, antes de empezar la transmisión de

datos de aplicación se realiza el conocido TLS Handshake en el que se realiza la

autenticación del cliente y servidor, la negociación del cipher suite con el que se cifran

Protocolo Paradigma Prot. Trasporte QoS Seguridad

MQTT Pub-Sub TCP 3 niveles TLS/SSL

CoAP Req-Resp UDP/TCP 2 niveles DTLS y TLS

HTTP Req-Resp TCP - TLS/SSL

DDS Pub-Sub TCP/UDP Mas de 20 niveles TLS y DTLS

AMQP Pub-Sub y Req-Resp TCP 3 niveles TLS/SSL

XMPP Pub-Sub y Req-Resp TCP - TLS/SSL

Tabla 1. características principales de los protocolos de aplicación IoT

Capítulo 2: Estado del arte

16

los datos y el intercambio de claves. La Figura 11 muestra el intercambio de mensajes

durante el TLS 1.2 handshake.

Figura 11. Handshake de TLS 1.2

* Indica mensajes opcionales o dependientes de la situación, no siempre enviados.

Durante el handshake se producen tres eventos a destacar:

̵ Negociación del Cipher Suite: cada extremo de la comunicación enumera

los algoritmos de cifrado que admite y en esta fase de negociación, se fija

el algoritmo de cifrado a emplear.

̵ Autenticación: ambos extremos de la comunicación se autentican

mediante el uso de certificados (el cliente se autentica bajo petición del

servidor).

̵ Intercambio de claves: el cifrado de los datos de aplicación se realiza

mediante criptografía de clave simétrica, una misma clave compartida por

el cliente y el servidor. Para el establecimiento de dicha clave entre ambos,

se emplea criptografía de clave asimétrica (clave pública y privada), el

cliente envía una secuencia aleatoria al servidor cifrada mediante la clave

pública del servidor. Con esta secuencia, ambos generan la clave simétrica

empleada para cifrar las comunicaciones posteriores. El handshake

concluye con el envío de un mensaje de finalización cifrado con la clave

secreta simétrica.

Capítulo 2: Estado del arte

17

2.3.2. DTLS (Datagram Transport Layer Security)

DTLS es un protocolo de nivel de transporte que garantiza seguridad en las

comunicaciones basadas en UDP, definido por el ETSI en el estándar RFC 6347 [47].

DTLS se basa en el protocolo TLS utilizado en comunicaciones sobre UDP.

El funcionamiento de DTLS es similar al funcionamiento de TLS, inicialmente se

realiza un intercambio de mensajes, handshake¸ en el que se establecen la configuración

de la sesión y a continuación se transmiten los datos de forma segura y cifrada.

2.4. Interoperabilidad entre protocolos

Como se ha plasmado en la sección 2.3, en torno al ecosistema IoT existe un gran

conjunto de protocolos de nivel de aplicación basados en paradigmas y arquitecturas muy

diferentes. La falta de un protocolo unificado, estandarizado y normalizado para las

comunicaciones IoT provoca que actualmente, cada fabricante cree sus propios

protocolos y los diseñadores de servicios basados en IoT como por ejemplo las redes de

sensores, Smart cities, Smart grid, o la industria 4.0 usen diferentes protocolos de

aplicación sin preocuparse siquiera por homogeneizar dichas comunicaciones.

Esto puede dar como resultado escenarios IoT heterogéneos a causa de las

diferencias entre protocolos, ya sea debido al paradigma de comunicación

(petición/respuesta o publicación/suscripción) o a características intrínsecas de los

protocolos. Esta situación deriva en problemas tales como la dependencia de hardware

propietario para poder utilizar protocolos de comunicación privados o la necesidad de

disponer de aplicaciones compatibles con cada protocolo para obtener datos de diferentes

proveedores.

Partiendo de la definición de interoperabilidad, la cual se define como “la

habilidad de dos o más sistemas o componentes para intercambiar información y usar la

información que se ha intercambiado” según IEEE en [31], nos encontramos ante una

comunidad que presenta grandes dificultades de interoperabilidad.

Por este motivo, cada vez son más los esfuerzos realizados por buscar puntos de

unión entre los diferentes protocolos expuestos con el fin de lograr la mayor

interoperabilidad posible entre ellos. Es así como surgen iniciativas de proyectos software

que permitan unificar las comunicaciones entre protocolos.

Es común encontrar sistemas proxy entre CoAP y HTTP debido a la similitud de

los protocolos tanto arquitectural como semántica. Ambos protocolos utilizan el

protocolo de interacción petición/respuesta, se fundamentan en la arquitectura cliente-

servidor y comparten gran parecido en cuanto a los mensajes definidos en los dos

estándares (son similares semánticamente). Estos aspectos facilitan en gran medida la

traducción entre ambos protocolos, de manera que puede realizarse a través de una

plataforma software intermedia. De esta manera, si se desea acceder a datos accesibles a

través de CoAP, mediante tecnologías tradicionales fundamentadas en http, una

Capítulo 2: Estado del arte

18

comunicación indirecta, a través de una plataforma que realiza la traducción, puede ser

de gran interés. Existen implementaciones como crosscoap [24] o la de los autores [35].

Por otro lado, también se pueden encontrar sistemas que habilitan la comunicación

entre HTTP y MQTT. No obstante, en este caso, debido a la diferencia entre los

protocolos, la interoperabilidad bidireccional no resulta tan sencilla. Teniendo en cuenta

que MQTT está basado en un modelo de interacción publish/subscribe mediante una

arquitectura centralizada en un broker, y HTTP se basa en un modelo petición/respuesta

mediante una arquitectura cliente-servidor, estos sistemas se fundamentan en la

traducción de los métodos PUT y POST de HTTP, que permiten actualizar los datos en

el servidor, en mensajes MQTT PUBLISH, permitiendo generar datos en un broker

MQTT a través de HTTP. Por otro lado, si lo que se quiere es obtener información

publicada mediante MQTT desde peticiones HTTP GET, es habitual encontrarnos con

implementaciones que retienen los datos publicados por los clientes MQTT en un servidor

HTTP y este responde las peticiones con los datos almacenados. Actualmente existen

proyectos como [1] [25] [26] y [30].

Por último, lo que resulta más interesante dadas las tendencias de protocolos

predominantes en IoT actualmente, se trata de un sistema de mensajería que permita una

interoperabilidad total entre MQTT, CoAP y HTTP con la posibilidad de añadir futuros

protocolos. Bajo estas condiciones, el proyecto que cuenta con más solidez y dispone de

una implementación de código abierto plug and play y funcional se trata del broker

Ponte, del cual se habla continuación.

2.4.1. Ponte

Ponte [45] [8] es un sistema de mensajería que actúa como pasarela entre los

protocolos MQTT, CoAP y HTTP, desarrollado por Eclipse Foundation [13], actualmente

se encuentra en fase de incubación tal y como indican en la documentación oficial. Pese

a que no se trata de una solución final, es posible encontrar el código de la última versión

en Github [23].

Se trata de un proyecto diseñado sobre el entorno de trabajo Node.Js y de rápida

instalación, únicamente requiere disponer de la versión node.js 0.10 y la última versión

disponible de NPM (sistema de gestión de paquetes por defecto de node.js).

En su documentación oficial se detalla la arquitectura mostrada en la Figura 12.

Figura 12. Arquitectura de Ponte, obtenida de [45]

Capítulo 2: Estado del arte

19

Se diferencian tres interfaces diferentes, un servidor HTTP, un servidor MQTT y

un servidor CoAP, además de diferentes herramientas de almacenamiento e indexación

de datos.

El servidor MQTT está diseñado para funcionar como broker, se corresponde con

una implementación de código abierta llamada Mosquito [15] que pertenece a Eclipse

Foundation. Este se encarga de procesar las diferentes publicaciones y suscripciones

MQTT.

El servidor CoAP implementa una interfaz que permite manejar peticiones con los

métodos GET, PUT, POST y DELETE típicos del patrón REST. Permite a un cliente

CoAP publicar datos a través de los métodos PUT y POST al igual que obtener

información de ellos a través del método GET. Tiene total compatibilidad con la opción

de observación por lo que es fácilmente equiparable al paradigma publish/subscribe de

MQTT.

Por otro lado, el servidor HTTP funciona de forma similar al servidor CoAP,

mediante los métodos PUT y POST permite a un cliente HTTP publicar datos en el

sistema mientras que con el método GET permite obtener los datos. Es importante

destacar que HTTP no dispone de la funcionalidad de suscripción como MQTT o de

observación como CoAP, por lo que los datos publicados deben ser retenidos por el

broker Ponte, para poder indexarlos desde HTTP en caso de recibir una petición GET.

Resulta interesante destacar los aspectos que, de momento no se abordan en el

broker Ponte y que consideramos que son de utilidad para garantizar la mayor

interoperabilidad posible y en las mejores condiciones. En primer lugar, desde el punto

de vista de CoAP, Ponte únicamente da servicio a aplicaciones basadas en clientes CoAP

que generan mensajes PUT/POST sobre el broker. Sin embargo, no se contempla la

posibilidad de dar servicio a aplicaciones basadas en servidores CoAP tradicionales

definidos en el estándar, que son los más utilizados en despliegues típicos. Por otro lado,

Ponte, si bien en su documentación oficial indica que se encuentra en desarrollo,

actualmente no incorpora ningún mecanismo de cifrado en las comunicaciones. Por

último, dado el auge de la implantación de arquitecturas IoT basadas en edge computing,

resultaría interesante disponer de una versión de Ponte que permitiera aumentar la

escalabilidad del sistema en escenarios con diferentes broker interconectados,

característica que actualmente no posee.

Todos estos aspectos se abordan en este proyecto mediante el desarrollo de un

middleware que además de las funcionalidades proporcionadas por Ponte, da servicio a

servidores CoAP tradicionales y permite comunicaciones tanto cifradas mediante

TLS/DTLS como sin cifrar. Además, se propone una solución que permite tener múltiples

instancias del broker interconectadas, posibilitando la escalabilidad del sistema.

Capítulo 3: Implementaciones software existentes

20

3. Implementaciones software existentes

En este capítulo se muestran las principales librerías software existentes y se

aborda la elección de las librerías utilizadas durante el desarrollo técnico. A continuación,

se muestra una breve revisión de las implementaciones más destacadas de MQTT,

MQTT-SN y CoAP.

3.1. Implementaciones CoAP

En la Tabla 2 se muestran las librerías más conocidas y utilizadas por la

comunidad CoAP, junto a sus características principales.

3.2. Implementaciones MQTT

En la Tabla 3 se muestran las librerías más conocidas y utilizadas por la

comunidad MQTT, junto a sus características principales.

Nombre Lenguaje Cliente/Bróker

Versiones

del

protocolo

TLS Licencia Referencia

Mosquitto C Cliente y broker 5.0, 3.1.1 y 3.1 Si EPL/EDL [15]

Paho

MQTT

C, C++,

Java,

JavaScript,

Python,

Go

Cliente 3.1.1 y 3.1 Si EPL [14]

Nombre Lenguaje
RFC

implementada

Cliente /

Servidor
Características Licencia Referencia

Aiocoap Python 3 7252
Cliente y

servidor

Blockwise

Transfers y Observe
MIT [2]

Californium Java 7252
Cliente y

servidor

Observe, Blockwise

Transfers y DTLS
EPL + EDL [12]

CoAPThon Python 7252
Cliente y

servidor

Blockwise

Transfers, Observe,

DTLS

MIT [6]

Libcoap C 7252
Cliente y

servidor

Blockwise

Transfers, Observe

y DTLS

BSD/GPL [33]

Node-coap JavaScript 7252
Cliente y

servidor

Blockwise

Transfers
MIT [41]

Tabla 2. Implementaciones de CoAP

Capítulo 3: Implementaciones software existentes

21

wolfMQTT C Cliente 5.0 y 3.1.1 Si GPL [57]

Moquette Java Broker 3.1. Si EPL [37]

HiveMQ

CE
Java Broker 5.0 y 3.x Si Apache v2 [27]

HiveMQ

Client
Java Cliente 5.0 y 3.1.1 SI Apache v2 [27]

Tabla 3. Implementaciones de MQTT

3.3. Implementaciones MQTT-SN

MQTT-SN se trata de un protocolo relativamente nuevo, por lo que no posee la

suficiente madurez como MQTT o CoAP. Esto hace que existan escasas

implementaciones y no tan contrastadas y utilizadas como ocurre con los otros protocolos.

A continuación, la Tabla 4 muestra alguna implementación disponible en Github de

MQTT-SN.

Nombre Lenguaje
Cliente/GW

/Forwarder

Versiones del

protocolo
Licencia Referencia

Mqtt-sn-tools C Cliente y forwarder 1.2 MIT [22]

Mqtt-sn C Cliente y gateway 1.2 MPL [18]

Paho.mqtt-

sn.embedded-c
C

Cliente (incompleto)

y gateway
1.2

EPL y

EDL
[20]

Mqtt-sn-

gateway
Java Gateway 1.2

EDL y

EPL
[21]

Mqttsn Python Cliente 1.2 MIT [39]

Tabla 4. Implementaciones de MQTT-SN

Capítulo 3: Implementaciones software existentes

22

3.4. Implementaciones elegidas

Para el desarrollo técnico del proyecto se ha elegido Java como lenguaje de

programación. Entre los motivos por lo que se ha escogido Java se encuentran los

siguientes: se trata de un lenguaje multiplataforma que funciona sobre la máquina virtual

de Java (JVM) por lo que es fácilmente portable entre distintos sistemas operativos, es un

lenguaje orientado a objetos, gracias a esto se definen estructuras de fácil manipulación,

se conoce como un buen lenguaje del lado del servidor [10] y permite implementar

programación concurrente multihilo de forma sencilla.

Las librerías seleccionadas han sido:

• Moquette MQTT basada en Eclipse Paho para el broker MQTT

• Eclipse Californium para la arquitectura CoAP

• Mqtt-sn-tools para los clientes MQTT-SN

• Paho.mqtt-sn.embedded-c para el MQTT-SN Gateway

• Oracle HTTP para el servidor HTTP

Moquette y Californium son librerías desarrolladas y respaldadas por Eclipse

Foundation en la cual participan empresas como IBM, Oracle, RedHat, Bosch o Huawei,

esto garantiza estabilidad y continuas actualizaciones de software. Además, cuentan con

una gran comunidad de desarrolladores donde encontrar ayuda y soporte. Por otro lado,

Oracle HTTP se encuentra integrada entre los paquetes de Java contando con una extensa

documentación en su API. Por último, la elección de las librerías de MQTT-SN se basó

en heurística, las librerías existentes cuentan con características similares, por lo que se

eligieron las librerías más sencillas de usar y que no mostraban fallos en su ejecución.

Capítulo 4: Solución técnica

23

4. Solución técnica

En este capítulo se aborda el desarrollo técnico de un middleware de mensajería

que permite la intercomunicación de clientes IoT utilizando diferentes protocolos de nivel

de aplicación, MQTT, CoAP y HTTP. El proyecto software completo, se encuentra

disponible en el repositorio de Github [19]. Adicionalmente, el Anexo 1 se muestra

detalladamente la estructura de clases del proyecto.

4.1. Planteamiento del sistema

Como punto de partida se definen los casos de uso que se quieren tratar y los

diferentes tipos de mensajes que se ven implicados.

Recepción de un mensaje PUBLISH MQTT

En caso de recibir un mensaje MQTT de tipo PUBLISH dirigido a un topic, se

retransmite a todos los clientes MQTT suscritos a dicho topic (funcionamiento tradicional

de un broker MQTT). A su vez, si existe algún cliente CoAP con una relación de

observación establecida sobre ese topic (GET Observe), internamente el sistema traduce

el mensaje MQTT recibido y lo reenvía en forma de notificacion CoAP a los clientes

CoAP que observan dicho topic. Por último, el contenido del mensaje se almacena en la

memoria del servidor CoAP y del servidor HTTP para poder acceder a él a través de

consultas HTTP GET y CoAP GET simples (únicamente se guarda el ultimo valor

actualizado).

Recepción de un mensaje PUT/POST CoAP

En caso de recibir un mensaje CoAP de tipo PUT/POST dirigido a un topic, se

retransmite a todos los clientes CoAP que tengan una relación de observación establecida

sobre ese topic (GET Observe). A su vez, internamente el sistema traduce el mensaje

PUT/POST CoAP en un mensaje PUBLISH MQTT, de esta manera el broker MQTT

notifica a todos los clientes MQTT suscritos a ese topic. Del mismo modo que antes, el

contenido del mensaje se almacena en la memoria del servidor CoAP y del servidor HTTP

para poder acceder a él a través de consultas HTTP GET y CoAP GET simples

(únicamente se guarda el ultimo valor actualizado).

Recepción de un mensaje PUT/POST HTTP

En caso de recibir un mensaje HTTP de tipo PUT/POST dirigido a un topic, el

sistema internamente lo traduce a un mensaje PUT/POST CoAP y lo interpreta como tal,

notificando a todos los clientes CoAP que tengan una relación de observación establecida

con ese topic (GET Observe). También lo traduce a un mensaje PUBLISH MQTT, de

esta manera el broker MQTT notifica a todos los clientes MQTT suscritos a ese topic.

Del mismo que en los casos anteriores, el contenido del mensaje se almacena en la

memoria del servidor CoAP y del servidor HTTP para poder acceder a él a través de

consultas HTTP GET y CoAP GET simples (únicamente se guarda el ultimo valor

actualizado).

Capítulo 4: Solución técnica

24

 Con estos tres casos de uso, se tienen bajo control todas las posibles publicaciones

de información en el middleware a través de los distintos protocolos. Por otro lado, un

caso de uso concreto e importante es el hecho de darle servicio a servidores CoAP

tradicionales. Si se recuerda el diseño arquitectural de CoAP, lejos de tratarse de un

modelo publish/subscribe se diseñó como modelo request/response basándose en una

arquitectura cliente-servidor. Con los casos abordados anteriormente, desde el punto de

vista de CoAP, el middleware únicamente da servicio a aplicaciones basadas en clientes

CoAP que generan mensajes PUT/POST de forma proactiva para publicar datos. Sin

embargo, uno de los principales objetivos de este sistema, es permitir integrar todas

aquellas aplicaciones basadas en servidores CoAP que recopilan datos y los comunican

de forma reactiva como respuesta a una petición GET, aunando así los dos paradigmas,

publish/subscribe y request/response, esto resulta fundamental puesto que, como se

detalla en la sección 2.2.3, el estándar define CoAP como un modelo cliente-servidor y

su funcionamiento publish/subscribe actualmente es una propuesta sin estandarizar, por

lo que de momento existen infinidad de fabricantes y proveedores que basan sus servicios

en servidores CoAP. Este funcionamiento, tal y como se ha comentado en el apartado

2.4.1, es una de las carencias del broker Ponte que se propone añadir. Para ello se definen

los siguientes procedimientos y casos de uso.

Descubrimiento de topics

Debido a que un servidor CoAP no transmite datos de forma proactiva sino de

forma reactiva tras la recepción de una petición, el middleware debe conocer qué topics

están alojados en los servidores a los que da servicio. Para ello el sistema, debe consultar

a todos los servidores CoAP qué topics contiene y almacenarse esta información en

memoria para poder ser utilizada más tarde. Se emplea la funcionalidad de

descubrimiento de recursos disponible en el estándar CoAP, los servidores constan de la

URI .well-known/core, realizando una petición a dicha URI el servidor devuelve

información de todos los topics que contiene. Por lo que el middleware define un cliente

CoAP para cada servidor a los que da servicio y a través de peticiones GET a esta URI

descubre todos los topics disponibles.

Recepción de un mensaje SUBSCRIBE MQTT

En caso de recibir un mensaje MQTT de tipo SUBSCRIBE sobre un topic, el

broker MQTT añade ese cliente a la lista de suscripciones de ese topic y en el momento

en que se recibe un mensaje MQTT PUBLISH sobre ese topic, el cliente es notificado,

Figura 13 (a). Del mismo modo pasa con los mensajes PUT/POST CoAP o PUT/POST

HTTP debido a la traducción interna entre protocolos comentada anteriormente, Figura

13 (b) y Figura 13 (c). Adicionalmente, el sistema consulta si ese topic corresponde con

un topic alojado en un servidor CoAP. En caso positivo, crea un cliente CoAP que

establece una relación de observación con dicho servidor (envía un GET Observe)

obteniendo los datos, cada vez que el servidor los actualice e internamente se traducirá

por un PUBLISH MQTT que se reenviara por la interfaz MQTT notificando al cliente

suscrito, Figura 13 (d). Cabe destacar, que para mejorar la eficiencia y ahorrar el consumo

de ancho de banda, esto último solo se realiza para la primera suscripción, en caso de

tener más de un cliente MQTT suscrito al mismo topic no se replica el tráfico entre el

middleware y el servidor CoAP, sino que se utiliza la misma conexión.

Capítulo 4: Solución técnica

25

Figura 13. Caso de uso de suscripción MQTT a un topic.

Recepción de un mensaje GET OBSERVE CoAP

En caso de recibir un mensaje CoAP de tipo GET OBSERVE sobre un topic, se

añade la relación de observación entre ese cliente y el topic, de forma que si se recibe un

mensaje CoAP de tipo PUT/POST dirigido a ese topic se notificara a dicho cliente con

los datos nuevos, Figura 14 (b). Del mismo modo pasa con los mensajes recibidos de tipo

PUT/POST HTTP o MQTT PUBLISH gracias a la traducción interna entre protocolos

que realiza el sistema, Figura 14 (c) Figura 14 (a) respectivamente. Adicionalmente, el

sistema consulta si ese topic se corresponde con un topic alojado en un servidor CoAP.

En caso positivo, crea un cliente CoAP que establece una relación de observación con

dicho servidor (envía un GET Observe) obteniendo los datos, cada vez que el servidor los

actualice e internamente se actualizan los datos en el topic del middleware notificando al

cliente observador, Figura 14 (d). Al igual que antes, esto último solo se realiza para la

primera suscripción (independientemente de que sea MQTT o CoAP), en caso de tener

más de un cliente suscrito al mismo topic no se replica el tráfico entre el middleware y el

servidor CoAP, sino que se utiliza la misma conexión.

a) b)

c) d)

Capítulo 4: Solución técnica

26

Figura 14. Caso de uso GET OBSERVE CoAP

Con los casos de uso descritos hasta el momento, se cubre la publicación y

recepción de datos basados en eventos en tiempo real (un actor genera datos y otro actor

en tiempo real es notificado). Sin embargo, CoAP y HTTP permiten obtener datos

mediante petición/respuesta a través de los métodos HTTP GET y CoAP GET (no

observe). En este caso no se busca obtener datos en tiempo real, sino el ultimo valor

almacenado sobre un topic. Para ello se definen los siguientes casos de uso.

Recepción de un mensaje CoAP GET (no observe)

En caso de recibir un mensaje CoAP de tipo GET (no observe) sobre un topic,

primero se consulta si el topic se corresponde con un topic alojado en un servidor CoAP.

En caso positivo, se crea un cliente CoAP que retransmite la petición GET al servidor

CoAP obteniendo la última información actualizada y se responde al cliente original con

dicha información, Figura 15 (a). En caso de no corresponder con un topic alojado en un

servidor CoAP, se trata de un recurso publicado mediante un mensaje PUT/POST CoAP,

PUT/POST HTTP o mediante un mensaje PUBLISH, por lo que se responde con el ultimo

valor publicado en el middleware, Figura 15 (b). Por esta razón se almacena el último

dato publicado.

a) b)

c) d)

Capítulo 4: Solución técnica

27

Figura 15. Caso de uso CoAP GET (no observación)

Recepción de un mensaje HTTP GET

En caso de recibir un mensaje HTTP de tipo GET sobre un topic, primero, se

realiza el mismo proceso que en con la recepción de un mensaje CoAP GET. Si el topic

está alojado en un servidor CoAP, se crea un cliente CoAP que retransmite la petición

GET al servidor CoAP. Con la información obtenida responde a la petición HTTP, Figura

16 (a). En caso de no corresponder con un topic alojado en un servidor CoAP, se trata de

un recurso publicado mediante un mensaje PUT/POST CoAP, PUT/POST HTTP o

mediante un mensaje PUBLISH, por lo que se responderá con el ultimo valor publicado

en el middleware, Figura 16 (b).

Figura 16. Caso de uso HTTP GET

A fin de evitar conflictos con los nombres de los topics en estos dos últimos casos

de uso, se define una limitación en la configuración en los nombres de los topics: es

fundamental que los nombres de los topics alojados en los servidores CoAP no sean

iguales entre ellos y tampoco iguales a los topics publicados mediante mecanismos

publish/subscribe.

a) b)

a) b)

Capítulo 4: Solución técnica

28

4.2. Arquitectura del sistema

En cuanto a la solución software, se define una arquitectura basada en un broker

MQTT, un broker CoAP y un servidor HTTP independientes. Como nexo, se define una

arquitectura de clases de java que implementa todos los procedimientos necesarios para

realizar la gestión interna de topics entre los tres servicios y la correcta traducción de

protocolos para cada caso de uso. La arquitectura superficial se muestra en la Figura 17.

Figura 17. Arquitectura del middleware

El desarrollo de las interfaces MQTT y HTTP resulta inmediata a partir de la

documentación oficial de cada librería, permitiendo realizar todo lo anteriormente

comentado. Sin embargo, la librería CoAP Californium implementa la RFC 7252, que

por sí sola no permite tener una estructura publish/subscribe basada en un broker CoAP

tal y como se define en draft-ietf-core-coap-pubsub. Por esto, es necesario modificar la

librería para añadir esta funcionalidad, ya que resulta necesaria para este proyecto.

Afortunadamente, existe un proyecto desarrollado por Thomas Wiss en la universidad de

Suecia disponible en Github [56], entre otras cosas contiene una modificación de la

librería CoAP Californium en la que se implementa una API publish/subscribe para

CoAP. Por lo tanto, en la interfaz CoAP se implementa un broker CoAP basado en dicho

proyecto.

La principal diferencia a tener en cuenta entre la librería Californium que

implementa la especificación RFC 7252 de CoAP y la librería modificada de Californium

que implemente el draft propuesto para una arquitectura publish/subscribe es la siguiente.

Del lado del servidor, la librería Californium CoAP está diseñada para poner en marcha

un servidor que contiene diferentes topics, en este caso bajo diferentes URIs configuradas

de forma estática en el código de la aplicación del servidor. Son los gestores de las URIs

los que manejan las peticiones entrantes dirigidas a ellas. Los clientes CoAP pueden

Capítulo 4: Solución técnica

29

generar peticiones con diferentes métodos para obtener datos o modificarlos. Sin

embargo, es imposible generar peticiones PUT/POST de publicación sobre URIs no

existentes en el servidor, de forma que no resulta viable tener una arquitectura de

publicación/suscripción dinámica. Para esto, el draft propone la configuración de la URI

/ps/ en el servidor, de forma que las publicaciones de tipo PUT/POST vayan dirigidas a

dicha URI y los topics que se publican, se añaden como child topic de /ps como muestra

el ejemplo de la Figura 18. De esta forma, aunque el topic no exista dentro del servidor

CoAP, el funcionamiento interno de la URI /ps/ es el encargado de crear los topic

dinámicamente. Este funcionamiento viene añadido en la librería de Californium

modificada por Thomas Wiss.

Figura 18. Ejemplo de la estructura de topic propuesta en CoAP publish/subscribe

Una vez explicadas las librerías utilizadas, a continuación, se detalla la

arquitectura de middleware implementada mediante diferentes clases de Java.

El sistema está basado en tres interfaces independientes, cada una procesa los

mensajes recibidos de cada protocolo. El hecho de tener tres procesos independientes

genera la necesidad de poder comunicarlos entre ellos, para ello se plantean dos

posibilidades, mediante memoria compartida o mediante paso de mensajes. Dadas las

grandes diferencias de construcción de las librerías empleadas y del funcionamiento de

cada protocolo, se propone la comunicación de los tres procesos mediante paso de

mensajes. De esta forma no es necesario modificar en gran medida las librerías

seleccionadas.

La comunicación entre los procesos y la traducción de protocolos se realiza en el

Protocolo de Comunicación (MQTT, CoAP o HTTP), ver Figura 17, teniendo una

instancia para cada proceso: Protocolo de comunicación MQTT, Protocolo de

comunicación CoAP y Protocolo de comunicación HTTP. En ellos, se programa el

funcionamiento necesario para cumplir con los casos de uso propuestos anteriormente en

la sección 4.1. La sincronización entre procesos se lleva a cabo a través de la instancia

GestorRecursos, ver Figura 17. Este gestor contiene información actualizada sobre los

topics publicados, información sobre los topics alojados en servidores CoAP y sobre los

clientes suscritos a cada topic. Por lo tanto, cada Protocolo de comunicación, antes de

realizar la traducción de mensajes pertinente, consulta la información necesaria en el

GestorRecursos, consiguiendo así sincronización entre procesos para su posterior

comunicación.

Capítulo 4: Solución técnica

30

Cada Protocolo de comunicación tras analizar la información necesaria, realiza la

traducción y comunicación mediante paso de mensajes con los otros dos procesos

restantes. A continuación, se muestran diferentes diagramas de flujo que representan los

procesos de comunicación entre interfaces.

Protocolo de comunicación MQTT

Figura 19. Diagrama de flujo de la interfaz MQTT

En la Figura 19 se observa el diagrama de flujo de la interfaz MQTT para los

siguientes casos:

̵ Recepción de un mensaje MQTT PUBLISH: en este caso, si el mensaje

proviene de un cliente MQTT PUBLISH, el Protocolo de comunicación

MQTT informa al Gestor de recursos de la recepción del mensaje dirigido

al topic. El gestor actualiza la información de control sobre el topic y a

continuación se envía un mensaje CoAP PUT con los datos del topic a la

interfaz CoAP. Cuando esta interfaz lo recibe, se encarga de notificar a los

clientes CoAP que tienen una relación de observación a ese topic.

Adicionalmente, se actualiza el servidor HTTP con dichos datos para

poder acceder a ellos a través de peticiones HTTP GET. Por otro lado, si

el mensaje MQTT PUBLISH ha sido generado por el broker CoAP o por

el servidor HTTP, no se hace nada puesto que es fruto de la traducción de

un mensaje CoAP PUT/POST o HTTP PUT/POST y el broker MQTT

únicamente notifica a los clientes MQTT SUBSCRIBER.

̵ Recepción de un mensaje MQTT SUBSCRIBE: en este caso, el Protocolo

de comunicación MQTT lo primero que hace es consultar la información

de control sobre el topic al que hace referencia el mensaje a través del

Gestor de recursos. Si se trata de un topic alojado en un servidor CoAP,

notifica al Gestor de recursos sobre el usuario suscriptor. Esto permite

Capítulo 4: Solución técnica

31

llevar la cuenta de los usuarios que están suscritos. A continuación,

comprueba a través del Gestor de recursos si ya existe un Observador

creado a dicho topic alojado en el servidor CoAP. Si ya existe uno,

únicamente deja al cliente MQTT suscrito al topic en el broker MQTT. En

caso de que no exista un Observador, lo crea y deja al cliente MQTT

suscrito al topic en el broker MQTT. Por otro lado, si no se trata de un

topic alojado en un servidor CoAP, únicamente deja al cliente MQTT

suscrito en el broker MQTT

Protocolo de comunicación CoAP

Figura 20. Diagrama de flujo de la interfaz CoAP

En la Figura 20, se observa el diagrama de flujo de la interfaz CoAP para los

siguientes casos:

̵ Recepción de un mensaje CoAP PUT/POST: en este caso, si el mensaje

proviene de un cliente CoAP PUT/POST, el Protocolo de comunicación

CoAP informa al Gestor de recursos de la recepción del mensaje dirigido

al topic. El gestor actualiza la información de control sobre el topic y a

continuación se envía un mensaje MQTT PUBLISH con los datos del topic

a la interfaz MQTT. Cuando esta interfaz lo recibe, se encarga de notificar

a los clientes MQTT suscritos ese topic. Adicionalmente, se actualiza el

servidor HTTP con dichos datos para poder acceder a ellos a través de

Capítulo 4: Solución técnica

32

peticiones HTTP GET. Por otro lado, si el mensaje CoAP PUT/POST ha

sido generado por el broker MQTT o por el servidor HTTP, no se hace

nada, puesto que es fruto de la traducción de un mensaje MQTT PUBLISH

o HTTP PUT/POST y el broker CoAP únicamente notifica a los clientes

CoAP que tienen una relación de observación establecida con ese topic.

̵ Recepción de un mensaje CoAP GET: en primer lugar, se consulta la

información sobre ese topic en el Gestor de recursos. Si se trata de un topic

alojado en un servidor CoAP existen dos posibilidades: a) si se trata de una

petición GET simple, se retransmite la petición al servidor y con la

información obtenida se responde a la petición del cliente, o b) si se trata

de una petición GET Observe, se notifica al Gestor de recursos sobre el

usuario observador. Esto permite llevar la cuenta de los usuarios que están

observando. A continuación, se comprueba a través del Gestor de recursos

si ya existe un Observador creado a dicho topic alojado en el servidor

CoAP. Si ya existe uno, el gestor únicamente deja al cliente CoAP

observando el topic en el broker CoAP. En caso de que no exista un

Observador, lo crea y deja al cliente CoAP suscrito al topic en el broker

CoAP. En caso de que no sea un topic alojado en un servidor CoAP existen

dos posibilidades: a) si es una petición GET simple se consulta si se

dispone de información almacenada (publicada mediante un mensaje

MQTT PUBLISH, CoAP PUT/POST o HTTP PUT/POST). En caso

afirmativo se contesta con dicha información y en caso negativo se

contesta con el código de error 4.04 NOT FOUND, o b) si se trata de una

petición GET Observe se deja al cliente observando el topic en el broker

CoAP.

Protocolo de comunicación HTTP

Figura 21. Diagrama de flujo de la interfaz HTTP

Capítulo 4: Solución técnica

33

En la Figura 21, se observa el diagrama de flujo de la interfaz HTTP para los

siguientes casos:

̵ Recepción de un mensaje HTTP PUT/POST: en este caso, el Protocolo de

comunicación HTTP informa al Gestor de recursos de la recepción del

mensaje dirigido al topic. El gestor actualiza la información de control

sobre el topic y a continuación se envía un mensaje MQTT PUBLISH con

los datos del topic a la interfaz MQTT. Cuando esta interfaz lo recibe, se

encarga de notificar a los clientes MQTT suscritos ese topic y se envía un

mensaje CoAP PUT con los datos del topic a la interfaz CoAP, que se

encarga de notificar a los clientes que tienen una relación de observación

establecida.

̵ Recepción de un mensaje HTTP GET: en primer lugar, se consulta la

información sobre ese topic en el Gestor de recursos. Si se trata de un topic

alojado en un servidor CoAP se retransmite la petición GET al servidor

CoAP y con la información recibida se responde la petición original. En

cambio, si no se trata de un topic alojado en un servidor CoAP existen dos

opciones: a) si se dispone de información publicada a través de mensajes

MQTT PUBLISH, CoAP PUT/POST o HTTP PUT/POST se contesta a la

petición con dicha información, o b) si no existe información almacenada,

se contesta con el código de error 404 NOT FOUND.

Adicionalmente, se definen dos elementos más: Gestor de descubridores y

Descubridor. El primero de ellos dispone de una lista de servidores CoAP a los que se da

servicio a través del middleware. Es el encargado de crear un proceso Descubridor por

cada servidor CoAP. Se encarga de realizar peticiones CoAP GET a la URI /.well-

known/core del servidor. La respuesta que obtiene cada Descubridor contiene la lista de

topics de los que dispone el servidor CoAP al que le consulta. Esta información se le

comunica al Gestor de recursos para emplearse como información de control.

Por último, resulta interesante destacar los mecanismos de cifrado introducidos

en el middleware. A diferencia de Ponte, el sistema desarrollado permite la creación de

canales de comunicación seguros a través DTLS y TLS. En este caso, las interfaces CoAP,

MQTT y HTTP permiten dos tipos de conexiones diferentes: conexiones sin cifrar y

conexiones cifradas. En el caso de las conexiones cifradas, en la interfaz CoAP se ha

integrado el uso de DTLS sobre UDP y en el caso de las interfaces MQTT y HTTP se ha

integrado el uso de TLS sobre TCP. En los tres casos se utilizan certificados digitales

como medio de autenticación del servidor y del cliente, aunque también es posible el uso

de una clave secreta preestablecida (pre-shared key) como medio de autenticación. La

creación de los certificados digitales se detalla en el Anexo 2.

Capítulo 4: Solución técnica

34

4.3. Solución middleware escalable

El gran aumento de las aplicaciones de publicación/recepción de datos y el

consecuente crecimiento de las redes IoT, junto con el auge de la migración de los

elementos arquitecturales a ubicaciones perimetrales de red, establece la necesidad de

plantear soluciones escalables que permitan adaptarse al crecimiento continuo del número

de usuarios de manera fluida. Cabe destacar que esta solución ha venido inspirada por el

trabajo [34], en el cual proponen una arquitectura distribuida dinámica de brokers MQTT

como solución a arquitecturas centralizadas en un único broker.

La solución inicial implementada en las secciones 4.1 y 4.2, establece un sistema

estático que no permite desplegar de forma distribuida el middleware desarrollado. Por

este motivo, en esta sección se exponen elementos y funcionamientos añadidos sobre la

arquitectura base, que permiten desplegar el middleware en más de un dispositivo

garantizándose la comunicación entre ellos. Como ya se ha comentado antes, esta es una

característica que se echa en falta en el broker Ponte y que se aborda a continuación.

El objetivo de querer garantizar la escalabilidad del middleware, implica

directamente la necesidad de intercomunicar múltiples dispositivos en los que se instale

dicho middleware, permitiendo así una arquitectura distribuida. Para realizar dicha

comunicación entre dispositivos se ha elegido el protocolo MQTT, debido a que es un

protocolo orientado a entornos publish/subscribe cuyo funcionamiento resulta ideal para

cumplir con este objetivo. El diseño del middleware distribuido se basa en una

arquitectura en forma de árbol donde los nodos de la red se configuran de forma estática

evitando lazos cerrados entre ellos.

Partiendo de la arquitectura base del middleware expuesta en el apartado 4.2, y

teniendo en cuenta que el elemento Gestor de recursos es el encargado de almacenar la

información de control para el correcto funcionamiento de los diferentes Protocolos de

comunicación, se añaden dos listas nuevas: una lista que contiene la dirección IP y el ID

del resto de middlewares a los que cada uno se conecta y una lista de topics externos en

el Gestor de recursos. Esta nueva lista de topics, almacena la información de los topic

que son publicados en otros middlewares distribuidos que forman la red. Esta es la única

información adicional que se precisa para cumplir con el objetivo propuesto y que, a

continuación, se muestra cómo se emplea y actualiza de forma dinámica en los diferentes

casos de uso implicados.

̵ Recepción de un mensaje PUBLISH MQTT: en primer lugar, se

comprueba el emisor del mensaje mediante el ClientId del mensaje MQTT

y la lista de dispositivos que almacena el Gestor de recursos. Si el mensaje

proviene de un dispositivo middleware distribuido, el Protocolo de

comunicación MQTT informa al Gestor de recursos de dicho topic y de la

fuente de origen. Adicionalmente el Protocolo de comunicación MQTT

propaga el mensaje PUBLISH a los siguientes dispositivos que ejecutan el

middleware; de esta forma se distribuye la información por toda la

arquitectura distribuida. Por otro lado, si el mensaje proviene de un cliente

MQTT publisher y es la primera vez que se recibe una publicación sobre

Capítulo 4: Solución técnica

35

dicho topic, el Protocolo de comunicación MQTT propaga el mensaje

PUBLISH a todos los dispositivos distribuidos de la lista; de esta forma se

actualiza la información en todos. El funcionamiento comentado se

representa en la Figura 22, en azul se resaltan los bloques añadidos frente

al diagrama de flujo del sistema no escalable.

Figura 22. Diagrama de flujo de la recepción de un mensaje MQTT PUBLISH (middleware escalable)

̵ Recepción de un mensaje PUT/POST CoAP o HTTP: en este caso, el

mensaje únicamente puede haber sido enviado por un cliente CoAP o

HTTP. El Protocolo de comunicación CoAP o HTTP, consulta en el

Gestor de recursos si es la primera vez que se recibe una publicación sobre

el topic al que va dirigido el mensaje. En caso afirmativo se envía un

mensaje MQTT PUBLISH al resto de dispositivos que ejecutan el

Capítulo 4: Solución técnica

36

middleware; de esta forma se les informa sobre la existencia dicho topic a

todos. El funcionamiento comentado se representa en la Figura 23, en azul

se resaltan los bloques añadidos frente al diagrama de flujo del sistema no

escalable.

Figura 23. Diagrama de flujo de la recepción de un mensaje PUT/POST CoAP/HTTP (middleware distribuido)

̵ Recepción de un mensaje SUBSCRIBE MQTT o GET OBSERVE CoAP:

en este caso el Protocolo de comunicación MQTT o CoAP consulta si ese

topic se corresponde con un topic que ha sido publicado en otro dispositivo

distribuido de la red que ejecuta el middleware, a través del Gestor de

recursos. En caso afirmativo, el Protocolo de comunicación MQTT o

CoAP crea un cliente MQTT SUBSCRIBER que se suscribe a dicho

dispositivo sobre ese topic. Cada vez que reciba una notificación sobre ese

topic se notifica a todos los clientes MQTT suscritos y a todos los clientes

CoAP observadores. Es importante destacar que esto solo se realiza para

la primera suscripción MQTT u observación CoAP que se recibe, lo que

permite disminuir el tráfico generado. En caso de que se cancelen todas las

suscripciones MQTT y todas las relaciones de observación CoAP sobre

Capítulo 4: Solución técnica

37

ese topic, el middleware debe cancelar la suscripción MQTT a los demás

dispositivos que ejecutan el middleware. En la Figura 24 y Figura 25 se

muestra el comportamiento tanto frente a un mensaje MQTT SUBSCRIBE

como a un mensaje CoAP GET OBSERVE respectivamente, resaltando en

azul los bloques añadidos frente a los diagramas de flujo del sistema no

escalable.

̵ Recepción de un mensaje CoAP GET (no observe) o HTTP GET: en este

caso el Protocolo de comunicación MQTT o CoAP consulta si ese topic se

corresponde con un topic que ha sido publicado en otro dispositivo

distribuido de la red que ejecuta el middleware, a través del Gestor de

recursos. En caso afirmativo, el Protocolo de comunicación CoAP o HTTP

crea un cliente CoAP o un cliente HTTP que propaga la petición CoAP

GET o HTTP GET hacia el dispositivo que ejecuta el middleware

distribuido correspondiente. Por último, se responde a la petición original

con la información obtenida. En la Figura 25 y Figura 26 se muestra el

comportamiento frente tanto a un mensaje CoAP GET como a un mensaje

HTTP GET respectivamente, resaltando en azul los bloques añadidos

frente a los diagramas de flujo del sistema no escalable.

Capítulo 4: Solución técnica

38

Figura 24. Diagrama de flujo de la recepción de un mensaje MQTT SUBSCRIBE (middleware distribuido)

Capítulo 4: Solución técnica

39

Figura 25. Diagrama de flujo de la recepción de un mensaje CoAP GET (middleware distribuido)

Capítulo 4: Solución técnica

40

Figura 26. Diagrama de flujo de la recepción de un mensaje HTTP GET (middleware distribuido)

Adicionalmente, el elemento Descubridor que se encarga de descubrir los

diferentes topics alojados en servidores CoAP, también genera un mensaje MQTT

PUBLISH a cada dispositivo que ejecuta el middleware de forma distribuida. De esta

manera también comunica la existencia de este tipo de topics.

Del mismo modo que se comentaba en el apartado 4.2, a fin de evitar conflictos

con los nombres de los topics, se define una limitación en la configuración en los nombres

de los topics: es necesario que los nombres de los topics que se publican en diferentes

sistemas middleware distribuidos sean diferentes e independientes entre ellos.

Por último, la Figura 27 muestra un pequeño ejemplo de comunicación de clientes

IoT ubicados en diferentes redes interconectados a través de la arquitectura de

middlewares distribuida. El ejemplo está formado por un cliente MQTT que publica de

datos sobre un topic en el middleware ubicado en la red 1. A su vez un cliente MQTT se

suscribe a dicho topic y un cliente CoAP observa el topic, ambos sobre el middleware

ubicado en la red 2. En la figura se observa por un lado la capacidad de intercomunicar

clientes que trabajan con diferentes protocolos y también muestra la escalabilidad del

middleware.

Capítulo 4: Solución técnica

41

Figura 27. Ejemplo de comunicación distribuida

Capítulo 5: Descripción de los escenarios de aplicación

42

5. Descripción de los escenarios de aplicación

En este capítulo, se describen los escenarios de pruebas considerados en el trabajo,

con los que se pretenden estudiar los diferentes aspectos, tanto positivos como negativos,

que surgen al utilizar el sistema middleware desarrollado y explicado en el Capítulo 4.

Se proponen dos casos de estudio. El primero de ellos se basa en el análisis de la

sobrecarga añadida que aparece al utilizar el middleware en caso de ubicarlo en un centro

de datos cloud, siguiendo el modelo de computación para IoT en el que los datos se

transmiten a recursos computacionales de un centro de datos remoto, donde se dispone

típicamente de máquinas sin limitaciones. El segundo de ellos, acercándonos a las

tendencias actuales, se propone el estudio del middleware en caso de alojarlo en el borde

(“edge” en inglés) de la red IoT, siguiendo el modelo de computación perimetral o edge

computing en inglés. En este último caso, los recursos computacionales suelen ubicarse

cerca de donde se generan los datos, pero suelen estar limitados en cuanto a la memoria

disponible, la capacidad de la CPU o el almacenamiento.

5.1. Escenario 1: Middleware ubicado en la nube

Para el primer escenario se propone la topología de red mostrada en la Figura 28.

Como se puede observar, la red de sensores y el middleware se encuentran ubicados en

localizaciones diferentes.

Figura 28. Arquitectura IoT escenario 1

La red de sensores se encuentra en una red local privada doméstica, los

dispositivos empleados para los clientes/servidores IoT son Raspberry Pi 3 model B que

disponen de un procesador Quad Core 1.2GHz y 1GB de memoria RAM, características

más que suficientes para aplicaciones IoT.

Entre los dispositivos IoT, para obtener los resultados se han implementado los

siguientes:

̵ Cliente MQTT PUBLISHER

̵ Cliente MQTT SUBSCRIBER

̵ Cliente MQTT-SN PUBLISHER

Capítulo 5: Descripción de los escenarios de aplicación

43

̵ Cliente MQTT-SN SUBSCRIBER

̵ Cliente CoAP PUT

̵ Cliente CoAP GET y GET Observe

̵ Servidor CoAP

̵ Cliente HTTP GET

̵ Cliente HTTP PUT

Como se ha explicado en la sección 2.2.2, los clientes MQTT-SN se comunican a

través del MQTT-SN Gateway, que también se ejecuta sobre una Raspberry Pi 3 model

B.

El middleware se encuentra en un equipo ubicado en la red del laboratorio de

investigación de la Universidad de Zaragoza. El dispositivo empleado se trata de una

estación de trabajo Workstation Intel Xeon SkyLake-SP 3106 dual con 480GB de disco

SSD, 8TB de disco duro y 128 GB de memoria RAM. Con esta configuración se pretende

simular un entorno cloud sin limitación de recursos en el que el tiempo de procesamiento

del middleware no se vea afectado negativamente por los recursos del dispositivo.

Respecto al software utilizado para los dispositivos IoT, se han empleado las

siguientes librerías para desarrollar las aplicaciones de los clientes.

̵ CoAP PubSub (java) [56]para los clientes CoAP.

̵ Californium CoAP y CoAP PubSub (java) [12] [56] para el servidor

CoAP.

̵ Moquette (java) [37] para el broker MQTT

̵ Eclipse Paho MQTT (java) [14] para los clientes MQTT.

̵ Mqtt-sn-tools (C) [22] para los clientes MQTT-SN.

̵ Eclipse Paho MQTT-SN Embedded (C) [20] para el GW MQTT-SN.

̵ Oracle HTTP (java) para los clientes y servidor HTTP.

Capítulo 5: Descripción de los escenarios de aplicación

44

5.2. Escenario 2: Middleware ubicado en el borde de la red

Para el segundo escenario, se propone la topología de red mostrada en la Figura

29. Como se puede observar, la red de sensores y el middleware está ubicado en la misma

ubicación, siendo esta una red privada doméstica.

Figura 29. Arquitectura IoT escenario 2

En este caso, los dispositivos empleados son los mismos tanto para

clientes/servidores IoT como para el middleware, son también Raspberry Pi 3 model B.

A diferencia del Escenario 1, la limitación en recursos del dispositivo que aloja el

middleware repercute directamente en la capacidad de cómputo de este y por ende en el

retardo de las comunicaciones como se muestra en el Capítulo 6.

El software y hardware empleado para los dispositivos IoT es el mismo que el

mencionado en el Escenario 1.

Con esta configuración se pretende simular un entorno de computación perimetral

o edge computing, con infraestructura de red basada en dispositivos de recursos limitados.

De esta forma se estudian los efectos de esta arquitectura frente a la arquitectura propuesta

en el Escenario 1 en términos de retardo.

Capítulo 6: Resultados

45

6. Resultados

El objetivo principal es estudiar la latencia extremo a extremo en un entorno de

red real para los escenarios comentados en el Capítulo 5, haciendo hincapié en el retardo

introducido por el middleware como resultado de la traducción de mensajes entre

protocolos. Para ello se plantea la siguiente metodología.

Para poder medir el retardo extremo a extremo en comunicaciones de tipo

publish/subscribe, es necesario muestrear el instante temporal en el que el cliente que

genera datos envía el mensaje y el instante temporal en el que el cliente receptor lo recibe.

Para ello, el cliente publisher transmite el timestamp2 de unix capturado en el momento

del envío del mensaje, por otro lado, el cliente subscriber captura el timestamp de unix en

el momento de la recepción del mensaje y se calcula la diferencia. Es importante destacar

que es fundamental tener los clientes sincronizados3 temporalmente para que las medidas

sean correctas.

Por otro lado, también resulta interesante poder medir el tiempo consumido en

comunicaciones de tipo petición/respuesta, como pueden ser la interacción mediante

HTTP GET o CoAP GET. En este caso, no se mide el retardo extremo a extremo, sino

que se mide el tiempo de ida y vuelta de la combinación petición-respuesta, también

conocido como RTT (Round Trip Time). Para ello, el cliente registra el timestamp de unix

en el momento del envío de la petición y se calcula la diferencia con el timestamp del

momento de la recepción de la respuesta.

La Figura 30 muestra la metodología seguida durante la medición del retardo

extremo a extremo.

Figura 30. Esquema de medición del retardo extremo-extremo

2 Timestamp: marca temporal de unix, se define como la cantidad de segundos transcurridos desde

el 1 de enero de 1970.
3 Para sincronizar diferentes máquinas bajo un mismo reloj se emplea el protocolo NTP (Network

Time protocolo) [36] o el protocolo PTP (Precision Time Protocol) [48] en aplicaciones de mayor

precisión.

Capítulo 6: Resultados

46

Adicionalmente, se pretende calcular de forma aislada el tiempo de procesado

interno en el middleware de cada tipo de comunicación, tanto para comunicaciones

directas entre protocolos como para comunicaciones en las que interviene la traducción

de protocolos. Para ello se captura en la interfaz de red del dispositivo en el que se ejecuta

el middleware. Este estudio, se centra comunicaciones publish /subscribe, ya que son más

habituales en aplicaciones orientadas a comunicaciones en tiempo real. Para ello se toma

como referencia el instante temporal en el que se recibe el mensaje del cliente publisher

y se calcula la diferencia con el instante temporal en el que se captura el envío de la

notificación a los clientes subscriber.

6.1. Resultados escenario 1

Con el objetivo de verificar el funcionamiento del sistema y de obtener medidas

representativas de su utilización, y dada la gran variedad de posibles combinaciones

disponibles en las comunicaciones IoT, se han propuesto diferentes casos en función de

los diferentes niveles de QoS y para comunicaciones cifradas y no cifradas.

Tiempo medio extremo-extremo y RTT

En primer lugar, para comunicaciones no cifradas y niveles de QoS 0 y 1

respectivamente, se comparan los distintos retardos extremo a extremo medios en

comunicaciones del tipo publicación/suscripción. Para ello se definen: un cliente MQTT

Suscriptor, un cliente MQTT-SN Suscriptor y un cliente CoAP observador y se procede

a publicar datos mediante: un cliente MQTT Publisher, un cliente MQTT-SN Publisher,

un cliente CoAP PUT, un servidor CoAP y un cliente HTTP PUT respectivamente. Con

el fin de ser equitativo entre protocolos, la configuración de QoS 0 de MQTT/MQTT-SN

se compara con CoAP usando mensajes NON y la configuración de QoS 1 de

MQTT/MQTT-SN con CoAP usando mensajes CON. Como HTTP no diferencia niveles

de QoS, solo se compara con la configuración QoS 0 de MQTT/MQTT-SN y mensajes

NON de CoAP. Los resultados se muestran en la Figura 31 y Figura 32.

Capítulo 6: Resultados

47

Figura 31. Retardo medio extremo-extremo QoS 0 (MQTT/MQTT-SN) y mensajes NON (CoAP) sin TLS/DTLS,

escenario 1

Figura 32. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON (CoAP) sin TLS/DTLS,

escenario 1

Siguiendo la misma metodología, se realizan las mismas pruebas para

comunicaciones cifradas y niveles de QoS 0 y 1. En este caso no se incluyen resultados

para clientes MQTT-SN puesto que no cuentan con implementación TLS. Los resultados

se muestran en la Figura 33 y Figura 34.

Capítulo 6: Resultados

48

Figura 33. Retardo medio extremo-extremo QoS 0 (MQTT/MQTT-SN) y mensajes NON (CoAP) con TLS/DTLS,

escenario 1

Figura 34. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON (CoAP) con TLS/DTLS,

escenario 1

De este primer estudio, se puede ver una tendencia en cuanto a la diferencia de

tiempos. En primer lugar, en todos los casos se puede observar una diferencia de tiempos

clara en las comunicaciones que requieren traducción de protocolos (en torno a 10-12

milisegundos de diferencia) como pueden ser:

̵ Transmisor Cliente CoAP y receptores MQTT o MQTT-SN

̵ Transmisor Servidor CoAP y receptores MQTT o MQTT-SN

̵ Transmisor MQTT y receptor CoAP

̵ Transmisor MQTT-SN y receptor CoAP

̵ Transmisor HTTP y receptores CoAP, MQTT y MQTT-SN

Se observa además que el retardo es mayor para el caso en el que se transmite

mediante un servidor CoAP. Esto es así porque la observación del topic en el servidor

Capítulo 6: Resultados

49

CoAP se realiza mediante un cliente CoAP integrado en el middleware. Esto hace que

esta comunicación y su posterior traducción interna del middleware añadan un retardo

adicional. En el resto de los casos, la diferencia entre retardos se debe únicamente al

tiempo de procesado empleado por el middleware durante la traducción de protocolos.

Un aspecto a destacar es la escasa diferencia en el retardo experimentado por los

receptores MQTT y MQTT-SN, siendo de 1 o 2 milisegundos, esto es debido a que la

comunicación fuera de la red de sensores entre el middleware y el MQTT-SN Gateway

se realiza mediante MQTT.

Por último, resulta importante destacar que, en la mayoría de los casos, la

utilización del mismo protocolo en transmisión y en la recepción resulta más eficiente en

términos de retardo, como era de esperar, siendo la mejor opción en términos de retardo

el protocolo MQTT-SN.

Por otro lado, se analizan también las comunicaciones de tipo petición/respuesta

en comunicaciones sin cifrar y cifradas para los clientes HTTP y CoAP obteniendo

información a través de peticiones GET.

Figura 35. Retardo medio RTT para una petición GET a un topic en memoria (a), y a un recurso alojado en un

servidor CoAP (b) sin TLS/DTLS, escenario 1

Figura 36. Retardo medio RTT para una petición GET a un topic en memoria (a), y a un recurso alojado en un

servidor CoAP (b) con TLS/DTLS, escenario 1

a) b)

a) b)

Capítulo 6: Resultados

50

Como se ve en la Figura 35 y la Figura 36, se realizan peticiones GET desde

clientes CoAP y HTTP dirigidas al middleware. En las imágenes de la izquierda (Figura

35 a) y Figura 36 a)), el recurso se ha publicado desde clientes publisher tipo MQTT,

MQTT-SN, CoAP PUT/POST o HTTP PUT/POST, por lo que la última información

recibida se encuentra almacenada en memoria y el middleware contesta directamente con

ella. En las imágenes de la derecha (Figura 35 b) y Figura 36 b)), se trata de un recurso

alojado en un servidor CoAP, por lo que de forma proactiva el middleware retransmite la

petición GET al servidor para poder acceder a la información.

Como era de esperar en el segundo caso (Figura 35 b) y Figura 36 b)), el retardo

es mayor para ambos protocolos puesto que el middleware no contesta con la petición

directamente, sino que la retransmite y espera a recibir la información para contestar. En

ambos casos, el retardo RTT medio es menor para el cliente CoAP frente al cliente HTTP.

Esto no es debido a la traducción de protocolos en sí, sino a la diferencia de

funcionamiento entre ambos protocolos. CoAP funciona sobre UDP y no está orientado

a conexión frente a HTTP que funciona sobre TCP y en cada petición GET debe

establecer la conexión TCP. Esto incrementa el número de paquetes y bytes transmitidos

y por ende el retardo total.

En el caso de comunicaciones cifradas, la diferencia entre CoAP y HTTP se

reduce drásticamente puesto que al emplear CoAP sobre DTLS, este establece la conexión

segura mediante un handshake inicial muy similar al de HTTP sobre TLS, por lo que el

número de mensajes intercambiados y de bytes transmitidos se asemeja.

Tiempo medio de procesado en el middleware

Tanto los retardos medios extremo a extremo como los retardos RTT han sido

medidos en un escenario de red real. Esto nos permite tener una idea del comportamiento

del sistema, pero no de forma estricta, puesto que el estado de la red puede variar de una

realización a otra y las medidas pueden sufrir variaciones. Por esta razón, como medida

más precisa se pretende aislar el tiempo de procesado interno del middleware a partir de

capturas de Tcpdump realizadas en la máquina en la que dicho middleware se ejecuta. La

Tabla 5 muestra un resultado más preciso del tiempo empleado por el middleware en

procesar cada tipo de mensaje en las diferentes configuraciones.

Capítulo 6: Resultados

51

 Tiempo (ms) de procesado en comunicaciones publish/subscribe

 Sin cifrado Con cifrado

Transmisor Receptor QoS 0 y NONs QoS 1 y NONs Qos 0 y NONs QoS 1 y NONs

CoAP

CoAP 2,14 2,58 3,20 3,64

MQTT 9,27 10,39 11,24 13,12

MQTT-SN 9,35 10,72 - -

MQTT

CoAP 10,74 11,45 10,05 12,49

MQTT 1,74 2,13 2,21 3,16

MQTT-SN 1,77 2,48 - -

MQTT-SN

CoAP 10,15 10,81 - -

MQTT 1,64 2,11 - -

MQTT-SN 1,53 2,38 - -

Servidor
CoAP

CoAP 8,65 11,31 9,10 11,69

MQTT 17,65 22,94 18,81 22,15

MQTT-SN 17,94 23,29 - -

HTTP

CoAP 4,34 - 5,07 -

MQTT 14,95 - 14,42 -

MQTT-SN 15,61 - - -

Tabla 5. Tiempo medio de procesado en comunicaciones publish/subscribe, escenario 1

Tal y como se comentaba anteriormente, las comunicaciones que requieren

traducción de protocolos incrementan el tiempo de procesado interno del middleware

entre 8ms y 22ms, siendo las más elevadas en el caso de recibir información desde un

servidor CoAP. Adicionalmente, se ve cómo el uso de un nivel de QoS 1 (MQTT/MQTT-

SN) y mensajes CON (CoAP) no introduce grandes efectos negativos frente a emplear un

nivel de calidad de servicio inferior, siendo la diferencia del orden de 1ms. Por último,

emplear comunicaciones cifradas también introduce en media 1ms o 2ms de retardo extra

debido a las operaciones de cifrado y descifrado realizadas.

Ancho de banda medio consumido en la red de sensores

Dada la flexibilidad que aporta el middleware a la hora de seleccionar un

protocolo de transmisión de datos, para completar el estudio, se analiza el ancho de banda

consumido por los nodos transmisores en la red de sensores, en términos de bytes por

segundo. Para la realización de este estudio se han empleado en todos los casos clientes

que publican datos cada 2 segundos cuya carga útil es de 13 bytes. Las Figura 37,Figura

38,Figura 39 yFigura 40 muestran los resultados para las diferentes configuraciones.

Capítulo 6: Resultados

52

Figura 37. Ancho de banda medio consumido por los diferentes clientes con QoS 0 (MQTT/MQTT-SN) y mensajes

NON (CoAP) y HTTP sin TLS/DTLS

Figura 38. Ancho de banda medio consumido por los diferentes clientes con QoS 1 (MQTT/MQTT-SN) y mensajes

CON (CoAP) sin TLS/DTLS

Capítulo 6: Resultados

53

Figura 39. Ancho de banda medio consumido por los diferentes clientes con QoS 0 (MQTT) y mensajes NON (CoAP)

y HTTP con TLS/DTLS

Figura 40. Ancho de banda medio consumido por los diferentes clientes con QoS 1 (MQTT) y mensajes CON (CoAP)

con TLS/DTLS

En primer lugar, como era de esperar, el protocolo HTTP se trata el protocolo que

más ancho de banda consume, siendo en media aproximadamente 10 veces mayor que el

ancho de banda consumido por el resto de los protocolos. No se trata de un

comportamiento anómalo puesto que HTTP no fue diseñado para aplicaciones IoT, sino

para aplicaciones de transferencia de información más complejas y sin restricciones ni

energéticas ni de ancho de banda.

En segundo lugar, el protocolo que más recursos consume se trata de MQTT tanto

en configuración de QoS 0 o 1. Tampoco es de extrañar, ya que emplea como protocolo

de transporte TCP, lo que hace que el tamaño de la cabecera de nivel de transporte sea

Capítulo 6: Resultados

54

mayor a los protocolos que emplean UDP y además incluye la confirmación de paquetes

mediante mensajes ACK.

Por último, existe gran similitud en el ancho de banda consumido por el cliente

MQTT-SN, cliente CoAP y servidor CoAP puesto que los tres funcionan sobre UDP

como protocolo de transporte y el número y tamaño de los paquetes es similar tanto para

configuraciones de QoS 0 / mensajes NON como para QoS 1 / mensajes CON, siendo el

cliente MQTT-SN en media el que menos ancho de banda consume en comunicaciones

no cifradas.

6.2. Resultados escenario 2

Mediante la realización de este escenario, se pretenden analizar el efecto en

términos de retardo que supondría utilizar el middleware desarrollado en un dispositivo

de bajos recursos como es una Raspberry Pi 3. Esto es de gran interés debido a la

tendencia actual de acercar los nodos de cómputo al borde de la red (Edge computing)

disminuyendo así el tiempo de transmisión en escenarios basados en computación en la

nube (cloud computing).

Para poder realizar un análisis correcto, se han seleccionado los casos de uso más

restrictivos, en este caso las configuraciones con QoS 1 (MQTT/MQTT-SN) y

mensajes CON (CoAP) con y sin cifrado. En este caso, únicamente se han estudiado las

comunicaciones de tipo publish/subscribe que, en principio, están destinadas a

comunicaciones en tiempo real.

Tiempo medio extremo-extremo y RTT

Del mismo modo que en el Escenario 1, en la Figura 41 y Figura 42 se representan

los retardos extremo-extremo experimentado en las comunicaciones. A primera vista se

visualiza una diferencia de tiempos mucho mayor entre protocolos heterogéneos, siendo

esta de entre 40 y 60 ms.

Capítulo 6: Resultados

55

Figura 41. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON (CoAP) sin TLS/DTLS,

escenario 2

Figura 42. Retardo medio extremo-extremo QoS 1 (MQTT) y mensajes CON (CoAP) con TLS/DTLS, escenario 2

A continuación, la Figura 43 y Figura 44 muestran una comparativa detallada

entre los resultados obtenidos en el Escenario 1 con los obtenidos en este escenario en lo

referente a cada protocolo de forma independiente.

Capítulo 6: Resultados

56

Figura 43. Comparativa de retado medio extremo-extremo entre el escenario 1 y escenario 2, sin TLS/DTLS

Figura 44. Comparativa de retado medio extremo-extremo entre el escenario 1 y escenario 2, con TLS/DTLS

Capítulo 6: Resultados

57

Se observa una mejora en el retardo extremo a extremo en las comunicaciones en

las que los extremos (transmisor y receptor) emplean el mismo protocolo, como, por

ejemplo:

̵ Transmisor CoAP - Receptor CoAP

̵ Transmisor MQTT/MQTT-SN - Receptor MQTT/MQTT-SN

Esto resulta coherente puesto que el hecho de ubicar el middleware en el borde de

la red de sensores hace que disminuya el retardo producido por el tiempo de transmisión

de los datos hasta el middleware en caso de estar ubicado en la nube.

Por otro lado, el retardo extremo a extremo empeora en las comunicaciones en la

que los extremos (transmisor y receptor) emplean protocolos diferentes, como, por

ejemplo:

̵ Transmisor CoAP - Receptor MQTT/MQTT-SN

̵ Transmisor MQTT/MQTT-SN - Receptor CoAP

A primera vista, los resultados no resultan coherentes puesto que el objetivo de

ubicar el middleware en el borde de la red de sensores es disminuir el retardo producido

por el tiempo de transmisión de los datos hasta el middleware y con ello el retardo

extremo a extremo en la comunicación. A pesar de esto, emplear un dispositivo de

recursos limitados influye en el tiempo que emplea el middleware en realizar la traducción

de protocolos en comunicaciones heterogéneas, pudiendo llegar a ser más significativo

que el tiempo de transmisión de los datos.

Capítulo 6: Resultados

58

Tiempo medio de procesado en el middleware

Siguiendo la metodología realizada en el Escenario 1, el estudio del retardo

extremo a extremo otorga una medida orientativa sobre el comportamiento del sistema,

pero no se puede tomar como una medida representativa. Por ello, a continuación, se

adjunta la Tabla 6 en la que se muestra el tiempo empleado por el middleware en tratar

las comunicaciones, obtenido a partir de capturas de Tcpdump.

 Tiempo (ms) de procesado en el middleware

Transmisor Receptor QoS 1 y CONs Sin cifrado QoS1 y CONs Con cifrado

CoAP

CoAP 13,60 14,58

MQTT 55,41 59,88

MQTT-SN 58,61 -

MQTT

CoAP 62,22 72,60

MQTT 7,69 12,05

MQTT-SN 10,86 -

MQTT-SN

CoAP 61,47 -

MQTT 8,26 -

MQTT-SN 10,79 -

Servidor CoAP

CoAP 23,72 27,81

MQTT 61,46 66,96

MQTT-SN 63,84 -

Tabla 6. Tiempo medio de procesado en comunicaciones publish/subscribe, escenario 2

A partir de los resultados representados en la Tabla 6, se puede afirmar que, en

este caso, en lo referente a comunicaciones heterogéneas, implantar el middleware en el

borde de la red de sensores en un dispositivo de bajos recursos hardware puede resultar

perjudicial en términos de retardo en las comunicaciones puesto que el tiempo de

procesado predomina frente al tiempo de transmisión.

Por último, en la Tabla 7 se muestra de manera cuantitativa la diferencia en tiempo

de procesado entre el Escenario 1 y el Escenario 2.

Capítulo 6: Resultados

59

 QoS 1 y CONs Sin cifrado QoS 1 y CONs Con cifrado
 Tiempo (ms) Factor de

proporción

Tiempo (ms) Factor de
proporción Transmisor Receptor Escenario 1 Escenario 2 Escenario 1 Escenario 2

CoAP

CoAP 2,58 13,60 x 5,3 3,64 14,58 x 4,0

MQTT 10,39 55,41 x 5,3 13,12 59,88 x 4,6

MQTT-SN 10,72 58,61 x 5,5 - - -

MQTT

CoAP 11,45 62,22 x 5,4 12,49 72,60 x 5,8

MQTT 2,13 7,69 x 3,6 3,16 12,05 x 3,8

MQTT-SN 2,48 10,86 x 4,4 - - -

MQTT-SN

CoAP 10,81 61,47 x 5,7 - - -

MQTT 2,11 8,26 x 3,9 - - -

MQTT-SN 2,38 10,79 x 4,5 - - -

Servidor
CoAP

CoAP 11,31 23,72 x 2,1 11,69 27,81 x 2,4

MQTT 22,94 61,46 x 2,7 22,15 66,96 x 3,0

MQTT-SN 23,29 63,84 x 2,7 - - -

Tabla 7. Comparativa entre tiempos de procesado por el middleware entre el escenario1 y escenario 2

Como se venía comentando, se ve claramente como en el Escenario 2 aumenta el

tiempo empleado por el middleware para tratar los mensajes viéndose multiplicado en un

factor 2 en el mejor de los casos o en un factor casi de 6 en el peor de los casos. Comentar

que este comportamiento no es único de las comunicaciones en las que existe traducción

de protocolos, sino que ocurre de manera casi homogénea en todas las comunicaciones

para el mismo protocolo transmisor.

Capítulo 7: Conclusiones y líneas futuras

60

7. Conclusiones y líneas futuras

Tras el desarrollo del middleware y su respectivo análisis de características y

prestaciones, se presentan las conclusiones obtenidas a partir del trabajo realizado. A

continuación, se plantean las conclusiones y las posibles líneas de trabajos futuros con el

fin de profundizar en estas tecnologías.

7.1. Conclusiones

Internet of Things ofrece la posibilidad de mantener comunicado cualquier

dispositivo electrónico, pudiendo recibir y procesar información en tiempo real. Este

nuevo paradigma plantea nuevos modos de toma de decisiones basados en esta

disponibilidad de información y nuevas oportunidades para las empresas.

El informe IoT 2020 Bussines Report [51] publicado por la firma Schneider

Electric, muestra como dos de cada tres empresas planeaban implementar soluciones IoT

vía aplicaciones móviles ya en 2016, bajo la creencia de que esta tecnología aportara valor

a sus negocios en términos de: creación de nuevas oportunidades de negocio, mejora de

la eficiencia en su actividad y un incremento de los beneficios a largo plazo. Esto nos

indica claramente quienes son los principales agentes impulsores de las tecnologías IoT,

las pequeñas y medianas empresas (PYME), quienes a su vez también sufren las

principales dificultades como la gran heterogeneidad en los protocolos de comunicación

IoT.

Las PYME conforman la columna vertebral de la economía europea, sin embargo,

no tienen la experiencia ni las habilidades suficientes en tecnologías heterogéneas tan

utilizadas en IoT como son cloud, edge o HPC (High Performance Computing) o los

diferentes protocolos de comunicaciones empleados (MQTT, CoAP, HTTP). Por esta

razón, se considera que el sistema middleware propuesto a lo largo de este proyecto puede

tener un gran impacto en este tipo de compañías, acercando y facilitando todo tipo de

aplicaciones IoT a entornos en los que se cuenta con un menor potencial de recursos.

Bajo esta situación y como se ha visto a lo largo del documento, en este trabajo

de fin de máster, se plantea la necesidad de soluciones software que permitan la

comunicación heterogénea entre diferentes tecnologías IoT, y se ha implementado un

sistema middleware que cubre dichas necesidades.

Para ello, se proponen varios objetivos parciales: familiarizarse con los principales

protocolos de aplicación IoT y sus implementaciones software, el desarrollo de un

middleware que permite la interconexión transparente entre ellos a partir de dichas

herramientas software, y su posterior evaluación de prestaciones en escenarios basados

en cloud computing y en edge computing.

Gracias a las diferentes librerías de código libre, se ha podido implementar el

sistema middleware propuesto, viendo cómo es posible desplegar servicios de red que

permiten homogeneizar las comunicaciones IoT en un ecosistema tan heterogéneo como

es el actual. Esto otorga una gran flexibilidad a la hora de desplegar nuevos servicios IoT

o unificar y reutilizar las aplicaciones y servicios IoT existentes.

Capítulo 7: Conclusiones y líneas futuras

61

Por otro lado, se han estudiado diferentes alternativas en cuanto a la ubicación del

middleware: en la nube o en el borde de la red. Se ha visto como la gran disponibilidad

de recursos hardware que se pueden emplear en escenarios basados en la nube afecta

positivamente al tiempo de cómputo empleado en la traducción de protocolos llevada a

cabo en el middleware, frente a escenarios basados en el borde de la red. En

contraposición a esto, también se ha verificado como, el hecho de ubicar el middleware

en la nube afecta negativamente al retardo de transmisión que sufren las comunicaciones

frente a ubicaciones en el borde de red. Por este motivo resulta fundamental tener en

cuenta el compromiso entre tiempo de procesado y tiempo de transmisión a la hora de

decidir qué estrategia tomar o incluso diseñar alternativas dinámicas que permitan

conmutar de una a otra.

Por último, a pesar de que se ha trabajado con protocolos totalmente diferentes y,

por ende, las librerías empleadas están desarrolladas bajo estructuras muy diferentes, los

objetivos propuestos al inicio del proyecto han sido completados satisfactoriamente.

7.2. Trabajos futuros

Como se ha plasmado durante el desarrollo del proyecto, Internet o Things, cloud

computing y edge/fog computing son tecnologías emergentes con un gran futuro por

delante tanto tecnológico como económico, por lo que resultaría interesante llevar a cabo

los siguientes posibles trabajos futuros:

• Estudio e integración del middleware desarrollado en entornos reales:

son muchas las plataformas que ofrecen servicios de computación en la

nube como por ejemplo: Amazon Web Services, Google Cloud, Azure.

Resulta interesante integrar este tipo de software en plataformas

profesionales como las mencionadas puesto que además de ofrecer una

gran potencia computacional, disponen de innumerables servicios

orientados a la manipulación de grandes volúmenes de datos (Big Data).

El middleware desarrollado junto con este tipo de soluciones, dotarían de

gran flexibilidad a pequeñas y medianas empresas que buscan la

transformación digital de su actividad.

• Conmutación dinámica entre cloud y edge: tal y como se ha plasmado

en este proyecto, a la hora de desplegar el middleware en un entorno cloud

o en un entorno perimetral, es importante tener en cuenta el compromiso

entre el tiempo de transmisión de la información y el retardo de procesado

introducido por el middleware. Por esta razón, siguiendo el paradigma

cloud computing continuum, resultaría interesante diseñar alternativas que

permitan conmutar entre una arquitectura y otra en función de las

características de la red en cada momento.

• Escalabilidad dinámica del middleware: el sistema diseñado en este

proyecto permite desplegar el middleware de forma distribuida en

diferentes equipos. La solución implementada es estática, los equipos

distribuidos se deben configurar de forma estática construyendo un árbol.

Con el afán de aportar un mayor dinamismo, resultaría interesante valorar

Capítulo 7: Conclusiones y líneas futuras

62

alternativas similares al Spaning Tree tradicional en el cual los dispositivos

que forman la arquitectura distribuida se autoconfiguran dinámicamente

formando un árbol lógico. Esto aporta una gran flexibilidad en caso de

perdidas o de congestión en los enlaces.

Bibliografía

63

Bibliografía
[1] A. A. da Cruz, M., J. P. C. Rodriges, J., Lorenz, P., Solic, P., Al-Muhtadi, J., & C.

Albuquerque, V. (2018). A proposal for bridging application layer protocols to

HTTP on IoT solutions. Future Generation Computer Systems, vol. 97, pp. 145-

152, Agosto 2019.

[2] Aiocoap 0.3. (s.f.). Obtenido de https://pypi.org/project/aiocoap/

[3] Apache Maven Project. (s.f.). Obtenido de https://maven.apache.org/

[4] B. Babovic, Z., Protic, J., & Milutinovic, V. (s.f.). Web Performance Evaluation for

Internet of Things Applications. IEEE Access, vol. 4, pp. 6974-6992, 2016.

[5] Bormann, C., Lemay, S., Tschofenig, H., Hartke, K., Silverajan, B., & Raymor, B.

(Febrero de 2018). RFC 8323. CoAP (Constrained Application Protocol) over TCP,

TLS and WebSockets. Obtenido de https://tools.ietf.org/html/rfc8323

[6] CoAPthon 4.0.2. (s.f.). Obtenido de https://pypi.org/project/CoAPthon/

[7] Data Distribution Service (DDS) Version 1.4. (Abril de 2015). Obtenido de

https://www.omg.org/spec/DDS/1.4/PDF

[8] Dave, M., Patel, M., Doshi, J., & Arolkar, H. (s.f.). Ponte Message Broker Bridge

Configuration Using MQTT and CoAP Protocol for Interoperability of Iot.

COMS2: International Conference on Computing Science, Communication and

Security, Julio 2020.

[9] Dierks, T., & Rescorla, E. (Agosto de 2008). RFC 5246. The Transport Layer

Security (TLS) Protocol Version 1.2. Obtenido de https://tools.ietf.org/html/rfc5246

[10] Digital Guide IONOS. (Enero de 2020). Obtenido de

https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/lenguajes-del-

lado-servidor-o-del-cliente-diferencias/

[11] Dizdarevic, J., Carpio, F., Jukan, A., & Masip-Bruin, X. (s.f.). A survey of

Communication Protocols for Internet of Things and Related Challenges of Fog and

Cloud Computing Integration. ACM Computing Surveys, vol. 51, no. 6, Enero 2019.

[12] Eclipse Californium. (s.f.). Obtenido de https://www.eclipse.org/californium/

[13] Eclipse Foundation. (s.f.). Obtenido de https://www.eclipse.org/org/foundation/

[14] Eclipse Foundation. Paho. (s.f.). Obtenido de https://www.eclipse.org/paho/

[15] Eclipse Mosquitto. An open source MQTT broker. (s.f.). Obtenido de

https://mosquitto.org/

[16] ETSI. Successful first Internet of Things (IoT) CoAP Plugtests. (17 de Abril de

2012). Obtenido de https://www.etsi.org/newsroom/news/390-news-release-17-

april-2012

Bibliografía

64

[17] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-

Lee, T. (Junio de 1999). RFC 2616. Hypertext Transfer Protocol -- HTTP/1.1.

Obtenido de https://tools.ietf.org/html/rfc2616

[18] Github arobenko/mqtt-sn. (s.f.). Obtenido de https://github.com/arobenko/mqtt-sn

[19] Github AsierCM/Proyecto-middleware-MQTT-HTTP-CoAP. (s.f.). Obtenido de

https://github.com/AsierCM/Proyecto-middleware-MQTT-HTTP-CoAP

[20] Github eclipse/paho.mqtt-sn.embedded-c. (s.f.). Obtenido de

https://github.com/eclipse/paho.mqtt-sn.embedded-c

[21] Github jsaak/mqtt-sn-gateway. (s.f.). Obtenido de https://github.com/jsaak/mqtt-

sn-gateway

[22] Github njh/mqtt-sn-tools. (s.f.). Obtenido de https://github.com/njh/mqtt-sn-tools

[23] Github. Eclipse/ponte. (s.f.). Obtenido de https://github.com/eclipse/ponte

[24] Github. Ibm-security-innovation/crosscoap. (s.f.). Obtenido de

https://github.com/ibm-security-innovation/crosscoap

[25] Github. njh/mqtt-http-bridge. (s.f.). Obtenido de https://github.com/njh/mqtt-http-

bridge

[26] Github. petkov/http_to_mqtt. (s.f.). Obtenido de

https://github.com/petkov/http_to_mqtt

[27] HiveMQ Open Source. (s.f.). Obtenido de

https://www.hivemq.com/developers/community/

[28] HiveMQ. MQTT Essentials. (Enero de 2015). Obtenido de

https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/

[29] https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt-sn. (s.f.).

OASIS. MQTT SN Subcommitee.

[30] HTTPtoMQTT. (s.f.). Obtenido de http://httptomqtt.ineptum.dk/#

[31] IEEE Standard Computer Dictionary. (s.f.).

[32] Koster, M., Keranen, A., & Jimenez, J. (Septiembre de 2019). Publish-Subscribe

Broker for the Constrained Application Protocol (CoAP). Obtenido de

https://datatracker.ietf.org/doc/draft-ietf-core-coap-pubsub/

[33] Libcoap. C-Implementation of CoAP. (s.f.). Obtenido de https://libcoap.net/

[34] Longo, E., E. C. Redondi, A., Cesana, M., Arcia-Moret, A., & Manzoni, P. (s.f.).

MQTT-ST: a Spanning Tree Protocol for Distributed MQTT Brokers. ICC 2020 -

2020 IEEE International Conference on Communications (ICC), Dublin, Irlanda,

2020, pp. 1-6. .

[35] Ludovici, A., & Calveras, A. (s.f.). A Proxy Design to Leverage the Interconnection

of CoAP Wireless Sensor Networks with Web Applications. Sensors, vol. 15, no.

1, pp. 1217-1244, Enero 2015.

Bibliografía

65

[36] Mills, D., Delaware, U., Martin, J., Burbank, J., & Kasch, W. (s.f.). RFC 5905.

Network Time Protocol Version 4: Protocol and Algorithms Specification.

Obtenido de https://tools.ietf.org/html/rfc5905

[37] Moquette MQTT broker. (s.f.). Obtenido de https://moquette-io.github.io/moquette/

[38] MQTT. The Standard for IoT Messaging. (s.f.). Obtenido de https://mqtt.org/

[39] mqttsn 0.0.4. (s.f.). Obtenido de https://pypi.org/project/mqttsn/

[40] Naik, N. (s.f.). Choice of effective messaging protocols for IoT systems: MQTT,

CoAP, AMQP and HTTP. 2017 IEEE International Systems Engineering

Symposium (ISSE), Vienna, 2017, pp. 1-7.

[41] NPM. Node-coap. (s.f.). Obtenido de https://www.npmjs.com/package/coap

[42] OASIS. Message Queuing Telemetry Transport (MQTT). (s.f.). Obtenido de

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt

[43] OASIS. MQTT Version 3.1.1. (29 de Octubre de 2014). Obtenido de

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[44] OMG. Data Distribution Service (DDS). (s.f.). Obtenido de

https://www.omg.org/omg-dds-portal/

[45] Ponte. Connecting Things to Developers. (s.f.). Obtenido de

https://www.eclipse.org/ponte/#

[46] Rescorla, E. (Agosto de 2018). RFC 8446. The Transport Layer Security (TLS)

Protocol Version 1.3. Obtenido de https://tools.ietf.org/html/rfc8446

[47] Rescorla, E., & Modadugu, N. (Junio de 2012). RFC 6347. Datagram Transport

Layer Security Version 1.2. Obtenido de https://tools.ietf.org/html/rfc6347

[48] RFC 8173. Precision Time Protocol Version 2 (PTPv2). (2017). Obtenido de

https://tools.ietf.org/html/rfc8173

[49] Saint-Andre, P. (Marzo de 2011). RFC 6120. Extensible Messaging and Presence

Protocol (XMPP): Core. Obtenido de https://tools.ietf.org/html/rfc6120

[50] Saint-Andre, P. (Marzo de 2011). RFC 6121. Extensible Messaging and Presence

Protocol (XMPP): Instant Messaging and Presence. Obtenido de

https://tools.ietf.org/html/rfc6121

[51] Schneider Electric. IoT 2020 Bussiness Report. (2020). Obtenido de

https://download.schneider-

electric.com/files?&p_enDocType=Brochure&p_File_Name=998-

19699217_GMA-US_IoT_Report_CS6_v3.pdf&p_Doc_Ref=98-

19699217_IoT_Report_2016_v2.pdf

[52] Shelby, Z., Hartke, K., & Bormann, C. (2014). RFC 7252. The Constrained

Application Protocol (CoAP). Obtenido de https://tools.ietf.org/html/rfc7252

Bibliografía

66

[53] Standford-Clark, A., & Linh Truong, H. (14 de Noviembre de 2013). MQTT For

Sensor Networks (MQTT-SN) Protocol Specification. Version1.2. Obtenido de

https://www.oasis-open.org/committees/download.php/66091/MQTT-

SN_spec_v1.2.pdf

[54] Tecnología para los negocios. (s.f.). Obtenido de

https://ticnegocios.camaravalencia.com/servicios/tendencias/caminar-con-exito-

hacia-la-industria-4-0-capitulo-12-infraestructuras-ii-protocolos/

[55] Vasters, C., & Godfrey, R. (2014). OASIS. Advanced Message Queuing Protocol

(AMQP) TC.

[56] Wiss, T. (s.f.). Github tbwiss/CoAP_PubSub. Obtenido de

https://github.com/tbwiss/CoAP_PubSub

[57] WolfSSL. WolfMQTT Client Library. (s.f.). Obtenido de

https://www.wolfssl.com/products/wolfmqtt/

[58] Yokotani, T., & Sasaki, Y. (s.f.). Comparison with HTTP and MQTT on required

network resources for IoT. 2016 International Conference on Control, Electronics,

Renewable Energy and Communications (ICCEREC), Bandung, 2016, pp. 1-6.

* Todos los enlaces web y las referencias bibliográficas han sido revisadas y

verificadas a día 22 de Septiembre de 2020.

Anexos

67

Anexos

Anexo 1: Diagrama de clases del middleware

A continuación, en la Figura 45 se muestra el diagrama de clases del middleware.

Es necesario aclarar que las librerías empleadas para las interfaces MQTT, CoAP y

HTTP: Moquette, Californium CoAP PubSub y HTTP Oracle son sumamente extensas y

en este diagrama, únicamente se muestran las clases empleadas para el desarrollo del

proyecto.

Figura 45. Diagrama de clases del midddleware

En primer lugar, se emplean las clases: Server (MQTT), PubSubBroker (CoAP)

y HttpServer, que pertenecen a las librerías mencionadas. Mediante estas clases se crean

las instancias de los tres servidores que reciben los mensajes de los tres protocolos. En

estas clases se configuran los parámetros de los servidores.

A continuación, se tienen las clases: PublishListener, BrokerMessageDeliver,

PubsubTopic y HTTPHandler. Estas clases son las encargadas de manejar los mensajes

que se reciben en los tres servidores. Dichos mensajes son los que se analizan

posteriormente en las clases de niveles superiores para llevar a cabo el funcionamiento

del middleware. A continuación, se explica brevemente el funcionamiento de cada clase.

̵ PublishListener: esta clase permite analizar los mensajes MQTT entrantes

a través de los métodos onPublish(…), onSubscribe(…), entre otros. Desde

estos métodos se invoca el método iniciarComunicación(…) de la clase

ProtocoloComunicaciónMQTT para iniciar la conversión a los protocolos

CoAP y HTTP en caso de que sea necesario.

Anexos

68

̵ BrokerMessageDeliver: esta clase permite analizar los mensajes CoAP

entrantes mediante el método deliverRequest(…). Esta clase se emplea

para analizar si el mensaje va dirigido a un recurso existente o no. En caso

de que exista el recurso en el broker CoAP, se pasa la petición al objeto

correspondiente de la clase PubsubTopic y este se encarga de gestionar la

petición. Por esta razón, en la clase BrokerMessageDeliver se realiza una

primera comprobación de si la petición va dirigida a un topic alojado en

un servidor CoAP. En caso positivo se invoca el método

iniciarComunicación(…) en el ProtocoloComunicaciónCoAP. Si no se

realizara esta acción aquí, el metodo deliverRequest(…) responde a la

petición mediante el código de error 4.04 NOT FOUND puesto que no se

trata de un recurso publicado en el broker.

̵ PubSubTopic: cada instancia de esta clase, que contiene los métodos

handleGet(…), handlePut(…), handlePost(…) entre otros, hace referencia

a un topic. En caso de que el topic haya sido publicado, existirá una

instancia de esta clase que gestione las peticiones entrantes a este topic. En

los métodos nombrados, es donde se invoca el método

iniciarComunicación(…) en el ProtocoloComunicaciónCoAP para iniciar

la conversión a los protocolos MQTT y HTTP en caso de que sea

necesario.

̵ HTTPHandler: esta clase permite analizar los mensajes HTTP recibidos

a través del método handle(…). En este se verifica si la petición recibida

contiene un mensaje GET, PUT/POST entre otros. A partir de aquí se

invoca el método iniciarComunicación(…) en la clase

ProtocoloComunicaciónHTTP para iniciar la conversión a los protocolos

MQTT y HTTP en caso de que sea necesario.

Cabe destacar que la clase PublishListener extiende la clase

AbstractInterceptHandler de la librería Moquette, las clases BrokerMessageDeliver y

PubSubTopic son clases del proyecto CoAP_PubSub y la clase HTTPHandler extiende

la clase HttpHandler de la librería de Oracle HTTP. El resto de clase explicadas a

continuación se han desarrollado durante el proyecto.

Las siguientes clases en las que se basa la arquitectura del middleware son:

ProtocoloComunicaciónMQTT, ProtocoloComunicaciónCoAP y

ProtocoloComunicaciónHTTP. Estas son las encargadas de realizar las acciones

necesarias para permitir la intercomunicación entre los protocolos MQTT, CoAP y

HTTP. Para la traducción de los mensajes entre protocolos, estas tres clases consultan y

actualizan de forma dinámica la información de control sobre los topics almacenada en

el objeto de la clase GestorRecursos. Las tres clases cuentan con los siguientes métodos:

̵ iniciarComunicación(…): cuando se recibe un mensaje, este método es el

encargado de gestionar su posible traducción a otro protocolo. En caso de

tratarse de un PUBLISH MQTT se traduce a un PUT/POST COAP o

HTTP y viceversa. Si lo que se recibe es un mensaje de tipo MQTT

SUBSCRIBE o un mensaje de tipo GET CoAP o HTTP se comprueba si

es un topic alojado en un servidor CoAP o en un middleware distribuido y

se actúa en consecuencia, tal y como se detalla en la memoria del proyecto.

Anexos

69

̵ cancelarCounicación(…): a través de este método se gestiona la

desconexión de los diferentes usuarios que se encuentran suscritos u

observando un topic. A través de él se informa al GestorRecursos para

tener control sobre ello.

Los tres ProtocolosComunicacion(MQTT, CoAP y HTTP) emplean instancias de

las clases MQTTClient y ClientPubSub. Estas clases implementan clientes MQTT y

CoAP que se encargan de generar los mensajes MQTT PUBLISH y CoAP PUT/POST

fruto de la traducción de los mensajes recibidos.

Una vez visto donde se reciben y se manejan los mensajes entrantes da cada

protocolo, la siguiente clase importante es la clase GestorRecursos. En ella se guarda la

información de control necesaria para la comunicación y sincronización entre los

diferentes ProtocolosComunicacion(MQTT, CoAP, HTTP). En ella, existen tres atributos

importantes: topicList, topicListTotal y topicListExternos. En estas listas se almacena la

información necesaria sobre topics alojados en servidores CoAP, topics publicados

mediante publicaciones MQTT-CoAP-HTTP y topics recibidos desde otros middlewares

distribuidos respectivamente. En relación con estas listas, existen métodos como

informarTopic(..), informarTopicTotal(…) o informarTopicExterno(..), mediante los

cuales se actualiza la información de control necesaria sobre esos topics. También existen

los métodos comprobarTopic(…), comprobarTopicTotal(…) y

comprobarTopicExterno(..), mediante los cuales se consulta la existencia de un topic en

las distintas listas. Además, en relación con los usuarios suscritos a los diferentes topics,

los métodos informarUsuario(…) e informarUsuarioTopicExterno(…) se emplean para

añadir o borrar información sobre los usuarios activos. Por último, en esta clase, se

almacena la lista de los identificadores y la dirección IP de los diferentes middlewares

distribuidos que forman la red.

A su vez, la clase GestorRecursos utiliza instancias de la clase Topic. Esta clase

representa un topic que ha sido publicado desde un cliente MQTT, CoAP o HTTP o que

se encuentra en un servidor CoAP y se almacena en la lista topicList y topicListTotal

dentro de GestorRecursos. Contiene información sobre el nombre, el protocolo desde el

cual ha sido publicado, el contenido, la lista de usuarios que están suscritos y un objeto

de la clase Observador. En el caso de que se realice una petición GET CoAP o HTTP o

un mensaje MQTT SUBSCRIBE hacia un topic alojado en un servidor CoAP, es

necesario lanzar un cliente CoAP creando una relación de observación en el servidor.

Para ello se genera la instancia de la clase Observador que también se almacena en la

clase Topic. Este es un proceso que controla una instancia de la clase

ClienteSubObservador, la cual contiene el cliente CoAP con el que se establece la

comunicación con el servidor. Los datos recibidos en el objeto Observador son traducidos

y transmitidos internamente mediante el GestorRecursos.

 Adicionalmente, la clase GestorRecursos utiliza instancias de la clase

TopicExterno. Cada instancia de esta clase representa un topic que ha sido notificado

desde otro middleware distribuido y las instancias de esta clase se almacenan en la lista

topicListExternos dentro del GestorRecursos. Contiene información sobre el nombre del

topic, la identidad del middleware desde el que ha sido notificado, una lista de usuarios

suscritos y un objeto de la clase Suscriptor. Este último contiene un cliente MQTT

mediante el cual se realiza una suscripción MQTT a un middleware distribuido en el caso

Anexos

70

de recibir una petición GET CoAP o HTTP o un mensaje MQTT PUBLISH hacia un

topic controlado por otro middleware de la red.

Por último, se define la clase GestorDescubridores, que contiene principalmente

una lista con las direcciones IP de todos los servidores CoAP a los que el middleware da

servicio. Este se encarga de generar una instancia de la clase Descubridor para cada

servidor CoAP. Cada objeto Descubridor contiene un cliente CoAP que se encarga de

realizar una petición GET a la URI .well-known/core del servidor CoAP correspondiente.

La respuesta obtenida contiene todos los topics alojados en este servidor. A continuación,

esta información se le comunica al objeto GestorRecursos.

Anexos

71

Anexo 2: Creación de certificados digitales

Para la utilización de canales cifrados mediante los protocolos TLS y DTLS es

necesario la creación de certificados digitales tanto para el servidor como para los

diferentes clientes. Para ello se emplea la herramienta Keytool disponible en Linux. Esta

herramienta permite crear almacenes de claves e importar y exportar certificados de los

almacenes. A continuación, se muestra un pequeño de código Shell a modo de ejemplo,

obtenido de la página oficial de Eclipse Californium Scandium.

#!/bin/bash

KEY_STORE=keyStore.jks

KEY_STORE_PWD=endPass

TRUST_STORE=trustStore.jks

TRUST_STORE_PWD=rootPass

VALIDITY=365

#creating root key and certificate

echo "creating root key and certificate..."

keytool -genkeypair -alias root -keyalg EC -dname 'C=CA,L=Ottawa,O=Eclipse

IoT,OU=Californium,CN=cf-root' \

 -ext BC=ca:true -validity $VALIDITY -keypass $TRUST_STORE_PWD -keystore

$TRUST_STORE -storepass $TRUST_STORE_PWD

#creating CA key and certificate

echo "creating CA key and certificate..."

keytool -genkeypair -alias ca -keyalg EC -dname 'C=CA,L=Ottawa,O=Eclipse

IoT,OU=Californium,CN=cf-ca' \

 -ext BC=ca:true -validity $VALIDITY -keypass $TRUST_STORE_PWD -keystore

$TRUST_STORE -storepass $TRUST_STORE_PWD

keytool -keystore $TRUST_STORE -storepass $TRUST_STORE_PWD -certreq -alias ca | \

 keytool -keystore $TRUST_STORE -storepass $TRUST_STORE_PWD -alias root -gencert -

validity $VALIDITY -ext BC=0 -rfc | \

 keytool -alias ca -importcert -keystore $TRUST_STORE -storepass $TRUST_STORE_PWD

#creating server key and certificate

echo "creating server key and certificate..."

keytool -genkeypair -alias server -keyalg EC -dname 'C=CA,L=Ottawa,O=Eclipse

IoT,OU=Californium,CN=cf-server' \

 -validity $VALIDITY -keypass $KEY_STORE_PWD -keystore $KEY_STORE -storepass

$KEY_STORE_PWD

keytool -keystore $KEY_STORE -storepass $KEY_STORE_PWD -certreq -alias server | \

 keytool -keystore $TRUST_STORE -storepass $TRUST_STORE_PWD -alias ca -gencert -

validity $VALIDITY -rfc > server.pem

keytool -alias server -importcert -keystore $KEY_STORE -storepass $KEY_STORE_PWD -

trustcacerts -file server.pem

#creating client key and certificate

echo "creating client key and certificate..."

keytool -genkeypair -alias client -keyalg EC -dname 'C=CA,L=Ottawa,O=Eclipse

IoT,OU=Californium,CN=cf-client' \

 -validity $VALIDITY -keypass $KEY_STORE_PWD -keystore $KEY_STORE -storepass

$KEY_STORE_PWD

keytool -keystore $KEY_STORE -storepass $KEY_STORE_PWD -certreq -alias client | \

 keytool -keystore $TRUST_STORE -storepass $TRUST_STORE_PWD -alias ca -gencert -

validity $VALIDITY -rfc > client.pem

keytool -alias client -importcert -keystore $KEY_STORE -storepass $KEY_STORE_PWD -

trustcacerts -file client.pem

Anexos

72

Para la creación de los certificados se usa una cadena de confianza de varios

niveles:

1. Par de claves privada/publica junto con un certificado autofirmado que en

conjunto representan la identidad de la CA raíz (root).

2. Par de claves privada/publica junto con un certificado firmado con la clave

de la CA raíz que en conjunto representan la identidad de la CA

intermediaria.

3. Par de claves privada/publica junto con un certificado firmado con la clave

de la CA intermediaria que en conjunto representan la identidad de un

servidor.

4. Par de claves privada/publica junto con un certificado firmado con la clave

de la CA intermediaria que en conjunto representan la identidad de un

cliente.

Las claves y certificados se almacenan en dos almacenes de claves: keyStore.jks y

trustStore.jks, explicados a continuación.

1. keyStore.jks: contiene las claves y cadenas de certificados para el cliente y

el servidor,

2. trustStore.jks: contiene el certificado autofirmado de la CA raíz, así como

la cadena de certificados de la CA intermedia. Estos certificados se usan

como certificados de confianza para verificar la identidad de cliente y

servidor.

Se recomienda el uso de cadenas multinivel para que, en caso de que la clave

privada de una CA intermediaria se vea comprometida, la CA raíz pueda revocar su

certificado y no comprometer la seguridad total de la cadena. Para ello se recomienda

encarecidamente mantener almacenada la clave privada de la CA raíz en hardware no

accesible desde la red y correctamente protegida.

