Trabajo Fin de Master

Disefio e implementacion de un middleware
CoAP-MQTT-HTTP para la mejora de la
interoperabilidad de los protocolos de

aplicacion en redes loT

Design and implementation of a CoAP-MQTT-HTTP
middleware to improve the interoperability of
application protocols in 0T networks

Autor/es
Asier Carbonel Martinez

Director/es

José Ramoén Gallego Martinez
Rafael Tolosana Calasanz

Escuela de Ingenieria y Arquitectura (EINA) / Universidad de Zaragoza
2020

Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es

Resumen

El rapido incremento de dispositivos 10T (Internet of Things) esta permitiendo la
aparicion de nuevas aplicaciones computacionales que pueden tener un sustancial
impacto en la sociedad, pero que al mismo tiempo abre un numero significativo de
posibilidades de negocio para las empresas. No obstante, la rapidez de ese desarrollo en
el 10T ha incentivado la aparicion de protocolos de comunicacién muy diferentes entre si,
como MQTT, MQTT-SN, HTTP REST o CoAP. La diferencia ya no esta unicamente en
el formato de los mensajes del protocolo (lo que se conoce como protocolo de
comunicacion), sino en el protocolo de interaccion, esto es, en el nimero de mensajes que
los procesos tienen que intercambiarse para realizar la comunicacion. Por ejemplo, CoAP
y HTTP funcionan bajo el paradigma REQUEST/RESPONSE (un mensaje de peticion y
un mensaje de respuesta); mientras que MQTT y MQTT-SN se comunican a través del
paradigma PUBLISH/SUBSCRIBE, mucho mas sofisticado (un proceso se registra
(subscribe) para que le lleguen mensajes en cuanto haya una actualizacion (publish)).
Todos estos aspectos hacen que la intercomunicacion entre protocolos no sea directa y
suponen una enorme barrera tecnoldgica para las pequefias y medianas empresas
europeas.

En este contexto, y dada la escasa oferta de este tipo de soluciones, en este
proyecto se estudia, se propone y se implementa un middleware que permite comunicar
de forma transparente dispositivos 10T basados en protocolos 10T heterogéneos. Aunque
la propuesta esta centrada en los protocolos méas habituales en este contexto, como son
MQTT, MQTT-SN, CoAPy HTTP, otros protocolos podrian también integrarse de forma
analoga. Dada la vital importancia de garantizar comunicaciones seguras, el middleware
propuesto permite ademas la transferencia de informacion a través de canales con cifrado,
mediante mecanismos como DTLS sobre UDP y TLS sobre TCP. Por ultimo, la
arquitectura del middleware se ha disefiado para que sea escalable con el nimero de
dispositivos 10T conectados. Para ello, maltiples instancias del middleware se disponen
en maquinas diferentes, y se comunican entre si directamente, reduciendo la carga de
trabajo y permitiendo la interoperabilidad de los datos.

Para validar la aproximacion, se realizan diversos andlisis de rendimiento del
middleware en diferentes escenarios propuestos, estudiando su rendimiento en términos
de retado, diferenciando entre dispositivos sin limitacion de recursos (en el centro de
datos) y dispositivos de recursos limitados (fuera del centro de datos, edge computing).

Agradecimientos

En primer lugar, agradezco a mi madre el apoyo transmitido en todo momento,
asi como todo el animo recibido durante la realizacion de este proyecto.

En segundo lugar, dar las gracias a todos los profesores que he tenido durante
estos afos por su buen hacer docente. Especialmente agradezco el continuo trabajo,
esfuerzo y afan de ayudar durante la realizacion de este proyecto de mis tutores José
Ramon Gallego Martinez y Rafael Tolosana Calasanz.

Por ultimo, agradezco a mis amigos haber estado en todo momento a mi lado
durante mis afios de estudio y sobre todo en esta Gltima etapa como estudiante.

Tabla de contenido

1.

6.

LA oo [UTTolTo] o PSS OO 1
1.1. Objetivos Y Metodologia.......ccccueiieiieiiiieie e 3
I O O o] 1= ()0 LSS 3
I |V, T (o (] oo - USSR 3
1.1.3. Herramientas Y reCuUrs0S NECESAIIOS.cueiverreerrereesirereeseesieesseseesseeseesseens 4
S o (o] (=] 1= g PP PTRTPRPRN 5
2.1. Paradigmas de comunicaCion 10Tcooiiiiiiiiiiiiree e 5
2.1.1. Paradigma Publicacion / SUSCIIPCIONcccecveveeieiiesie e seesie e 5
2.1.2. Paradigma PetiCion / RESPUESIA........c.ccveiieeieiieie e 6
2.2. Principales protocolos de aplicacion para 0Tccccoeveiieviic s 7
2.2.1. MQTT (Message Queue Telemetry Protocol)cccccevveieieeiecic i, 7
2.2.2. MQTT-SN (Message Queue Telemetry Protocol for Sensor Networks)..... 10
2.2.3. CoAP (Constrained Application Protocol)c.ccoovviiiiiiiiieiciisiiens 11
2.2.4. HTTP (Hypertext Transfer ProtoCol)cccooviiiiniiniiiecenc s 14
2.2.5. Otros ProtoCoI0S T0Tc..oiiiiiiiiiiriisieeee e 14
2.3. Protocolos de transporte para Comunicaciones SEQUIaS...........ccveverreerveevesreenes 15
2.3.1. TLS (Transport Layer SECUFILY)cccecvveiierieiiecie et 15
2.3.2. DTLS (Datagram Transport Layer SECUrity)........ccccocvevvveveeieeieeireerie e 17
2.4. Interoperabilidad entre ProtoCoI0S..........cceiieiveiie i 17
240, PONEE .ottt re e e 18
Implementaciones SOftWAre EXISTENTEScccvv i 20
3.1, IMplementaciones COAPc.oovciiee et 20
3.2. Implementaciones MQT Tccoiiiiieie e 20
3.3. Implementaciones MQTT=SNccooiiiiiiiiiie e 21
3.4. Implementaciones elegidas..........cceveieeieeiie i 22
10 LU o] a1 =T o Lo USROS 23
4.1. Planteamient0 del SIStEMA........ccovo i s 23
4.2, Arquitectura del SISTEMAccvve i 28
4.3. Solucion middleware escalable............cooiiiiiiiiiii s 34
Descripcion de 10s escenarios de apliCacioncciiieiiiieieienee e e 42
5.1. Escenario 1: Middleware ubicado en la nube...........ccccoovviiiiiiiiiiie e 42
5.2. Escenario 2: Middleware ubicado en el borde de lared........c.ccoeovvveiviiennnnne. 44
S]] =T [S 45

6.1. ReSUITAd0S ESCENAIIO L.....coi ittt e e e e e e e e e e e e e e e 46

6.2. ReSUItad0S ESCENAMO 2......c.veiueeireieiiesie ettt se et sae e e e ns 54
7. ConcluSIONES Y HNEAS FULUIASceiviiiiiiiteirieie ettt ettt 60
7.1, CONCIUSIONES....cctiieiieitie ettt et et e e s b e st e st e e be e sbeeabeesraeeneea 60
7.2, TrabDaJOS TULUIOSviiiiiieieiee e 61
2] o] [o]0 - - PSS 63
AN 1= oL S PUPRPPRI 67
Anexo 1: Diagrama de clases del middleware............ccccooviiiienenienienece e 67

Anexo 2: Creacion de certificados digitales...........cocevveieiiieie e 71

Tabla de figuras

Figura 1. Protocolos 10T mas utilizados Segun [54]cccoviererriinennieneseese e 2
Figura 2. Diagrama de Gantt del Proyectococeeiiieiencniiiseeeeee e 4
Figura 3. Comunicacion modelo Publicacion/SubscripCion............coccoveneinenenciinennns 6
Figura 4. Arquitectura modelo PetiCiOn/RESPUESEAccvevvereeieeiieiieie e 6
Figura 5. Ejemplo de comunicacion MQTT para diferentes niveles de QoS................. 10
Figura 6. Arquitectura de MQTT-SN, obtenida de [53]......cccceevviieiiiieiieie e 11
Figura 7. Estructura de capas de COAPccv i 12
Figura 8. Tipos de mensajes CoAP (confirmables y no confirmables)............c.cccceni. 12
Figura 9. ObServacion de COAPccui it re e 13
Figura 10. Arquitectura publish/subscribe de COAP propuesta.ccccevvevveriveiieennns 13
Figura 11. Handshake de TLS 1.2ccciiiiiee et 16
Figura 12. Arquitectura de Ponte, obtenida de [45]ccccovvevveieiieii e 18
Figura 13. Caso de uso de suscripcion MQTT @ UN tOPIC. ..ccecvevveeireeieiie e 25
Figura 14. Caso de uso GET OBSERVE COAP........cccccoi i 26
Figura 15. Caso de uso COAP GET (N0 0bSErvaCiONn)..........ccoueirereieerieieiesiesieesieeens 27
Figura 16. Caso de USO HTTP GETc.coiiiiiiiiieenieiee e 27
Figura 17. Arquitectura del middIeWare............cccooiiiiiiieieeee s 28
Figura 18. Ejemplo de la estructura de topic propuesta en COAP publish/subscribe..... 29
Figura 19. Diagrama de flujo de la interfaz MQTT ..ot 30
Figura 20. Diagrama de flujo de la interfaz CoAP ..ot 31
Figura 21. Diagrama de flujo de la interfaz HTTPccooiiiiiiiiiieee e 32
Figura 22. Diagrama de flujo de la recepcion de un mensaje MQTT PUBLISH
(Middleware €SCAlADIR)oci i s 35
Figura 23. Diagrama de flujo de la recepcion de un mensaje PUT/POST CoAP/HTTP
(middleware diStribUIO)coiiiiiiieie s 36
Figura 24. Diagrama de flujo de la recepcién de un mensaje MQTT SUBSCRIBE
(middleware diStribUIA0)ccoiieiieiic e 38
Figura 25. Diagrama de flujo de la recepcion de un mensaje CoOAP GET (middleware
(o 1Sy] o1V To) USSR 39
Figura 26. Diagrama de flujo de la recepcidon de un mensaje HTTP GET (middleware
(o 1Sy] o1V To) USSP 40
Figura 27. Ejemplo de comunicacion distribuida............ccccocvevieiieieeicic e 41
Figura 28. Arquitectura 10T €SCENANIO L........cceiiiirieiiicie it 42
Figura 29. Arquitectura 10T €SCENANIO 2........ccviiieivieieiie it 44
Figura 30. Esquema de medicidn del retardo extremo-extremo..........ccccceevvevveieecreennens 45
Figura 31. Retardo medio extremo-extremo QoS 0 (MQTT/MQTT-SN) y mensajes NON
(COAP) Sin TLS/DTLS, €SCENAIO L.....cciiiiieiiieiiieiesiieieie e 47
Figura 32. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON
(COAP) Sin TLS/DTLS, €SCENAIO L......oiiiiiiiieiiiiieiiieieee e 47
Figura 33. Retardo medio extremo-extremo QoS 0 (MQTT/MQTT-SN) y mensajes NON
(COAP) cON TLS/DTLS, €SCENAIIO L.....cviviiiiieiiisieiiieieie et 48
Figura 34. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON
(CoAP) coN TLS/DTLS, €SCENAIIO L.....cviiiiiiieiiisieiiieieie e 48

Figura 35. Retardo medio RTT para una peticion GET a un topic en memoria (a), y a un
recurso alojado en un servidor CoAP (b) sin TLS/DTLS, escenario 1c.ccccecevvennnne 49

Figura 36. Retardo medio RTT para una peticion GET a un topic en memoria (a), y a un
recurso alojado en un servidor CoAP (b) con TLS/DTLS, escenario 1.........ccccceveenene 49
Figura 37. Ancho de banda medio consumido por los diferentes clientes con QoS 0
(MQTT/MQTT-SN) y mensajes NON (CoAP) y HTTP sin TLS/DTLS.........c.cceceveneee 52
Figura 38. Ancho de banda medio consumido por los diferentes clientes con QoS 1
(MQTT/MQTT-SN) y mensajes CON (CoAP) Sin TLS/DTLS......cccocvvvvvieienieenieains 52
Figura 39. Ancho de banda medio consumido por los diferentes clientes con QoS 0
(MQTT) y mensajes NON (CoAP) y HTTP con TLS/DTLScccoovviiiieiiee e 53
Figura 40. Ancho de banda medio consumido por los diferentes clientes con QoS 1
(MQTT) y mensajes CON (COAP) cON TLS/DTLS......ccooiiiieeieieeie e 53
Figura 41. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON
(COAP) SIN TLS/DTLS, ESCENAIO 2.....viiieeiiierieaiiesieeieaseesieestesseesteessesseessesseesssesseessesssens 55
Figura 42. Retardo medio extremo-extremo QoS 1 (MQTT) y mensajes CON (CoAP) con
TLS/DTLS, BSCENAMO 2....eviiviiieeiieiieie ettt sttt st sttt b sbe b nne e 55
Figura 43. Comparativa de retado medio extremo-extremo entre el escenario 1y escenario
2, SINTLS/DTLS .ottt bbbttt bbb ereens 56
Figura 44. Comparativa de retado medio extremo-extremo entre el escenario 1y escenario
2, CON TLS/DTLS ... ittt bbbttt bbb sreens 56
Figura 45. Diagrama de clases del midddleware.............ccccooveveiieiecic e 67

Tabla de tablas

Tabla 1. caracteristicas principales de los protocolos de aplicacion 10T...........ccccceee. 15
Tabla 2. Implementaciones de COAP ..o 20
Tabla 3. Implementaciones de MQTTooiiiiiiiieee e 21
Tabla 4. Implementaciones de MQTT-SNccccoiiiiiiiieiiiie e 21
Tabla 5. Tiempo medio de procesado en comunicaciones publish/subscribe, escenario 1

.. 51
Tabla 6. Tiempo medio de procesado en comunicaciones publish/subscribe, escenario 2

.. 58

Tabla 7. Comparativa entre tiempos de procesado por el middleware entre el escenariol
(A== 0= T o USSR 59

Lista de acréonimos

AMQP
API
CoAP
CPU
DDS
DTLS
ETSI
E2E
HPC
HTTP
IEEE
IETF
loT
MQTT
MQTT-SN
M2M
QoS
RAM
REST
RFC
RTT
TCP
TLS
UDP
URI
WSN
XMPP

Advanced Message Queuing Protocol
Application Programming Interface
Constrained Application Protocol

Central Processing Unit

Data Distribution Service

Datagram Transport Layer Security

Instituto Europeo de Normas de Telecomunicaciones
End to End

High Performance Computing

Hypertext Transfer Protocol

Institute of Electrical and Electronics Engineers
Internet Engineering Task Force

Internet of Things

Message Queuing Telemetry Transport

Message Queuing Telemetry Transport for Sensor Networks

Machine to Machine

Quality of Service

Random Access Memory
Representational State Transfer
Request for Comments

Round Trip Time
Transmission Control Protocol
Transport Layer Security

User Datagram Protocol
Uniform Resource Identifier
Wireless Sensor Networks

Extensible Messaging and Presence Protocol

Capitulo 1: Introduccion

1. Introduccion

Internet de las cosas (Internet of Things, 10T) es una tecnologia disefiada para
comunicar miles de dispositivos a través de internet, permitiendo enviar y recibir
informacion, asi como realizar diferentes acciones en funcion de dicha informacion. Esta
tecnologia emergente, cada vez toma méas importancia en el campo de la recopilacion de
datos y toma de decisiones en tiempo real, ejemplos de ello son: la implantacion de
extensas redes de sensores (Wireless Sensor Network , WSN) o las cada vez mas comunes
comunicaciones maquina a maquina (Machine to Machine, M2M) planteadas para el
desarrollo de ambiciosos proyectos como ciudades inteligentes (Smart Cities), la
evolucion de la Industria 4.0, coche autébnomo o simplemente la recopilacion de grandes
volumenes de datos (Big Data). Todo esto ha impulsado extensos estudios sobre los
protocolos de nivel de aplicacion propuestos para las comunicaciones 10T, como por
ejemplo [11].

Tras afios de estudios y de evolucion en los protocolos de nivel de aplicacién, se
conocen las ventajas e inconvenientes de cada una de las alternativas existentes,
mostrando cada protocolo fortalezas y debilidades muy diversas en funcién de diferentes
factores como pueden ser recursos hardware disponibles, ancho de banda requerido,
latencia extremo a extremo, o tolerancia a fallos. A pesar de esto, actualmente no se
dispone de un estandar que defina el protocolo a emplear en las comunicaciones loT, lo
que ha generado el despliegue de numerosas infraestructuras loT trabajando bajo
diferentes protocolos de nivel de aplicacion, formando asi un ecosistema altamente
fragmentado y heterogéneo.

El hecho de tener una gran heterogeneidad entre protocolos de aplicacion da como
resultado la necesidad de disponer de diversas aplicaciones o servicios trabajando bajo
diferentes protocolos para poder publicar o recopilar toda la informacion que se necesita,
ademas de adaptar los diferentes procesos de extraccion, recopilacion y unificacion de
datos. Desde un punto de vista econdmico, este aspecto representa una importante barrera
para las pequefias y medianas empresas que quieren desplegar negocios en este
importante sector emergente. Por el contrario, las grandes multinacionales tecnoldgicas
no europeas parten de una importante ventaja, puesto que al contar con gran cantidad de
recursos (econdémicos y humanos), pueden desarrollar soluciones verticales que
solucionan estos problemas de heterogeneidad.

En este contexto, durante este proyecto se analizan las diferentes casuisticas a las
que se enfrentan los diferentes protocolos de nivel de aplicacidn, se estudian las relaciones
entre ellos y se desarrolla un middleware que haga las veces de broker! de mensajes como
pasarela entre clientes/servidores trabajando con diferentes protocolos de nivel de
aplicacion. Asi pues, se implementa una solucion software que permite intercomunicar
de manera transparente los protocolos MQTT (Message Queuing Telemetry
Transport)[38], CoAP (Constrained Application Protocol)[52]y HTTP (Hypertext
Transfer Protocol)[17]. Se han elegido estos protocolos, puesto que como muestra la

! Broker de mensajes: agente intermediario de transferencia de mensajes, empleado para
intercambiar mensajes entre diferentes aplicaciones emisoras y receptoras.

1

Capitulo 1: Introduccion

Figura 1, se tratan de los protocolos de nivel de aplicacion mas utilizados en aplicaciones
loT en la actualidad.

MESSAGING STANDARDS

What messaging protocol(s) do you use for your loT solution?

Figura 1. Protocolos 10T mas utilizados segun [54]

Por ultimo, se analizan las consecuencias del uso de este middleware en términos
de aumento de retardo, valorando asi una solucion orientada a la computacion en la nube
(cloud computing) y una solucion orientada a la computacion de borde (edge computing)
mediante equipos de recursos limitados.

Este documento estd organizado de la siguiente manera. EI Capitulo 2 presenta
una revision de los principales protocolos de nivel de aplicacion mas utilizados
actualmente, asi como diferentes soluciones de interoperabilidad existentes. En el
Capitulo 3 se muestran diversas implementaciones software disponibles para utilizar en
entornos loT y se definen las que se emplearan en la solucién técnica. En el Capitulo 4
se plantean los casos de uso que debe resolver el middleware, asi como su arquitectura y
funcionamiento. En el Capitulo 5 se definen los escenarios en los que se va a probar el
sistemay en el Capitulo 6 se muestran los resultados obtenidos. Por Gltimo, en el Capitulo
7 se exponen las conclusiones y las lineas futuras de trabajo.

Capitulo 1: Introduccion

1.1. Objetivos y metodologia

1.1.1. Objetivos

El objetivo principal del proyecto es estudiar y analizar la interoperabilidad entre
los principales protocolos de nivel de aplicacion para loT, MQTT, CoAP y HTTP. A
partir de ahi, se propone un sistema middleware que permite una comunicacion
transparente entre los diferentes protocolos de red.

Tomando como referencia este objetivo general, se han establecido los siguientes
objetivos parciales:

1.
2.
3.

Estudiar el estado del arte de los protocolos de nivel de aplicacion.
Familiarizacion con diferentes implementaciones software.

Desarrollo software de la solucion técnica junto con continuas
verificaciones de su funcionamiento.

Despliegue, estudio y andlisis de resultados en un escenario 10T basado en
cloud computing.

Despliegue, estudio y andlisis de resultados en un escenario loT basado en
edge computing.

1.1.2. Metodologia

A continuacion, se plantea la metodologia seguida para la elaboracion del trabajo,
mostrandose las diferentes etapas por las que ha pasado el proyecto.

1.

En primer lugar, se establece la necesidad de estudiar el estado del arte
relacionado con los principales protocolos de nivel de aplicacion HTTP,
MQTT, MQTT-SN y CoAP, asi como en su interoperabilidad y las
principales soluciones software existentes en las que se profundizara para
desarrollar la solucién técnica.

Identificadas las caracteristicas de los diferentes protocolos y las
implementaciones software disponibles, se realiza un estudio sobre las
diferentes implementaciones con el fin de familiarizarse con ellas para su
posterior uso en el desarrollo del middleware propuesto.

La siguiente etapa del proyecto, se centra en el desarrollo técnico del
sistema middleware en el que se basa el proyecto. La solucion se
implementa sobre el lenguaje de programacion Java utilizando la
herramienta Maven, que permite integrar las diferentes librerias existentes
de las que se ha partido y sobre las que se han afiadido las funcionalidades
necesarias.

A partir de la solucion técnica, se propone un primer escenario de
aplicacion basado en computacion en la nube mediante el cual se estudia
el rendimiento del middleware en un dispositivo sin limitacion de recursos
para la aplicacion desarrollada. Para ello, se despliegan diversos clientes
generando y recibiendo trafico a través del middleware. A partir del trafico

3

Capitulo 1: Introduccion

generado se mide tanto el retardo extremo a extremo como el tiempo de
procesado aislado en el middleware.

Con el fin de contrastar los resultados obtenidos en el primer escenario de
uso, se propone un segundo escenario de aplicacion basado en
computacion de borde de red, en el que se estudia el rendimiento del
middleware en un dispositivo de recursos limitados comparandolo con el
primer escenario. De forma andloga al proceso seguido en el primer
escenario, se despliegan diversos clientes generando y recibiendo trafico a
través del middleware, a partir del trafico generado se mide tanto el retardo
extremo a extremo como el tiempo de procesado aislado en el middleware.

1.1.3. Herramientas y recursos necesarios

En primer lugar, en cuanto a los recursos hardware se dispone de:

Dispositivo sin limitacion de recursos para la aplicacion desarrollada: una
estacion de trabajo Workstation Intel Xeon SkyLake-SP 3106 dual con
480GB de disco SSD, 8TB de disco duro y 128 GB de memoria RAM. En
él se implanta el middleware en el primer escenario de aplicacion.
Dispositivos de recursos limitados: Raspberry Pi 3 model B, cuenta con un
procesador Quad Core 1.2GHz y 1GB de memoria RAM. En él se
despliegan las aplicaciones IoT y el middleware en el segundo escenario.

En segundo lugar, en cuando a los recursos software necesarios:

Conocimientos sobre Maven [3], herramienta de gestion y construccion de
proyectos Java. Es de gran utilidad a la hora de crear y compilar proyectos
Java, también permite afiadir y gestionar dependencias de forma sencilla.
Conocimientos en lenguajes de programacion como Java o C que nos
permiten analizar, emplear y modificar librerias de codigo abierto
existentes para la creacion y analisis del middleware propuesto.

Por ultimo, la Figura 2, muestra la evolucion temporal que se ha seguido en la
consecucion de los objetivos parciales del proyecto.

1-abr. 1-may. 1-jun. 1-jul. 1-ago. 1-sep. 1-oct.

Estudio del estado del arte de protocolos de nivel de aplicacion
Familiarizacion con |as implementaciones software

|
|
Desarrollo de la solucién técnica I
I

Realizacion de prusbas bésicas de funcionamiento

Implementacion y estudio de escenario basado en cloud |
Analisis de resultados del primer escenario []
Implementacion y estudio de escenario basado en edge |]
Andlisis y comparativa de resultados del ssgundo escenario []
Redaccidn de la memoria]

B OBIETIVOS

Figura 2. Diagrama de Gantt del proyecto

Capitulo 2: Estado del arte

2. Estado del arte

A lo largo de este capitulo se exponen los fundamentos tedricos de los protocolos
de nivel de aplicacion empleados en redes IoT, los cuales se utilizaran como parte de la
solucidn final. También se exponen las actuales soluciones que otorgan interoperabilidad
en las comunicaciones.

2.1. Paradigmas de comunicacion loT

En este apartado se detallan brevemente los dos paradigmas de transferencia de
mensajes en los que se basan los protocolos de nivel de aplicacion loT que se estudian en
capitulos posteriores.

2.1.1. Paradigma Publicacion / Suscripcion

El paradigma publicacién/suscripcion o més conocido como publish/subscribe en
inglés, se trata de un modelo de envio de mensajes asincrono en el cual los mensajes no
se envian directamente entre clientes finales sino a través de una infraestructura
intermedia comunmente llamada broker.

En la transferencia de informacion publish/subscribe intervienen los siguientes
actores:

- Publicador (Publisher): cliente encargado de generar la informacion sobre un
tema y publicarla en la infraestructura.

_ Suscriptor (Subscriber): cliente interesado en recibir informacién sobre un
tema. Este se suscribe a los temas de interés en la infraestructura y esta le
notifica cada vez que recibe informacion sobre dichos temas.

- Infraestructura (broker): situado entre el publisher y el subscriber. Se encarga
de recibir las peticiones de suscripcion de los clientes suscriptores, las
publicaciones de informacién de los clientes publicadores y a su vez de
retransmitirlas a los clientes suscritos a esos temas.

Se basa en una estrategia de transferencia de informacion PUSH (o de recepcion
pasiva) en la que el broker notifica de forma proactiva a los clientes suscritos cada vez
que recibe informacion, es por ello por lo que también se conoce como paradigma “uno
a muchos” (one-to-many) en el cual, los clientes no necesitan conocerse entre si,
unicamente deben comunicarse con el broker. En la Figura 3 se muestra un ejemplo de
comunicacion publish/subscribe.

Capitulo 2: Estado del arte

Cliente Cliente Cliente Cliente
Broker

Publicador Suscriptor | | Suscriptor | ® ® ® | Suscriptor

| «—SUSCRIPCION—|
l.«——SUSCRIPCION.

< SUSCRIPCION.

MENSAJE—p]

MENSAJE—p|
MENSAJE.
MENSAJE.

Y

Figura 3. Comunicacion modelo Publicacion/Subscripcion

2.1.2. Paradigma Peticion / Respuesta

El paradigma peticion/respuesta 0 también conocido como request/response en
inglés, se trata de un modelo de mensajes comUnmente utilizado en arquitecturas de red
cliente-servidor o REST (Representational State Transfer).

En este modelo de comunicacién intervienen los siguientes actores:

- Servidor: aplicacion capaz de atender peticiones de diferentes clientes
proporcionando como respuesta a dicha peticion la informacion o el
servicio requerido.

- Cliente: se trata del consumidor de los datos. Este se encarga de realizar
peticiones al servidor con el fin de obtener informacion o servicios como
respuesta.

A diferencia del paradigma publish/subscribe, este se basa en una transferencia de
informacién de tipo PULL donde el cliente genera una peticion al servidor y este la
contesta de forma reactiva. Por esta razon se considera un método “uno a uno”. En la
Figura 4 se muestra un ejemplo de comunicacién peticidén/respuesta.

Cliente Servidor

PETICION—»]

¢—RESPUESTA——

Figura 4. Arquitectura modelo Peticion/Respuesta

6

Capitulo 2: Estado del arte

2.2. Principales protocolos de aplicacion para loT

Cuando se habla de comunicaciones maquina a maquina o de redes de sensores,
un aspecto fundamental a tener en cuenta es el protocolo de capa de aplicacion a emplear.
Las caracteristicas mas importantes a cumplir son principalmente, bajo consumo de ancho
de banda, bajo consumo energético, retardo extremo a extremo del orden de milisegundos
y bajos requerimientos hardware. Actualmente, los principales protocolos cumplen con
dichas caracteristicas de forma diferente lo que genera una gran dificultad a la hora de
definir el protocolo de aplicacion ideal para este tipo de comunicaciones, por lo que hoy
por hoy no existe un unico protocolo estandarizado para estas comunicaciones.

En general, los protocolos de comunicacion propuestos difieren en el paradigma
de interaccion, es decir, request/response o publish/subscribe descritos en la seccidn
2.1.1. En primer lugar, como ya se ha comentado antes, request/response representa un
intercambio de mensajes comuinmente conocido en arquitecturas cliente-servidor. Los dos
protocolos mas utilizados en este tipo de arquitecturas son HTTP y CoAP. Por otro lado,
publish/subscribe representa un intercambio de mensajes asincrono empleado en
arquitecturas centralizadas mediante un broker de mensajes. Los protocolos mas
empleados en este tipo de arquitecturas son MQTT, MQTT-SN (MQTT for Sensor
Networks) [53], AMQP (Advanced Message Queuing Protocol) [55] y DDS (Data
Distribution Service) [44].

En este capitulo, se exponen los principales protocolos de capa de aplicacion
empleados en 10T, centrdndonos particularmente en MQTT, MQTT-SN, CoAP y HTTP
ya que estos son los mas empleados actualmente en este tipo de comunicaciones [54] tal
y como muestra la Figura 1 y sobre los que posteriormente se centra el desarrollo de la
solucidn técnica.

2.2.1. MQTT (Message Queue Telemetry Protocol)

MQTT se trata de un protocolo de mensajes originalmente desarrollado en 1999
por Andy Standford-Clark (IBM) y Arlen Nipper (Arcom, ahora Cirrus Link) [28].
Disefado bajo el paradigma publish/subscribe con el objetivo de proponer un protocolo
de mensajes ligero, de bajo consumo energético y empleando el minimo ancho de banda.
Actualmente adoptado como estandar por OASIS [38] para las comunicaciones IoT.

MQTT funciona sobre TCP (Transmission Control Protocol) como protocolo de
transporte, el cual esta orientado a conexion, garantizando la entrega fiable de paquetes
ademas de otras caracteristicas como control de flujo y control de congestion. Uno de los
aspectos negativos de emplear TCP como protocolo de transporte, es el aumento del
retardo experimentado durante el establecimiento de la conexion (envié de mensajes
SYN, SYN/ACK y ACK) junto con un aumento del overhead debido al tamafio de la
cabecera TCP y a la existencia de ACKs. Si bien es cierto, tal y como relatan los autores
de [11] en comparacién con otros protocolos de nivel de aplicacién que emplean TCP,
como por ejemplo HTTP, gracias a su liviano tamafio de paquete, se trata de un protocolo

Capitulo 2: Estado del arte

muy bien considerado dentro del contexto de las comunicaciones entre dispositivos de
recursos limitados.

MQTT esté basado en sesiones, esto quiere decir que, tras establecer la conexién
TCP, el proceso completo de comunicacién se divide en cuatro etapas, creacion de la
conexion MQTT, autenticacién, comunicacion y terminacién de la sesion. Para ello se
definen los siguientes tipos de mensajes.

- CONNECT: mensaje enviado por el cliente como solicitud de conexion.
Contiene informacion necesaria para el establecimiento de una sesion
MQTT.

- CONNACK: mensaje enviado por el broker como confirmacion del
CONNECT, sin este mensaje, el cliente debe cerrar la sesion.

- PUBLISH: mensaje enviado por el cliente para publicar datos sobre un
topic, contiene principalmente el nombre del tema, los datos y el nivel de
QoS requerido.

- PUBACK: mensaje de confirmacion enviado como respuesta al
PUBLISH, empleado en configuraciones con QoS 1.

- PUBREC: mensaje enviado como respuesta al PUBLISH, empleado en
configuraciones con QoS 2.

- PUBREL: mensaje enviado como respuesta al PUBREC, empleado en
configuraciones con QoS 2.

- PUBCOMP: mensaje enviado como respuesta al PUBREL, es el cuarto y
ultimo paquete empleado en configuraciones con QoS 2.

- SUBSCRIBE: mensaje enviado por el cliente al broker para crear una o
mas suscripciones a los topics de interés. EI broker envia mensajes
PUBLISH a modo de notificacidn cada vez que recibe datos sobre dichos
topics. El pagquete contiene también el maximo valor de QoS requerido con
la que espera recibir los datos mensajes PUBLISH por parte del broker.

- SUBACK: mensaje de confirmacién enviado como respuesta al
SUBSCRIBE. Contiene el valor maximo de QoS otorgado para cada
suscripcion.

- UNSUSBCRIBE: mensaje enviado por el cliente al broker como
cancelacion de suscripcion a un topic.

- UNSUBACK: mensaje enviado por el broker al cliente como respuesta al
UNSUBSCRIBE, confirmando la cancelacion de la suscripcion.

- PINGREQ: paquete enviado por el cliente, puede usarse para indicar que
el cliente sigue activo, para requerir que el broker comunique que sigue
activo o para indicar que la conexion sigue activa.

Capitulo 2: Estado del arte

PINGRESP: paquete enviado por el broker en respuesta al PINGREQ,
indica que el broker sigue activo.

DISCONNECT: paquete final de la sesion, enviado por el cliente
indicando que se ha desconectado limpiamente.

Por ultimo, se definen tres niveles de calidad de servicio, QoS 0, 1y 2 [43].

QoS 0: el receptor no envia confirmacion sobre la recepcion de un mensaje
PUBLISH, por lo que el remitente tampoco realiza ningun reenvio, esto
hace que no se garantice la recepcion del mensaje. Se le conoce bajo el
nombre “at most once delivery”.

QoS 1: el receptor confirma la recepcién de un mensaje PUBLISH
mediante un mensaje PUBACK, garantizando que el paquete se reciba al
menos una vez, por lo que se le conoce como “at least once delivery”.
QoS 2: se trata del nivel mas alto de calidad de servicio, empleado cuando
no se acepta la perdida de mensajes ni su duplicacion. Garantiza la entrega
del mensaje exactamente una vez sin duplicados, por lo que se le conoce
como “exactly once delivery”.

A continuacion, la Figura 5 muestra un ejemplo de comunicacién entre un cliente
suscriptor y un cliente publicador a través de un broker, ambos clientes con Qos 0, 1y 2
respectivamente, incluyendo establecimiento y finalizacién de la comunicacion MQTT.
Cabe destacar que la configuracion QoS por parte de los clientes publisher y subscriber
es totalmente independiente por lo que no necesariamente ambos extremos de la
comunicacion deben interactuar bajo los mismos requisitos de QoS.

Cliente
Publisher

|«¢——CONNACK.:

Cliente
Subscriber|

Cliente
Publisher

Cliente
Subscriber|

| Broker I

|««——SUBSCRIBE.
SUBACK——p{

Broker I

|««——SUBSCRIBE-
SUBACK———p»|

CONNECT-
CONNACK

-CONNECT-
CONNACK——p{

CONNECT——p»

CONNECT——p»|
|<¢——CONNACK.:

PUBLISH. PUBLISH——p

(———DISCONNECT—p>|

. PUBLISH:

|<«———PUBACK.
. PUBLISH:

|<«———PUBACK.
.

. .
. .

PUBLISH——p

PUBLISH——p
. <
.
. |-¢—UNSUBSCRIBE—— .
UNSUBACK——p{ .
|«¢——DISCONNECT—— .

PUBLISH———p
PUBACK.

PUBLISH——p|
PUBACK.

|<«—UNSUBSCRIBE——
UNSUBACK——p|
|<¢——DISCONNECT—

(———DISCONNECT—p»|

QoS 0 QoS 1

Capitulo 2: Estado del arte

Cliente Broker Cliente
Publisher Bubscribe

«———CONNECT———
|——CONNECT ACK—»{

l«——SUBSCRIBE
SUBACK——p|

————CONNECT—»
|«——CONNECT ACK——]

PUBLISH——»]

|« PUBREC
| PUBREL—»
|«——PUBCOMP
. PUBLISH——»
. l«—PUBREC
. PUBREL——»|
l«——PUBCOMP
L]
L]
L]
QoS 2

Figura 5. Ejemplo de comunicacion MQTT para diferentes niveles de QoS

Por altimo, resulta interesante destacar que MQTT no define cifrado per se, por
lo que los datos se transmiten como texto plano. Para garantizar comunicaciones seguras,
es necesario implementar una capa de cifrado de forma independiente, cominmente
utilizando TLS a nivel de transporte (Transport Layer Security) [9].

2.2.2. MQTT-SN (Message Queue Telemetry Protocol for Sensor Networks)

MQTT-SN [53] se trata de una especificacion de MQTT disefiada para redes de
sensores donde el protocolo TCP resulta demasiado pesado. En redes de sensores donde
se prioriza el ahorro energético, la diferencia entre usar TCP o UDP como protocolo de
trasporte resulta muy significativa. Se trata de un proyecto promovido por OASIS que a
pesar de ser una especificacion publica, no esta reconocida ni aprobada por el organismo
de normalizacion OASIS, tal y como afirman en [29].

Asi, MQTT-SN se basa en el funcionamiento de MQTT, pero emplea UDP como
protocolo de transporte, disminuyendo la cantidad de bytes a transmitir, con el fin de
reducir el consumo de ancho de banda y a su vez el consumo energético.

MQTT-SN tambien esta disefiado sobre el paradigma publish/subscribe, por lo
que necesita un broker al igual que MQTT mediante el cual publicar y recibir
informacién. Para ello, la especificacion define la arquitectura mostrada en la Figura 6.

10

Capitulo 2: Estado del arte

MQTT-SN|,

cient | mQrTSN____ MQTT-SN —
—— > i Gateway
MQTT-SN|,___— S
client
? " héQTT—SN
mQrT-sN|, MATTSN | emme—y
client | H
[l TT1-S
_Imarrsn [M@
P ~=n | Forwarder
parren| Merres
client |

Figura 6. Arquitectura de MQTT-SN, obtenida de [53]

Como se puede ver en la arquitectura, se definen tres tipos de nodos diferentes.

- MQTT-SN Client: clientes MQTT-SN que se conectan al broker MQTT a
través del MQTT-SN Gateway.

- MQTT-SN Gateway: puede o0 no estar integrado en el broker MQTT. Su
funcion es la traduccion entre MQTT-SN y MQTT.

- MQTT-SN Forwarder: sirve como union entre el cliente MQTT-SN vy el
MQTT-SN Gateway en caso de que este ultimo no esté en la misma red
del cliente.

MQTT-SN, al igual que MQTT establece los niveles de QoS 0, 1 y 2, cuyo
funcionamiento es similar al de MQTT. Adicionalmente, se define el nivel de QoS -1en
mensajes de tipo PUBLISH. Este permite enviar publicaciones sin necesidad de crear una
conexion con el broker, no se transmite el mensaje CONNECT de creacion de la
conexion, y unicamente se transmite el mensaje PUBLISH sin asegurarse de que la
comunicacion con el MQTT-SN sea correcta. Esta caracteristica, guarda relacion con
CoAP puesto que, a nivel de aplicacién, este no esta orientado a conexion.

2.2.3. COAP (Constrained Application Protocol)

CoAP es un protocolo de transferencia de mensajes estandarizado por el IETF en
Junio de 2014 definido en el estandar RFC 7252 [52]. Su uso esta destinado a dispositivos
con recursos limitados. Disefiado bajo el paradigma peticion/respuesta, proporciona un
modelo de intercambio de mensajes para transferir datos de sensores como temperatura,
humedad, ubicacion... en arquitecturas de red tipo REST, permitiendo facilmente su
traduccion a HTTP. Esto permite la integracion de datos de sensores en servicios basados
en web aportando gran valor en el ecosistema 10T tal y como lo detalla el instituto ETSI
[16].

En su primera version, RFC 7252 [52], CoAP se define sobre UDP (User
Datagram Protocol) como protocolo de transporte en lugar de TCP reduciendo el

11

Capitulo 2: Estado del arte

overhead a costa de eliminar la fiabilidad en la entrega de paquetes que este Gltimo
garantiza. Debido a la perdida de la fiabilidad que supone el uso de UDP, en Febrero de
2018, ETSI propone el uso de CoAP sobre TCP en el estandar RFC 8323 [5] con el fin
de mejorar la fiabilidad en el uso de CoAP, evitando la pérdida de paquetes y garantizando
mecanismos de control de flujo y de congestion.

CoAP se divide estructuralmente en dos capas como se muestra en la Figura 7.

Aplicacién

Peticién/Respuesta
CoAP
Mensajes

uDP

Figura 7. Estructura de capas de CoAP

La primera capa define el paradigma peticidén/respuesta tradicional, muy similar a
HTTP. Esta capa establece los métodos GET, PUT, POST o DELETE que los clientes
pueden emplear para generar peticiones sobre diferentes URI (Uniform Resource
Identifier) dirigidas a un servidor y los diferentes cddigos de respuesta. En redes de
sensores, por ejemplo, un cliente puede usar el método GET en una peticién dirigida a un
servidor y como respuesta recibird un paquete con los datos requeridos. Para llevar a cabo
la comunicacién, CoAP, en la segunda capa define cuatro tipos de mensajes: Confirmable
(CON), Non-Confirmable (NON), Acknoledgement (ACK) y Reset (RST). Se pueden
diferenciar dos posibles configuraciones, con mensajes confirmables y no confirmables
dotando a CoAP de dos niveles de QoS diferentes, ver Figura 8. La confirmacion de
mensajes permite asegurar una comunicacion fiable frente a pérdidas de paquetes a nivel
de aplicacion, supliendo en parte la carencia de fiabilidad en caso de emplear UDP como
protocolo de transporte. Si lo comparamos con el protocolo MQTT descrito en la seccion
2.2.1 la configuracion de QoS 0 de MQTT es equivalente al uso de mensajes NON vy la
configuracién de QoS 1 de MQTT es equivalente al uso de mensajes CON.

Petcicion confirmable Petcicién no confirmable
Cliente Servidor Cliente Servidor
CoAP CoAP CoAP CoAP

CON [GET URI] |—NON [GET URI}
ACK [2.05 Content] |<e—NON [2.05 Content]

Figura 8. Tipos de mensajes CoAP (confirmables y no confirmables)

Por otro lado, una funcionalidad de suma relevancia que le aporta valor afiadido
al protocolo CoAP y que va mas alla del modelo peticion/respuesta, se trata de la opcién
de OBSERVACION. Se trata de una opcion o flag adicional a la peticion GET que

12

Capitulo 2: Estado del arte

permite a los clientes mantener la comunicacion abierta y recibir notificaciones continuas
de forma asincrona por parte del servidor cada vez que cambia el estado del recurso
solicitado, tal y como se muestra en la Figura 9. Esta funcionalidad acerca al protocolo
CoAP al modelo publish/subscribe aportdndole una gran flexibilidad.

Observacién confirmable Observacion no confirmable
Cliente Servidor Cliente Servidor
CoAP CoAP CoAP CoAP

———CON [GET Observe URI]—p»] ———NON [GET Observe URI]—p»|

|<¢———CON [2.05 Content].
ACK [vacio]l——p]

[«¢——NON [2.05 Content]-

{«¢———NON [2.05 Content].

|<¢———CON [2.05 Content}
ACK [vacio]l——p»| °
[] L]
[] L]
[

{«¢———NON [2.05 Content]-

|<¢———NON [2.05 Content]
————ACK [vacio]l——p»|

Figura 9. Observacion de CoAP

Ademas, en un esfuerzo de acercar el protocolo CoAP de forma definitiva al
paradigma publish/subscribe, IETF en Octubre de 2016 publico draft-ietf-core-coap-
pubsub [32] en el que se propone una arquitectura de publicacidn/suscripcion centralizada
en un broker para CoAP, siendo su Ultima actualizacion en Abril de 2020. La Figura 10
muestra la arquitectura propuesta por el IETF.

Clientes Broker

Cliente
CoAP

I
|
Pub/Sub |
[

CoAP

Pub/Sub
|
|
|
I

Broker

Cliente
CoAP
Pub/Sub

Figura 10. Arquitectura publish/subscribe de CoAP propuesta.

Por ultimo, como capa de seguridad, inicialmente se define DTLS (Datagram
Transport Layer Security) [47] como mecanismo de seguridad empleado sobre UDP en
la version original de CoAP, RFC 7252 [52]. Con la publicacion de la RFC 8323 [5] en
la que se incluye el uso de CoAP sobre TCP, se define también TLS [46] como
mecanismo de seguridad.

13

Capitulo 2: Estado del arte

2.2.4. HTTP (Hypertext Transfer Protocol)

HTTP es un protocolo de nivel de aplicacién basado en una arquitectura cliente-
servidor frecuentemente utilizado en servicios web. La version comdnmente utilizada del
protocolo es HTTP/1.1, definida en la RFC 2616 [17] en junio de 1999. Disefiado bajo el
paradigma peticion/respuesta, proporciona un modelo de intercambio de datos entre
cliente y servidor basado en peticiones.

Del mismo modo que CoAP, HTTP define los métodos GET, PUT, POST o
DELETE mediante los cuales el cliente puede interactuar solicitando datos, actualizarlos
o0 borrandolos respectivamente en un servidor. A pesar de no haber sido disefiado para
escenarios 10T, autores como [4] [1] [58] [40] comparan el rendimiento de HTTP con
protocolos como MQTT y CoAP. Si bien es cierto que el gasto de recursos es mucho
mayor en HTTP frente a otros protocolos, son muchas las aplicaciones 10T basadas en
HTTP actualmente.

En relacién con el protocolo de transporte utilizado, HTTP usa TCP aportando
fiabilidad en la entrega de mensajes ademas de control de flujo y de congestion. Un detalle
importante a tener en cuenta es que HTTP esta disefiado para el envio esporadico de
informacién, por lo que la creacion de la conexién TCP cada vez que se inicia una
comunicacion, da como resultado un gran aumento del ancho de banda consumido frente
a otros protocolos. Por otro lado, no ofrece opciones de QoS como si ocurre en MQTT y
CoAP puesto que TCP garantiza la entrega correcta de los paquetes a nivel de transporte.

Por ultimo, como es bien sabido, HTTP emplea TLS como mecanismo de
seguridad habilitando un canal de comunicaciones cifrado, conocido como HTTPS.

2.2.5. Otros protocolos 10T

Como ya se ha comentado, MQTT, CoAP y HTTP son los principales protocolos
de nivel de aplicacién empleados en la gran mayoria de soluciones 10T, a pesar de esto,
existen otros protocolos de menor popularidad como DDS, AMQP y XMPP (Extensible
Messaging and Presence Protocol).

DDS se trata de un protocolo implementado bajo el paradigma publish/subscribe
estandarizado por OMG [44] pero a diferencia de otros protocolos similares, DDS define
una arquitectura peer-to-peer descentralizada en la que no se depende de un broker. Una
de las ventajas de usar DDS es el amplio abanico de niveles de QoS definidos en el
estandar [7] mas de veinte niveles. Como protocolo de transporte, se definen tanto TCP
como UDP implementando TLS o DTLS respectivamente.

AMQP es otro protocolo publish/subscribe definido por OASIS en [55] pensado
para transmitir flujos de datos y transacciones comerciales en tiempo real. Evita
soluciones propietarias, ofreciendo como potencial la reduccion de costes de
implementacion empresarial. AMQP define dos versiones totalmente diferentes, AMQP
0.9.1 establece una arquitectura centralizada en un broker de mensajes mientras que
AMOQP 1.0 unicamente propone el protocolo sin especificar la arquitectura, pudiéndose

14

Capitulo 2: Estado del arte

usar en comunicaciones peer-to-peer. Como protocolo de transporte emplea TCP
garantizando comunicaciones seguras gracias a TLS y define 3 niveles de QoS diferentes.

Por ultimo, XMPP es un protocolo estandarizado por el IETF en los estandares
RFC 6120 [49] y RFC 6121 [50], disefiado originalmente para mensajeria de texto
instantanea entre aplicaciones basado en XML (Extensible Markup Language) y disefiado
para soportar interaccion cliente-servidor y publish/subscribe. Como protocolo de
transporte emplea TCP y también incorpora TLS como mecanismo de seguridad. A
diferencia de otros protocolos, no define diferenciacion en niveles de QoS, al igual que
HTTP.

Finalmente, se muestra la Tabla 1 en la que se resumen brevemente los principales
fundamentos de los protocolos descritos a lo largo del capitulo.

Protocolo Paradigma Prot. Trasporte QoS Seguridad
MQTT Pub-Sub TCP 3 niveles TLS/SSL
CoAP Req-Resp UDP/TCP 2 niveles DTLSy TLS
HTTP Reg-Resp TCP - TLS/SSL

DDS Pub-Sub TCP/UDP Mas de 20 niveles | TLSy DTLS
AMQP Pub-Sub y Reg-Resp TCP 3 niveles TLS/SSL
XMPP Pub-Sub y Reg-Resp TCP - TLS/SSL

Tabla 1. caracteristicas principales de los protocolos de aplicacion 10T

2.3.Protocolos de transporte para comunicaciones seguras

Las aplicaciones 10T al igual que el resto de los servicios de informacion basados
en redes de comunicaciones estan expuestos a entornos de red conflictivos, por lo que
resulta impensable desarrollar un sistema de comunicacion que no garantice
confidencialidad, autenticidad e integridad. Es por ello, por lo que en esta seccion se van
a introducir brevemente los protocolos de nivel de transporte TLS y DTLS utilizados
comunmente por las aplicaciones 10T y que se emplean en la solucion técnica del
proyecto.

2.3.1. TLS (Transport Layer Security)

TLS es un protocolo disefiado para garantizar privacidad e integridad en las
comunicaciones de datos entre clientes o servidores de red. Se pueden diferenciar varias
versiones. Las versiones mas modernas y recomendadas son TLS 1.2 definida en el
estandar RFC 5246 [9] y TLS 1.3 definida en el estdndar RFC 8446 [46], ya que versiones
anteriores han quedado obsoletas.

Se trata de un protocolo orientado a conexion, antes de empezar la transmision de
datos de aplicaciéon se realiza el conocido TLS Handshake en el que se realiza la
autenticacion del cliente y servidor, la negociacién del cipher suite con el que se cifran

15

Capitulo 2: Estado del arte

los datos y el intercambio de claves. La Figura 11 muestra el intercambio de mensajes
durante el TLS 1.2 handshake.

Cliente Servidor

Client Hello—— M |

l«——Server Hello
«——Server Certificate*
«——Server Key Exchange *
l«——CertificateRequest *
l«——Server Hello Done

* Certificate—————p
Client Key Exchange——p|
* Certificate Verify——p
Change Cipher Spec————p|
Finished >

l«———Change Cipher Spec.
- Finished

l«———Aplication data——»|

Figura 11. Handshake de TLS 1.2

* Indica mensajes opcionales o dependientes de la situacion, no siempre enviados.

Durante el handshake se producen tres eventos a destacar:

Negociacién del Cipher Suite: cada extremo de la comunicacion enumera
los algoritmos de cifrado que admite y en esta fase de negociacion, se fija
el algoritmo de cifrado a emplear.

Autenticacion: ambos extremos de la comunicacién se autentican
mediante el uso de certificados (el cliente se autentica bajo peticion del
servidor).

Intercambio de claves: el cifrado de los datos de aplicacion se realiza
mediante criptografia de clave simétrica, una misma clave compartida por
el cliente y el servidor. Para el establecimiento de dicha clave entre ambos,
se emplea criptografia de clave asimétrica (clave publica y privada), el
cliente envia una secuencia aleatoria al servidor cifrada mediante la clave
publica del servidor. Con esta secuencia, ambos generan la clave simétrica
empleada para cifrar las comunicaciones posteriores. El handshake
concluye con el envio de un mensaje de finalizacién cifrado con la clave
secreta simétrica.

16

Capitulo 2: Estado del arte

2.3.2. DTLS (Datagram Transport Layer Security)

DTLS es un protocolo de nivel de transporte que garantiza seguridad en las
comunicaciones basadas en UDP, definido por el ETSI en el estandar RFC 6347 [47].
DTLS se basa en el protocolo TLS utilizado en comunicaciones sobre UDP.

El funcionamiento de DTLS es similar al funcionamiento de TLS, inicialmente se
realiza un intercambio de mensajes, handshake, en el que se establecen la configuracion
de la sesion y a continuacion se transmiten los datos de forma segura y cifrada.

2.4. Interoperabilidad entre protocolos

Como se ha plasmado en la seccion 2.3, en torno al ecosistema 10T existe un gran
conjunto de protocolos de nivel de aplicacion basados en paradigmas y arquitecturas muy
diferentes. La falta de un protocolo unificado, estandarizado y normalizado para las
comunicaciones 10T provoca que actualmente, cada fabricante cree sus propios
protocolos y los disefiadores de servicios basados en 10T como por ejemplo las redes de
sensores, Smart cities, Smart grid, o la industria 4.0 usen diferentes protocolos de
aplicacion sin preocuparse siquiera por homogeneizar dichas comunicaciones.

Esto puede dar como resultado escenarios 10T heterogéneos a causa de las
diferencias entre protocolos, ya sea debido al paradigma de comunicacién
(peticidn/respuesta o publicacion/suscripcién) o a caracteristicas intrinsecas de los
protocolos. Esta situacion deriva en problemas tales como la dependencia de hardware
propietario para poder utilizar protocolos de comunicacion privados o la necesidad de
disponer de aplicaciones compatibles con cada protocolo para obtener datos de diferentes
proveedores.

Partiendo de la definicion de interoperabilidad, la cual se define como “la
habilidad de dos 0 mas sistemas o componentes para intercambiar informacién y usar la
informacion que se ha intercambiado” segun IEEE en [31], nos encontramos ante una
comunidad que presenta grandes dificultades de interoperabilidad.

Por este motivo, cada vez son mas los esfuerzos realizados por buscar puntos de
unién entre los diferentes protocolos expuestos con el fin de lograr la mayor
interoperabilidad posible entre ellos. Es asi como surgen iniciativas de proyectos software
que permitan unificar las comunicaciones entre protocolos.

Es comUn encontrar sistemas proxy entre CoAP y HTTP debido a la similitud de
los protocolos tanto arquitectural como semantica. Ambos protocolos utilizan el
protocolo de interaccion peticion/respuesta, se fundamentan en la arquitectura cliente-
servidor y comparten gran parecido en cuanto a los mensajes definidos en los dos
estandares (son similares semanticamente). Estos aspectos facilitan en gran medida la
traduccion entre ambos protocolos, de manera que puede realizarse a través de una
plataforma software intermedia. De esta manera, si se desea acceder a datos accesibles a
través de COAP, mediante tecnologias tradicionales fundamentadas en http, una

17

Capitulo 2: Estado del arte

comunicacion indirecta, a través de una plataforma que realiza la traduccion, puede ser
de gran interés. Existen implementaciones como crosscoap [24] o la de los autores [35].

Por otro lado, también se pueden encontrar sistemas que habilitan la comunicacion
entre HTTP y MQTT. No obstante, en este caso, debido a la diferencia entre los
protocolos, la interoperabilidad bidireccional no resulta tan sencilla. Teniendo en cuenta
que MQTT estd basado en un modelo de interaccién publish/subscribe mediante una
arquitectura centralizada en un broker, y HTTP se basa en un modelo peticion/respuesta
mediante una arquitectura cliente-servidor, estos sistemas se fundamentan en la
traduccion de los métodos PUT y POST de HTTP, que permiten actualizar los datos en
el servidor, en mensajes MQTT PUBLISH, permitiendo generar datos en un broker
MQTT a través de HTTP. Por otro lado, si lo que se quiere es obtener informacion
publicada mediante MQTT desde peticiones HTTP GET, es habitual encontrarnos con
implementaciones que retienen los datos publicados por los clientes MQTT en un servidor
HTTP y este responde las peticiones con los datos almacenados. Actualmente existen
proyectos como [1] [25] [26] v [30].

Por ultimo, lo que resulta mas interesante dadas las tendencias de protocolos
predominantes en IoT actualmente, se trata de un sistema de mensajeria que permita una
interoperabilidad total entre MQTT, CoAP y HTTP con la posibilidad de afadir futuros
protocolos. Bajo estas condiciones, el proyecto que cuenta con més solidez y dispone de
una implementacion de codigo abierto plug and play y funcional se trata del broker
Ponte, del cual se habla continuacion.

2.4.1. Ponte

Ponte [45] [8] es un sistema de mensajeria que actia como pasarela entre los
protocolos MQTT, CoAPy HTTP, desarrollado por Eclipse Foundation [13], actualmente
se encuentra en fase de incubacidn tal y como indican en la documentacion oficial. Pese
a que no se trata de una solucidn final, es posible encontrar el codigo de la Gltima version
en Github [23].

Se trata de un proyecto disefiado sobre el entorno de trabajo Node.Js y de rapida
instalacion, unicamente requiere disponer de la version node.js 0.10 y la Gltima version
disponible de NPM (sistema de gestion de paquetes por defecto de node.js).

En su documentacion oficial se detalla la arquitectura mostrada en la Figura 12.

LULULLL LU LT

‘ HTTP Server ’ ‘ MQTT Server ’ ‘ CoAP Server ’
]

‘Persistenceﬂ Pub/Sub I

R

.mnngol) B

= .mongolm

T @reds gMQTE @ redis

Figura 12. Arquitectura de Ponte, obtenida de [45]

18

Capitulo 2: Estado del arte

Se diferencian tres interfaces diferentes, un servidor HTTP, un servidor MQTT y
un servidor CoAP, ademas de diferentes herramientas de almacenamiento e indexacion
de datos.

El servidor MQTT esta disefiado para funcionar como broker, se corresponde con
una implementacion de codigo abierta Ilamada Mosquito [15] que pertenece a Eclipse
Foundation. Este se encarga de procesar las diferentes publicaciones y suscripciones
MQTT.

El servidor COAP implementa una interfaz que permite manejar peticiones con los
métodos GET, PUT, POST y DELETE tipicos del patron REST. Permite a un cliente
CoAP publicar datos a través de los métodos PUT y POST al igual que obtener
informacion de ellos a través del método GET. Tiene total compatibilidad con la opcion
de observacion por lo que es facilmente equiparable al paradigma publish/subscribe de
MQTT.

Por otro lado, el servidor HTTP funciona de forma similar al servidor CoAP,
mediante los métodos PUT y POST permite a un cliente HTTP publicar datos en el
sistema mientras que con el método GET permite obtener los datos. Es importante
destacar que HTTP no dispone de la funcionalidad de suscripcion como MQTT o de
observacién como CoAP, por lo que los datos publicados deben ser retenidos por el
broker Ponte, para poder indexarlos desde HTTP en caso de recibir una peticién GET.

Resulta interesante destacar los aspectos que, de momento no se abordan en el
broker Ponte y que consideramos que son de utilidad para garantizar la mayor
interoperabilidad posible y en las mejores condiciones. En primer lugar, desde el punto
de vista de CoAP, Ponte Unicamente da servicio a aplicaciones basadas en clientes CoOAP
que generan mensajes PUT/POST sobre el broker. Sin embargo, no se contempla la
posibilidad de dar servicio a aplicaciones basadas en servidores CoAP tradicionales
definidos en el estandar, que son los mas utilizados en despliegues tipicos. Por otro lado,
Ponte, si bien en su documentacion oficial indica que se encuentra en desarrollo,
actualmente no incorpora ningin mecanismo de cifrado en las comunicaciones. Por
ultimo, dado el auge de la implantacion de arquitecturas 10T basadas en edge computing,
resultaria interesante disponer de una version de Ponte que permitiera aumentar la
escalabilidad del sistema en escenarios con diferentes broker interconectados,
caracteristica que actualmente no posee.

Todos estos aspectos se abordan en este proyecto mediante el desarrollo de un
middleware que ademas de las funcionalidades proporcionadas por Ponte, da servicio a
servidores CoOAP tradicionales y permite comunicaciones tanto cifradas mediante
TLS/DTLS como sin cifrar. Ademas, se propone una solucién que permite tener multiples
instancias del broker interconectadas, posibilitando la escalabilidad del sistema.

19

Capitulo 3: Implementaciones software existentes

3. Implementaciones software existentes

En este capitulo se muestran las principales librerias software existentes y se

aborda la eleccidn de las librerias utilizadas durante el desarrollo técnico. A continuacion,
se muestra una breve revision de las implementaciones més destacadas de MQTT,
MQTT-SN y CoAP.

3.1. Implementaciones CoAP

comunidad CoAP, junto a sus caracteristicas principales.

En la Tabla 2 se muestran las librerias mas conocidas y utilizadas por la

. RFC Cliente/ _— . . .
Nombre Lenguaje | . . Caracteristicas | Licencia | Referencia
implementada | Servidor
. Cliente y Blockwise
Alocoap Python 3 1252 servidor Transfers y Observe MIT 2]
. . Cliente y Observe, Blockwise
Californium Java 7252 servidor Transfers y DTLS EPL + EDL [12]
. Blockwise
CoAPThon Python 7252 Clientey | o \cfers, Observe, MIT 6]
servidor
DTLS
Cliente y Blockwise
Libcoap C 7252 . Transfers, Observe BSD/GPL [33]
servidor
y DTLS
. Cliente y Blockwise
Node-coap JavaScript 7252 servidor Transfers MIT [41]

Tabla 2. Implementaciones de CoAP

3.2. Implementaciones MQTT

comunidad MQTT, junto a sus caracteristicas principales.

En la Tabla 3 se muestran las librerias mas conocidas y utilizadas por la

Versiones
Nombre | Lenguaje | Cliente/Broker del TLS | Licencia | Referencia
protocolo
Mosquitto C Cliente y broker | 5.0,3.1.1y 3.1 Si EPL/EDL [15]
C, C++,
Java,
Paho . . .
JavaScript, Cliente 3.11y31 Si EPL [14]
MQTT
Python,
Go

20

Capitulo 3: Implementaciones software existentes

wolfMQTT c Cliente 50y3.1.1 Si GPL [57]
Moquette Java Broker 3.1. Si EPL [37]
HiveMQ Java Broker 5.0y 3. Si | Apache v2 [27]
HiveMQ .

Client Java Cliente 50y3.1.1 Sl Apache v2 [27]

Tabla 3. Implementaciones de MQTT

3.3. Implementaciones MQTT-SN

MQTT-SN se trata de un protocolo relativamente nuevo, por lo que no posee la
suficiente madurez como MQTT o CoAP. Esto hace que existan escasas
implementaciones y no tan contrastadas y utilizadas como ocurre con los otros protocolos.
A continuacion, la Tabla 4 muestra alguna implementacion disponible en Github de
MQTT-SN.

. Cliente/GW Versiones del . . .
Nombre Lenguaje Licencia | Referencia
/Forwarder protocolo

Mqtt-sn-tools C Cliente y forwarder 12 MIT [22]

Mqtt-sn C Cliente y gateway 1.2 MPL [18]
Paho.mqtt- Cliente (incompleto) EPL Y

sn.embedded-c c y gateway 12 EDL [20]
Mqtt-sn- EDLyY

gateway Java Gateway 1.2 EPL [21]

Mattsn Python Cliente 1.2 MIT [39]

21

Tabla 4. Implementaciones de MQTT-SN

Capitulo 3: Implementaciones software existentes

3.4. Implementaciones elegidas

Para el desarrollo técnico del proyecto se ha elegido Java como lenguaje de
programacion. Entre los motivos por lo que se ha escogido Java se encuentran los
siguientes: se trata de un lenguaje multiplataforma que funciona sobre la maquina virtual
de Java (JVM) por lo que es facilmente portable entre distintos sistemas operativos, es un
lenguaje orientado a objetos, gracias a esto se definen estructuras de facil manipulacion,
se conoce como un buen lenguaje del lado del servidor [10] y permite implementar
programacion concurrente multihilo de forma sencilla.

Las librerias seleccionadas han sido:

e Moquette MQTT basada en Eclipse Paho para el broker MQTT
e Eclipse Californium para la arquitectura CoAP

e Maqtt-sn-tools para los clientes MQTT-SN

e Paho.mqtt-sn.embedded-c para el MQTT-SN Gateway

e Oracle HTTP para el servidor HTTP

Moquette y Californium son librerias desarrolladas y respaldadas por Eclipse
Foundation en la cual participan empresas como IBM, Oracle, RedHat, Bosch o Huawei,
esto garantiza estabilidad y continuas actualizaciones de software. Ademas, cuentan con
una gran comunidad de desarrolladores donde encontrar ayuda y soporte. Por otro lado,
Oracle HTTP se encuentra integrada entre los paquetes de Java contando con una extensa
documentacién en su API. Por ultimo, la eleccion de las librerias de MQTT-SN se baso
en heuristica, las librerias existentes cuentan con caracteristicas similares, por lo que se
eligieron las librerias mas sencillas de usar y que no mostraban fallos en su ejecucion.

22

Capitulo 4: Solucion técnica

4. Solucioén técnica

En este capitulo se aborda el desarrollo técnico de un middleware de mensajeria
que permite la intercomunicacion de clientes 10T utilizando diferentes protocolos de nivel
de aplicacion, MQTT, CoAP y HTTP. El proyecto software completo, se encuentra
disponible en el repositorio de Github [19]. Adicionalmente, el Anexo 1 se muestra
detalladamente la estructura de clases del proyecto.

4.1. Planteamiento del sistema

Como punto de partida se definen los casos de uso que se quieren tratar y los
diferentes tipos de mensajes que se ven implicados.

Recepcién de un mensaje PUBLISH MOTT

En caso de recibir un mensaje MQTT de tipo PUBLISH dirigido a un topic, se
retransmite a todos los clientes MQTT suscritos a dicho topic (funcionamiento tradicional
de un broker MQTT). A su vez, si existe algun cliente CoAP con una relacion de
observacidn establecida sobre ese topic (GET Observe), internamente el sistema traduce
el mensaje MQTT recibido y lo reenvia en forma de notificacion CoAP a los clientes
CoAP que observan dicho topic. Por altimo, el contenido del mensaje se almacena en la
memoria del servidor CoAP y del servidor HTTP para poder acceder a él a través de
consultas HTTP GET y CoAP GET simples (Unicamente se guarda el ultimo valor
actualizado).

Recepcidn de un mensaje PUT/POST CoAP

En caso de recibir un mensaje CoAP de tipo PUT/POST dirigido a un topic, se
retransmite a todos los clientes CoOAP que tengan una relacion de observacion establecida
sobre ese topic (GET Observe). A su vez, internamente el sistema traduce el mensaje
PUT/POST CoAP en un mensaje PUBLISH MQTT, de esta manera el broker MQTT
notifica a todos los clientes MQTT suscritos a ese topic. Del mismo modo que antes, el
contenido del mensaje se almacena en la memoria del servidor CoAP y del servidor HTTP
para poder acceder a él a través de consultas HTTP GET y CoAP GET simples
(Gnicamente se guarda el ultimo valor actualizado).

Recepcién de un mensaje PUT/POST HTTP

En caso de recibir un mensaje HTTP de tipo PUT/POST dirigido a un topic, el
sistema internamente lo traduce a un mensaje PUT/POST CoAP y lo interpreta como tal,
notificando a todos los clientes COAP que tengan una relacion de observacion establecida
con ese topic (GET Observe). También lo traduce a un mensaje PUBLISH MQTT, de
esta manera el broker MQTT notifica a todos los clientes MQTT suscritos a ese topic.
Del mismo que en los casos anteriores, el contenido del mensaje se almacena en la
memoria del servidor CoAP y del servidor HTTP para poder acceder a él a través de
consultas HTTP GET y CoAP GET simples (Gnicamente se guarda el ultimo valor
actualizado).

23

Capitulo 4: Solucion técnica

Con estos tres casos de uso, se tienen bajo control todas las posibles publicaciones
de informacion en el middleware a través de los distintos protocolos. Por otro lado, un
caso de uso concreto e importante es el hecho de darle servicio a servidores CoAP
tradicionales. Si se recuerda el disefio arquitectural de CoAP, lejos de tratarse de un
modelo publish/subscribe se disefio6 como modelo request/response basandose en una
arquitectura cliente-servidor. Con los casos abordados anteriormente, desde el punto de
vista de CoAP, el middleware Unicamente da servicio a aplicaciones basadas en clientes
CoAP que generan mensajes PUT/POST de forma proactiva para publicar datos. Sin
embargo, uno de los principales objetivos de este sistema, es permitir integrar todas
aquellas aplicaciones basadas en servidores CoOAP que recopilan datos y los comunican
de forma reactiva como respuesta a una peticiéon GET, aunando asi los dos paradigmas,
publish/subscribe y request/response, esto resulta fundamental puesto que, como se
detalla en la seccién 2.2.3, el estandar define CoOAP como un modelo cliente-servidor y
su funcionamiento publish/subscribe actualmente es una propuesta sin estandarizar, por
lo que de momento existen infinidad de fabricantes y proveedores que basan sus servicios
en servidores CoAP. Este funcionamiento, tal y como se ha comentado en el apartado
2.4.1, es una de las carencias del broker Ponte que se propone afiadir. Para ello se definen
los siguientes procedimientos y casos de uso.

Descubrimiento de topics

Debido a que un servidor CoAP no transmite datos de forma proactiva sino de
forma reactiva tras la recepcion de una peticion, el middleware debe conocer qué topics
estan alojados en los servidores a los que da servicio. Para ello el sistema, debe consultar
a todos los servidores COAP qué topics contiene y almacenarse esta informacion en
memoria para poder ser utilizada mas tarde. Se emplea la funcionalidad de
descubrimiento de recursos disponible en el estdindar CoAP, los servidores constan de la
URI .well-known/core, realizando una peticion a dicha URI el servidor devuelve
informacion de todos los topics que contiene. Por lo que el middleware define un cliente
CoAP para cada servidor a los que da servicio y a través de peticiones GET a esta URI
descubre todos los topics disponibles.

Recepcidén de un mensaje SUBSCRIBE MOQTT

En caso de recibir un mensaje MQTT de tipo SUBSCRIBE sobre un topic, el
broker MQTT afade ese cliente a la lista de suscripciones de ese topic y en el momento
en que se recibe un mensaje MQTT PUBLISH sobre ese topic, el cliente es notificado,
Figura 13 (a). Del mismo modo pasa con los mensajes PUT/POST CoAP o PUT/POST
HTTP debido a la traduccidn interna entre protocolos comentada anteriormente, Figura
13 (b) y Figura 13 (c). Adicionalmente, el sistema consulta si ese topic corresponde con
un topic alojado en un servidor CoAP. En caso positivo, crea un cliente CoAP que
establece una relacion de observacion con dicho servidor (envia un GET Observe)
obteniendo los datos, cada vez que el servidor los actualice e internamente se traducira
por un PUBLISH MQTT que se reenviara por la interfaz MQTT notificando al cliente
suscrito, Figura 13 (d). Cabe destacar, que para mejorar la eficiencia y ahorrar el consumo
de ancho de banda, esto ultimo solo se realiza para la primera suscripcion, en caso de
tener mas de un cliente MQTT suscrito al mismo topic no se replica el trafico entre el
middleware y el servidor COAP, sino que se utiliza la misma conexion.

24

Capitulo 4: Solucion técnica

Cliente MQTT Cliente MQTT Cliente MQTT - Cliente CoAP
SUBSCRIBER Middieware PUBLISHER SUBSCRIBER Middleware PUT/POST
—SUBSCRIBE topic—p{ (——SUBSCRIBE topic—p>|
|-¢———PUBLISH topic——| |««——PUT/POST topic—
|<«———PUBLISH topic—— . |<«———PUBLISH topic—— °
. . . .
. . . .
. 3 B
|<¢———PUBLISH topic——| PUT/POST top
| «——PUBLISH topic— PUBLISH topi
a) b)
Cliente MQTT Cliente HTTP Cliente MQTT "
SUBSCRIBER Middleware PUT/POST SUBSCRIBER Middleware Servidor CoAP
|—SUBSCRIBE topic—»| —SUBSCRIBE topic—»|
|—GET OBSERVE topic—»|
PUT/POST topit
|«———PUBLISH topic- . - ificacion topit
. . PUBLISH topi .
. . . .
. . .
PUT/POST topi °
|<¢———PUBLISH topic—— - ificacién topi
PUBLISH topi
©) d)

Figura 13. Caso de uso de suscripcion MQTT a un topic.

Recepcidén de un mensaje GET OBSERVE CoAP

En caso de recibir un mensaje CoAP de tipo GET OBSERVE sobre un topic, se
afiade la relacion de observacion entre ese cliente y el topic, de forma que si se recibe un
mensaje CoAP de tipo PUT/POST dirigido a ese topic se notificara a dicho cliente con
los datos nuevos, Figura 14 (b). Del mismo modo pasa con los mensajes recibidos de tipo
PUT/POST HTTP o MQTT PUBLISH gracias a la traduccion interna entre protocolos
que realiza el sistema, Figura 14 (c) Figura 14 (a) respectivamente. Adicionalmente, el
sistema consulta si ese topic se corresponde con un topic alojado en un servidor CoAP.
En caso positivo, crea un cliente CoAP que establece una relacion de observacion con
dicho servidor (envia un GET Observe) obteniendo los datos, cada vez que el servidor los
actualice e internamente se actualizan los datos en el topic del middleware notificando al
cliente observador, Figura 14 (d). Al igual que antes, esto ultimo solo se realiza para la
primera suscripcion (independientemente de que sea MQTT o CoAP), en caso de tener
mas de un cliente suscrito al mismo topic no se replica el trafico entre el middleware y el
servidor CoAP, sino que se utiliza la misma conexion.

25

Capitulo 4: Solucion técnica

Cliente CoAP Cliente MQTT Cliente CoAP Cliente CoAP
Observador Middleware PUBLISH Observador Middieware PUT/POST
(~GET OBVSERVE topic—p»| -GET OBVSERVE topic—p|
|.«——PUBLISH topic. |-——PUT/POST topic.
topit . < ificacion topit .
. . . .
. . . .
. .
|<«——PUBLISH topic- |-«——PUT/POST topic:
a) b)
Cliente CoAP Cliente HTTP Cliente CoAP
Observador Middleware PUT/POST Observador Middleware Servidor CoAP
(~GET OBVSERVE topic—p»| -GET OBVSERVE topic—p|
|—GET OBSERVE topic—p»|
|««——PUT/POST topic-
topit . ificacion topi
. . ificacion topi .
. . . .
. . .
|««——PUT/POST topic. °
- i P
o) d)

Figura 14. Caso de uso GET OBSERVE CoAP

Con los casos de uso descritos hasta el momento, se cubre la publicacion y
recepcion de datos basados en eventos en tiempo real (un actor genera datos y otro actor
en tiempo real es notificado). Sin embargo, CoOAP y HTTP permiten obtener datos
mediante peticidén/respuesta a través de los métodos HTTP GET y CoAP GET (no
observe). En este caso no se busca obtener datos en tiempo real, sino el ultimo valor
almacenado sobre un topic. Para ello se definen los siguientes casos de uso.

Recepcién de un mensaje CoAP GET (no observe)

En caso de recibir un mensaje CoAP de tipo GET (no observe) sobre un topic,
primero se consulta si el topic se corresponde con un topic alojado en un servidor COAP.
En caso positivo, se crea un cliente CoAP que retransmite la peticion GET al servidor
CoAP obteniendo la Gltima informacion actualizada y se responde al cliente original con
dicha informacidn, Figura 15 (a). En caso de no corresponder con un topic alojado en un
servidor CoAP, se trata de un recurso publicado mediante un mensaje PUT/POST CoAP,
PUT/POST HTTP o mediante un mensaje PUBLISH, por lo que se responde con el ultimo
valor publicado en el middleware, Figura 15 (b). Por esta razén se almacena el ultimo
dato publicado.

26

Capitulo 4: Solucion técnica

Cliente CoAP ’ . Cliente CoAP .
GET Middleware Servidor CoAP GET Middleware

GET topic——p]

GET topic———»]

———GET topic————»|

l«——Respuesta topic—| l«——Respuesta topic—

| «——Respuesta topic—

a) b)

Figura 15. Caso de uso CoAP GET (no observacion)

Recepcién de un mensaje HTTP GET

En caso de recibir un mensaje HTTP de tipo GET sobre un topic, primero, se
realiza el mismo proceso que en con la recepcion de un mensaje CoAP GET. Si el topic
esta alojado en un servidor CoAP, se crea un cliente CoAP que retransmite la peticion
GET al servidor CoAP. Con la informacion obtenida responde a la peticion HTTP, Figura
16 (a). En caso de no corresponder con un topic alojado en un servidor CoAP, se trata de
un recurso publicado mediante un mensaje PUT/POST CoAP, PUT/POST HTTP o
mediante un mensaje PUBLISH, por lo que se respondera con el ultimo valor publicado
en el middleware, Figura 16 (b).

Cliente HTTP) ’ Cliente HTTP .
GET Middleware Servidor CoAP GET Middleware

———GET topic————»| GET topic———p|

———GET topic————p]

|«——Respuesta topic— [-——Respuesta topic—

l¢——Respuesta topic—

a) b)

Figura 16. Caso de uso HTTP GET

A fin de evitar conflictos con los nombres de los topics en estos dos Ultimos casos
de uso, se define una limitacion en la configuracion en los nombres de los topics: es
fundamental que los nombres de los topics alojados en los servidores COAP no sean
iguales entre ellos y tampoco iguales a los topics publicados mediante mecanismos
publish/subscribe.

27

Capitulo 4: Solucion técnica

4.2. Arguitectura del sistema

En cuanto a la solucién software, se define una arquitectura basada en un broker
MQTT, un broker CoAP y un servidor HTTP independientes. Como nexo, se define una
arquitectura de clases de java que implementa todos los procedimientos necesarios para
realizar la gestion interna de topics entre los tres servicios y la correcta traduccion de
protocolos para cada caso de uso. La arquitectura superficial se muestra en la Figura 17.

Informacion sobre Informacién sobre topics
topics PS de servidores CoAP
Gestor de recursos
Prot. Comunicacién Prot. Comunicacién Prot. Comunicacién
MQTT CoAP HTTP
Protocolo de comunicacién]

Broker Broker Servidor Cliente
MQTT CoAP HTTP CoAP

Figura 17. Arquitectura del middleware

El desarrollo de las interfaces MQTT y HTTP resulta inmediata a partir de la
documentacién oficial de cada libreria, permitiendo realizar todo lo anteriormente
comentado. Sin embargo, la libreria CoAP Californium implementa la RFC 7252, que
por si sola no permite tener una estructura publish/subscribe basada en un broker CoAP
tal y como se define en draft-ietf-core-coap-pubsub. Por esto, es necesario modificar la
libreria para afiadir esta funcionalidad, ya que resulta necesaria para este proyecto.
Afortunadamente, existe un proyecto desarrollado por Thomas Wiss en la universidad de
Suecia disponible en Github [56], entre otras cosas contiene una modificacion de la
libreria COAP Californium en la que se implementa una API publish/subscribe para
CoAP. Por lo tanto, en la interfaz CoAP se implementa un broker CoAP basado en dicho
proyecto.

La principal diferencia a tener en cuenta entre la libreria Californium que
implementa la especificacion RFC 7252 de CoAP v la libreria modificada de Californium
gue implemente el draft propuesto para una arquitectura publish/subscribe es la siguiente.
Del lado del servidor, la libreria Californium CoAP esta disefiada para poner en marcha
un servidor que contiene diferentes topics, en este caso bajo diferentes URIs configuradas
de forma estatica en el cddigo de la aplicacidn del servidor. Son los gestores de las URIs
los que manejan las peticiones entrantes dirigidas a ellas. Los clientes CoAP pueden

28

Capitulo 4: Solucion técnica

generar peticiones con diferentes métodos para obtener datos o modificarlos. Sin
embargo, es imposible generar peticiones PUT/POST de publicacion sobre URIs no
existentes en el servidor, de forma que no resulta viable tener una arquitectura de
publicacién/suscripcion dinamica. Para esto, el draft propone la configuracion de la URI
Ips/ en el servidor, de forma que las publicaciones de tipo PUT/POST vayan dirigidas a
dicha URI y los topics que se publican, se afiaden como child topic de /ps como muestra
el ejemplo de la Figura 18. De esta forma, aunque el topic no exista dentro del servidor
CoAP, el funcionamiento interno de la URI /ps/ es el encargado de crear los topic
dinamicamente. Este funcionamiento viene afiadido en la libreria de Californium
modificada por Thomas Wiss.

/
LPS

ftopicl
r: /sub-topicl
/sub-topic2

ftopic2

Figura 18. Ejemplo de la estructura de topic propuesta en CoAP publish/subscribe

Una vez explicadas las librerias utilizadas, a continuacion, se detalla la
arquitectura de middleware implementada mediante diferentes clases de Java.

El sistema esta basado en tres interfaces independientes, cada una procesa los
mensajes recibidos de cada protocolo. El hecho de tener tres procesos independientes
genera la necesidad de poder comunicarlos entre ellos, para ello se plantean dos
posibilidades, mediante memoria compartida o mediante paso de mensajes. Dadas las
grandes diferencias de construccion de las librerias empleadas y del funcionamiento de
cada protocolo, se propone la comunicacion de los tres procesos mediante paso de
mensajes. De esta forma no es necesario modificar en gran medida las librerias
seleccionadas.

La comunicacién entre los procesos y la traduccion de protocolos se realiza en el
Protocolo de Comunicacion (MQTT, CoAP o HTTP), ver Figura 17, teniendo una
instancia para cada proceso: Protocolo de comunicacion MQTT, Protocolo de
comunicacion CoAP y Protocolo de comunicacion HTTP. En ellos, se programa el
funcionamiento necesario para cumplir con los casos de uso propuestos anteriormente en
la seccion 4.1. La sincronizacion entre procesos se lleva a cabo a traves de la instancia
GestorRecursos, ver Figura 17. Este gestor contiene informacion actualizada sobre los
topics publicados, informacion sobre los topics alojados en servidores CoAP y sobre los
clientes suscritos a cada topic. Por lo tanto, cada Protocolo de comunicacion, antes de
realizar la traduccién de mensajes pertinente, consulta la informacién necesaria en el
GestorRecursos, consiguiendo asi sincronizacion entre procesos para Su posterior
comunicacion.

29

Capitulo 4: Solucion técnica

Cada Protocolo de comunicacion tras analizar la informacion necesaria, realiza la
traduccion y comunicacién mediante paso de mensajes con los otros dos procesos
restantes. A continuacion, se muestran diferentes diagramas de flujo que representan los
procesos de comunicacion entre interfaces.

Protocolo de comunicacion MOTT

Llegada MQTT
PUBLISH

Llegada MQTT
SUBSCRIBE

Comprobar topic
en el gestor de
recursos

¢ Proviene
del broker COAP o
del servidor
HTTP?

Si—{ Fin

l

iSe
trata de un
topic alojado en un
servidor
CoAP?

El cliente se queda
no—p=(suscrito al topic en el
broker MQTT

Informar del topic
al gestor de Si
recursos

Informar del

usuario suscriptor
al Gestor de
Recuros

Transmitir PUT al

Creo un cliente
observador al
topic del servidor
CoAP

Actualizar valor en

broker CoAP el servidor HTTP

(traduccion)

e |

El cliente se
queda suscrito al
Fin topic en el broker
MQTT

[——

Figura 19. Diagrama de flujo de la interfaz MQTT

En la Figura 19 se observa el diagrama de flujo de la interfaz MQTT para los
siguientes casos:

Recepcién de un mensaje MQTT PUBLISH: en este caso, si el mensaje
proviene de un cliente MQTT PUBLISH, el Protocolo de comunicacion
MQTT informa al Gestor de recursos de la recepcion del mensaje dirigido
al topic. El gestor actualiza la informacion de control sobre el topic y a
continuacion se envia un mensaje CoAP PUT con los datos del topic a la
interfaz CoAP. Cuando esta interfaz lo recibe, se encarga de notificar a los
clientes CoAP que tienen una relacion de observacion a ese topic.
Adicionalmente, se actualiza el servidor HTTP con dichos datos para
poder acceder a ellos a traves de peticiones HTTP GET. Por otro lado, si
el mensaje MQTT PUBLISH ha sido generado por el broker CoAP o por
el servidor HTTP, no se hace nada puesto que es fruto de la traduccion de
un mensaje CoAP PUT/POST o HTTP PUT/POST vy el broker MQTT
Unicamente notifica a los clientes MQTT SUBSCRIBER.

Recepcidn de un mensaje MQTT SUBSCRIBE: en este caso, el Protocolo
de comunicacion MQTT lo primero que hace es consultar la informacion
de control sobre el topic al que hace referencia el mensaje a través del
Gestor de recursos. Si se trata de un topic alojado en un servidor CoAP,
notifica al Gestor de recursos sobre el usuario suscriptor. Esto permite

30

Capitulo 4: Solucion técnica

llevar la cuenta de los usuarios que estan suscritos. A continuacion,
comprueba a través del Gestor de recursos si ya existe un Observador
creado a dicho topic alojado en el servidor CoAP. Si ya existe uno,
unicamente deja al cliente MQTT suscrito al topic en el broker MQTT. En
caso de que no exista un Observador, lo crea y deja al cliente MQTT
suscrito al topic en el broker MQTT. Por otro lado, si no se trata de un
topic alojado en un servidor CoAP, Unicamente deja al cliente MQTT
suscrito en el broker MQTT

Protocolo de comunicacion CoAP

Llegada CoAP
GET

Comprobar topic
en el gestor de
recursos

Llegada CoAP
PUT/POST

Informar del topic l
Si—| al gestor de
recursos

¢ Proviene
del broker MQTT
o del servidor
HTTP?

Se
trata de un
topic alojado en un
servidor
CoAP?

¢ Tiene
informacion
No#-< almacenada sobre
ese topic?

Responde la
Si. peticién con la
informacién

No

¢ Fin No
-) v
Informar del topic El cliente se quega Responde con
al gestor de Si observando el topic en c6digo de error
recursos el broker CoAP 4.04 "NOT
FOUND"
Retransmitir la
Transmitir No—p-| peticjén GET al
PUBLISH al Actualizar valor en servidor COAP
broker MQTT el servidor HTTP
(traduccion) s

v

Informar del Responde al GET
usuario al gestor con la informacién
de recursos obtenida del topic

S

Creo un
observador al
topic del servidor
CoAP

observador para

Si
El cliente se
queda suscrito al
topic en el broker
CoAP

Figura 20. Diagrama de flujo de la interfaz CoAP

En la Figura 20, se observa el diagrama de flujo de la interfaz CoAP para los
siguientes casos:

- Recepcién de un mensaje CoOAP PUT/POST: en este caso, si el mensaje
proviene de un cliente CoAP PUT/POST, el Protocolo de comunicacion
CoAP informa al Gestor de recursos de la recepcién del mensaje dirigido
al topic. El gestor actualiza la informacion de control sobre el topic y a
continuacion se envia un mensaje MQTT PUBLISH con los datos del topic
a lainterfaz MQTT. Cuando esta interfaz lo recibe, se encarga de notificar
a los clientes MQTT suscritos ese topic. Adicionalmente, se actualiza el
servidor HTTP con dichos datos para poder acceder a ellos a través de

31

Capitulo 4: Solucion técnica

peticiones HTTP GET. Por otro lado, si el mensaje CoAP PUT/POST ha
sido generado por el broker MQTT o por el servidor HTTP, no se hace
nada, puesto que es fruto de la traduccion de un mensaje MQTT PUBLISH
0 HTTP PUT/POST vy el broker CoAP Gnicamente notifica a los clientes
COoAP que tienen una relacion de observacion establecida con ese topic.

- Recepcidn de un mensaje CoAP GET: en primer lugar, se consulta la
informacidn sobre ese topic en el Gestor de recursos. Si se trata de un topic
alojado en un servidor CoAP existen dos posibilidades: a) si se trata de una
peticion GET simple, se retransmite la peticion al servidor y con la
informacion obtenida se responde a la peticion del cliente, o b) si se trata
de una peticion GET Observe, se notifica al Gestor de recursos sobre el
usuario observador. Esto permite llevar la cuenta de los usuarios que estan
observando. A continuacion, se comprueba a través del Gestor de recursos
si ya existe un Observador creado a dicho topic alojado en el servidor
CoAP. Si ya existe uno, el gestor Unicamente deja al cliente CoAP
observando el topic en el broker CoAP. En caso de que no exista un
Observador, lo crea y deja al cliente CoAP suscrito al topic en el broker
CoAP. En caso de que no sea un topic alojado en un servidor CoAP existen
dos posibilidades: a) si es una peticion GET simple se consulta si se
dispone de informacion almacenada (publicada mediante un mensaje
MQTT PUBLISH, CoAP PUT/POST o HTTP PUT/POST). En caso
afirmativo se contesta con dicha informacién y en caso negativo se
contesta con el codigo de error 4.04 NOT FOUND, o b) si se trata de una
peticion GET Observe se deja al cliente observando el topic en el broker
CoAP.

Protocolo de comunicacién HTTP

Llegada HTTP Llegada HTTP
PUT/POST GET

A4

Comprobar topic
y en el gestor de
Informar del topic recursos

al gestor de
recursos l

AN

¢ Tiene

¢ Se trata de Responde la

informacion
almacenada sobre
ese topic?

un topic alojado en
un servidor
CoAP?

Transmitir
PUBLISH al
broker MQTT
(traduccion)

Si—p{ peticion con la

Transmitir PUT al . i
informacion

broker CoAP
(traduccion)

Si No
y Y
Responde con
Retransmitir la cédigo de error
peticion GET al 404 "NOT
Fin servidor COAP FOUND"

y
Responde la
peticién con la
informacién
obtenida

Figura 21. Diagrama de flujo de la interfaz HTTP

32

Capitulo 4: Solucion técnica

En la Figura 21, se observa el diagrama de flujo de la interfaz HTTP para los
siguientes casos:

- Recepcion de un mensaje HTTP PUT/POST: en este caso, el Protocolo de
comunicacion HTTP informa al Gestor de recursos de la recepcion del
mensaje dirigido al topic. El gestor actualiza la informacion de control
sobre el topic y a continuacion se envia un mensaje MQTT PUBLISH con
los datos del topic a la interfaz MQTT. Cuando esta interfaz lo recibe, se
encarga de notificar a los clientes MQTT suscritos ese topic y se envia un
mensaje COAP PUT con los datos del topic a la interfaz CoAP, que se
encarga de notificar a los clientes que tienen una relacion de observacion
establecida.

- Recepcién de un mensaje HTTP GET: en primer lugar, se consulta la
informacidn sobre ese topic en el Gestor de recursos. Si se trata de un topic
alojado en un servidor CoAP se retransmite la peticion GET al servidor
CoAP y con la informacién recibida se responde la peticion original. En
cambio, si no se trata de un topic alojado en un servidor CoAP existen dos
opciones: a) si se dispone de informacién publicada a través de mensajes
MQTT PUBLISH, CoAP PUT/POST o HTTP PUT/POST se contesta a la
peticidn con dicha informacion, o b) si no existe informacién almacenada,
se contesta con el cddigo de error 404 NOT FOUND.

Adicionalmente, se definen dos elementos mas: Gestor de descubridores y
Descubridor. El primero de ellos dispone de una lista de servidores CoAP a los que se da
servicio a través del middleware. Es el encargado de crear un proceso Descubridor por
cada servidor CoAP. Se encarga de realizar peticiones CoAP GET a la URI /.well-
known/core del servidor. La respuesta que obtiene cada Descubridor contiene la lista de
topics de los que dispone el servidor CoAP al que le consulta. Esta informacion se le
comunica al Gestor de recursos para emplearse como informacion de control.

Por Gltimo, resulta interesante destacar los mecanismos de cifrado introducidos
en el middleware. A diferencia de Ponte, el sistema desarrollado permite la creacién de
canales de comunicacion seguros através DTLS y TLS. En este caso, las interfaces COAP,
MQTT y HTTP permiten dos tipos de conexiones diferentes: conexiones sin cifrar y
conexiones cifradas. En el caso de las conexiones cifradas, en la interfaz CoAP se ha
integrado el uso de DTLS sobre UDP y en el caso de las interfaces MQTT y HTTP se ha
integrado el uso de TLS sobre TCP. En los tres casos se utilizan certificados digitales
como medio de autenticacidn del servidor y del cliente, aunque también es posible el uso
de una clave secreta preestablecida (pre-shared key) como medio de autenticacion. La
creacion de los certificados digitales se detalla en el Anexo 2.

33

Capitulo 4: Solucion técnica

4.3. Solucién middleware escalable

El gran aumento de las aplicaciones de publicacion/recepcion de datos y el
consecuente crecimiento de las redes 10T, junto con el auge de la migracion de los
elementos arquitecturales a ubicaciones perimetrales de red, establece la necesidad de
plantear soluciones escalables que permitan adaptarse al crecimiento continuo del nimero
de usuarios de manera fluida. Cabe destacar que esta solucion ha venido inspirada por el
trabajo [34], en el cual proponen una arquitectura distribuida dindmica de brokers MQTT
como solucion a arquitecturas centralizadas en un unico broker.

La solucién inicial implementada en las secciones 4.1y 4.2, establece un sistema
estatico que no permite desplegar de forma distribuida el middleware desarrollado. Por
este motivo, en esta seccion se exponen elementos y funcionamientos afiadidos sobre la
arquitectura base, que permiten desplegar el middleware en mas de un dispositivo
garantizandose la comunicacion entre ellos. Como ya se ha comentado antes, esta es una
caracteristica que se echa en falta en el broker Ponte y que se aborda a continuacion.

El objetivo de querer garantizar la escalabilidad del middleware, implica
directamente la necesidad de intercomunicar multiples dispositivos en los que se instale
dicho middleware, permitiendo asi una arquitectura distribuida. Para realizar dicha
comunicacion entre dispositivos se ha elegido el protocolo MQTT, debido a que es un
protocolo orientado a entornos publish/subscribe cuyo funcionamiento resulta ideal para
cumplir con este objetivo. El disefio del middleware distribuido se basa en una
arquitectura en forma de arbol donde los nodos de la red se configuran de forma estatica
evitando lazos cerrados entre ellos.

Partiendo de la arquitectura base del middleware expuesta en el apartado 4.2, y
teniendo en cuenta que el elemento Gestor de recursos es el encargado de almacenar la
informacion de control para el correcto funcionamiento de los diferentes Protocolos de
comunicacion, se afiaden dos listas nuevas: una lista que contiene la direccion IP y el ID
del resto de middlewares a los que cada uno se conecta y una lista de topics externos en
el Gestor de recursos. Esta nueva lista de topics, almacena la informacion de los topic
que son publicados en otros middlewares distribuidos que forman la red. Esta es la Unica
informacidén adicional que se precisa para cumplir con el objetivo propuesto y que, a
continuacion, se muestra como se emplea y actualiza de forma dinamica en los diferentes
casos de uso implicados.

- Recepcién de un mensaje PUBLISH MQTT: en primer lugar, se
comprueba el emisor del mensaje mediante el Clientld del mensaje MQTT
y la lista de dispositivos que almacena el Gestor de recursos. Si el mensaje
proviene de un dispositivo middleware distribuido, el Protocolo de
comunicacion MQTT informa al Gestor de recursos de dicho topic y de la
fuente de origen. Adicionalmente el Protocolo de comunicacion MQTT
propaga el mensaje PUBLISH a los siguientes dispositivos que ejecutan el
middleware; de esta forma se distribuye la informacion por toda la
arquitectura distribuida. Por otro lado, si el mensaje proviene de un cliente
MQTT publisher y es la primera vez que se recibe una publicacion sobre

34

Capitulo 4: Solucion técnica

dicho topic, el Protocolo de comunicacion MQTT propaga el mensaje
PUBLISH atodos los dispositivos distribuidos de la lista; de esta forma se
actualiza la informacion en todos. El funcionamiento comentado se
representa en la Figura 22, en azul se resaltan los bloques afiadidos frente
al diagrama de flujo del sistema no escalable.

Llegada MQTT
PUBLISH

(Esel
primer
PUBLISH recibido >——Si—p-
sobre el
topic?

Informar del
topic externo al
gestor de
recursos

¢ Proviene
de un middleware
distribuido?

No

¥ v
Propagar Propagar
mensaje MQTT mensaje MQTT
PUBLISH a PUBLISH al
No todos los resto de
middlewares middlewares

¢ Proviene

del broker CoAP o
del servidor
HTTP?

l\io

Informar del topic
al gestor de <
recursos

N

Transmitir PUT al
broker CoAP
(traduccion)

Actualizar valor en
el servidor HTTP

Figura 22. Diagrama de flujo de la recepcion de un mensaje MQTT PUBLISH (middleware escalable)

- Recepcidn de un mensaje PUT/POST CoAP o HTTP: en este caso, el
mensaje Unicamente puede haber sido enviado por un cliente CoAP o
HTTP. El Protocolo de comunicacion CoAP o HTTP, consulta en el
Gestor de recursos si es la primera vez que se recibe una publicacion sobre
el topic al que va dirigido el mensaje. En caso afirmativo se envia un
mensaje MQTT PUBLISH al resto de dispositivos que ejecutan el

35

el pri

N

N

!

Llegada CoAP
PUT/POST

Es

PUT/POST
recibido sobre
el topic?

¢ Proviene
del broker MQTT
o del servidor
HTTP?

Capitulo 4: Solucion técnica

middleware; de esta forma se les informa sobre la existencia dicho topic a
todos. El funcionamiento comentado se representa en la Figura 23, en azul
se resaltan los bloques afadidos frente al diagrama de flujo del sistema no
escalable.

Llegada HTTP
PUT/POST

¢Es

el primer
PUT/POST
recibido sobre
el topic?

Transmitir MQTT
PUBLISH a todos los
middlewares

mer Transmitir MQTT Si—p|
PUBLISH a todos los

middlewares

Si—p>

No

!

[o]

Informar del topic
al gestor de
recursos

AN

Transmitir
PUBLISH al
broker MQTT
(traduccién)

Informar del topic
al gestor de
recursos

Si—p|

Transmitir PUT al
broker CoAP
(traduccién)

[o]

Informar
al ges
recu

del topic
tor de
rsos

Fin

Transmitir
PUBLISH al
broker MQTT
(traduccion)

Actualizar valor en
el servidor HTTP

\

/

Figura 23. Diagrama de flujo de la recepcion de un mensaje PUT/POST CoAP/HTTP (middleware distribuido)

Recepcion de un mensaje SUBSCRIBE MQTT o GET OBSERVE CoAP:
en este caso el Protocolo de comunicacion MQTT o CoAP consulta si ese
topic se corresponde con un topic que ha sido publicado en otro dispositivo
distribuido de la red que ejecuta el middleware, a través del Gestor de
recursos. En caso afirmativo, el Protocolo de comunicacion MQTT o
CoAP crea un cliente MQTT SUBSCRIBER que se suscribe a dicho
dispositivo sobre ese topic. Cada vez que reciba una notificacion sobre ese
topic se notifica a todos los clientes MQTT suscritos y a todos los clientes
CoAP observadores. Es importante destacar que esto solo se realiza para
la primera suscripcion MQTT u observacion CoAP que se recibe, lo que
permite disminuir el trafico generado. En caso de que se cancelen todas las
suscripciones MQTT vy todas las relaciones de observacion CoAP sobre

36

Capitulo 4: Solucion técnica

ese topic, el middleware debe cancelar la suscripcion MQTT a los demas
dispositivos que ejecutan el middleware. En la Figura 24 y Figura 25 se
muestra el comportamiento tanto frente a un mensaje MQTT SUBSCRIBE
como a un mensaje CoAP GET OBSERVE respectivamente, resaltando en
azul los bloques afiadidos frente a los diagramas de flujo del sistema no
escalable.

Recepcion de un mensaje CoOAP GET (no observe) o HTTP GET: en este
caso el Protocolo de comunicacion MQTT o CoAP consulta si ese topic se
corresponde con un topic que ha sido publicado en otro dispositivo
distribuido de la red que ejecuta el middleware, a través del Gestor de
recursos. En caso afirmativo, el Protocolo de comunicacion CoAP o HTTP
crea un cliente CoAP o un cliente HTTP que propaga la peticion CoAP
GET o HTTP GET hacia el dispositivo que ejecuta el middleware
distribuido correspondiente. Por ultimo, se responde a la peticion original
con la informacién obtenida. En la Figura 25 y Figura 26 se muestra el
comportamiento frente tanto a un mensaje CoAP GET como a un mensaje
HTTP GET respectivamente, resaltando en azul los bloques afiadidos
frente a los diagramas de flujo del sistema no escalable.

37

Llegada MQTT

SUBSCRIBE

\

Comprobar topic
en el gestor de
recursos

Creo un cliente
suscriptor MQTT
al middleware
sobre ese topic

¢ Se trata de un
topic publicado en otro
middleware?

Capitulo 4: Solucion técnica

Informar del
usuario suscriptor
al Gestor de
Recuros

No

El cliente se queda

suscrito al topic en el
broker MQTT

.Se
trata de un
topic alojado en un
servidor
CoAP?

El cliente se queda
suscrito al topic en el
broker MQTT

Si
Y

Informar del
usuario suscriptor
al Gestor de
Recuros

Creo un cliente
observador al
topic del servidor
CoAP

NO—p|

El cliente se
queda suscrito al
topic en el broker
MQTT

Figura 24. Diagrama de flujo de la recepcion de un mensaje MQTT SUBSCRIBE (middleware distribuido)

38

Llegada CoAP

GET

\/
Comprobar topic
en el gestor de
recursos

¢ Se trata de un
topic publicado en otro

¢Esun GET
middleware?

Observe?

Retransmitir la
peticion GET al
middleware

No

.Se
trata de un
topic alojado en un
servidor
CoAP?

¢Esun GET
Observe?

El cliente se queda
observando el topic en
el broker CoAP

Si

¢Esun GET

Retransmitir la
Observe?

peticiéon GET al
servidor CoAP

NO—p»-|

Si

Y

Informar del
usuario al gestor
de recursos

Responde al GET

con la informacion
obtenida del topic

. Creo un

Exsiste u observador al

topic del servidor
CoAP

ese topic?,

El cliente se
queda suscrito al
topic en el broker
CoAP

—— p{ conlainformacion

almacenada sobre

Capitulo 4: Solucion técnica

Creo un cliente
suscriptor MQTT
al middleware
sobre ese topic

Informar del
usuario al gestor
de recursos

\

El cliente se queda
—(observando el topic en

el broker CoAP

Responde al GET

obtenida del topic

¢Tiene

informacion Responde la

peticién con la

ese topic? informacién

Responde con
cédigo de error
4.04 "NOT
FOUND"

Figura 25. Diagrama de flujo de la recepcion de un mensaje CoAP GET (middleware distribuido)

39

Capitulo 4: Solucion técnica

Llegada HTTP
GET

\
Comprobar topic
en el gestor de
recursos

|

Responde la
peticion con la
informacion
obtenida

¢Se trata de un
topic publicado en otro
middleware?

Retransmitir la
Si—| peticion GET al |——— |
middleware

No

:Se
trata de un
topic alojado en un
servidor
CoAP?

¢ Tiene
informacion
almacenada sobre
ese topic?

Responde la
Si—p{ peticion con la
informacion

Si No
Y
Responde con

Retransmitir la codigo de error
peticién GET al 404 "NOT
servidor CoAP FOUND"

Y

Responde la

peticién con la
informacion
obtenida

Figura 26. Diagrama de flujo de la recepcion de un mensaje HTTP GET (middleware distribuido)

Adicionalmente, el elemento Descubridor que se encarga de descubrir los
diferentes topics alojados en servidores CoAP, también genera un mensaje MQTT
PUBLISH a cada dispositivo que ejecuta el middleware de forma distribuida. De esta
manera también comunica la existencia de este tipo de topics.

Del mismo modo que se comentaba en el apartado 4.2, a fin de evitar conflictos
con los nombres de los topics, se define una limitacion en la configuracion en los nombres
de los topics: es necesario que los nombres de los topics que se publican en diferentes
sistemas middleware distribuidos sean diferentes e independientes entre ellos.

Por Gltimo, la Figura 27 muestra un pequefio ejemplo de comunicacion de clientes
IoT ubicados en diferentes redes interconectados a través de la arquitectura de
middlewares distribuida. El ejemplo esta formado por un cliente MQTT que publica de
datos sobre un topic en el middleware ubicado en lared 1. A su vez un cliente MQTT se
suscribe a dicho topic y un cliente CoAP observa el topic, ambos sobre el middleware
ubicado en la red 2. En la figura se observa por un lado la capacidad de intercomunicar
clientes que trabajan con diferentes protocolos y tambien muestra la escalabilidad del
middleware.

40

Capitulo 4: Solucion técnica

Red 1 Red 2

Middleware 1 Middleware 2
y

SUBSCRIBE MQTT topic

@ PUBLISH MQTT topic

Cliente MQTT

Figura 27. Ejemplo de comunicacion distribuida

41

Capitulo 5: Descripcion de los escenarios de aplicacion

5. Descripcion de los escenarios de aplicacion

En este capitulo, se describen los escenarios de pruebas considerados en el trabajo,
con los que se pretenden estudiar los diferentes aspectos, tanto positivos como negativos,
que surgen al utilizar el sistema middleware desarrollado y explicado en el Capitulo 4.

Se proponen dos casos de estudio. EI primero de ellos se basa en el analisis de la
sobrecarga afiadida que aparece al utilizar el middleware en caso de ubicarlo en un centro
de datos cloud, siguiendo el modelo de computacién para 10T en el que los datos se
transmiten a recursos computacionales de un centro de datos remoto, donde se dispone
tipicamente de maquinas sin limitaciones. El segundo de ellos, acercandonos a las
tendencias actuales, se propone el estudio del middleware en caso de alojarlo en el borde
(“edge” en inglés) de la red 10T, siguiendo el modelo de computacion perimetral o edge
computing en inglés. En este Gltimo caso, los recursos computacionales suelen ubicarse
cerca de donde se generan los datos, pero suelen estar limitados en cuanto a la memoria
disponible, la capacidad de la CPU o el almacenamiento.

5.1. Escenario 1: Middleware ubicado en la nube

Para el primer escenario se propone la topologia de red mostrada en la Figura 28.
Como se puede observar, la red de sensores y el middleware se encuentran ubicados en
localizaciones diferentes.

Red del laboratorio UNIZAR Red doméstica privada

Middleware

S INTERNET

Figura 28. Arquitectura loT escenario 1

La red de sensores se encuentra en una red local privada doméstica, los
dispositivos empleados para los clientes/servidores 10T son Raspberry Pi 3 model B que
disponen de un procesador Quad Core 1.2GHz y 1GB de memoria RAM, caracteristicas
mas que suficientes para aplicaciones IoT.

Entre los dispositivos 10T, para obtener los resultados se han implementado los
siguientes:

- Cliente MQTT PUBLISHER
- Cliente MQTT SUBSCRIBER
- Cliente MQTT-SN PUBLISHER

42

Capitulo 5: Descripcion de los escenarios de aplicacion

- Cliente MQTT-SN SUBSCRIBER
- Cliente CoAP PUT

- Cliente CoAP GET y GET Observe
- Servidor CoAP

_ Cliente HTTP GET

_ Cliente HTTP PUT

Como se ha explicado en la seccion 2.2.2, los clientes MQTT-SN se comunican a
través del MQTT-SN Gateway, que también se ejecuta sobre una Raspberry Pi 3 model
B.

El middleware se encuentra en un equipo ubicado en la red del laboratorio de
investigacion de la Universidad de Zaragoza. El dispositivo empleado se trata de una
estacion de trabajo Workstation Intel Xeon SkyLake-SP 3106 dual con 480GB de disco
SSD, 8TB de disco duro y 128 GB de memoria RAM. Con esta configuracion se pretende
simular un entorno cloud sin limitacion de recursos en el que el tiempo de procesamiento
del middleware no se vea afectado negativamente por los recursos del dispositivo.

Respecto al software utilizado para los dispositivos 10T, se han empleado las
siguientes librerias para desarrollar las aplicaciones de los clientes.

- CoAP PubSub (java) [56]para los clientes COAP.

_ Californium CoAP y CoAP PubSub (java) [12] [56] para el servidor
CoAP.

- Moquette (java) [37] para el broker MQTT

- Eclipse Paho MQTT (java) [14] para los clientes MQTT.

- Maqtt-sn-tools (C) [22] para los clientes MQTT-SN.

- Eclipse Paho MQTT-SN Embedded (C) [20] para el GW MQTT-SN.

- Oracle HTTP (java) para los clientes y servidor HTTP.

43

Capitulo 5: Descripcion de los escenarios de aplicacion

5.2. Escenario 2: Middleware ubicado en el borde de la red

Para el segundo escenario, se propone la topologia de red mostrada en la Figura
29. Como se puede observar, la red de sensores y el middleware estd ubicado en la misma
ubicacién, siendo esta una red privada doméstica.

Red doméstica privada

&
@ @
&

Dispositivos 10T

Middleware MQTT-SN
Gateway

Figura 29. Arquitectura loT escenario 2

En este caso, los dispositivos empleados son los mismos tanto para
clientes/servidores 10T como para el middleware, son también Raspberry Pi 3 model B.
A diferencia del Escenario 1, la limitacion en recursos del dispositivo que aloja el
middleware repercute directamente en la capacidad de cdmputo de este y por ende en el
retardo de las comunicaciones como se muestra en el Capitulo 6.

El software y hardware empleado para los dispositivos 10T es el mismo que el
mencionado en el Escenario 1.

Con esta configuracion se pretende simular un entorno de computacion perimetral
0 edge computing, con infraestructura de red basada en dispositivos de recursos limitados.
De esta forma se estudian los efectos de esta arquitectura frente a la arquitectura propuesta
en el Escenario 1 en términos de retardo.

44

Capitulo 6: Resultados

6. Resultados

El objetivo principal es estudiar la latencia extremo a extremo en un entorno de
red real para los escenarios comentados en el Capitulo 5, haciendo hincapié en el retardo
introducido por el middleware como resultado de la traduccién de mensajes entre
protocolos. Para ello se plantea la siguiente metodologia.

Para poder medir el retardo extremo a extremo en comunicaciones de tipo
publish/subscribe, es necesario muestrear el instante temporal en el que el cliente que
genera datos envia el mensaje y el instante temporal en el que el cliente receptor lo recibe.
Para ello, el cliente publisher transmite el timestamp? de unix capturado en el momento
del envio del mensaje, por otro lado, el cliente subscriber captura el timestamp de unix en
el momento de la recepcion del mensaje y se calcula la diferencia. Es importante destacar
que es fundamental tener los clientes sincronizados® temporalmente para que las medidas
sean correctas.

Por otro lado, también resulta interesante poder medir el tiempo consumido en
comunicaciones de tipo peticion/respuesta, como pueden ser la interaccion mediante
HTTP GET o CoAP GET. En este caso, no se mide el retardo extremo a extremo, sino
que se mide el tiempo de ida y vuelta de la combinacion peticidn-respuesta, también
conocido como RTT (Round Trip Time). Paraello, el cliente registra el timestamp de unix
en el momento del envio de la peticion y se calcula la diferencia con el timestamp del
momento de la recepcién de la respuesta.

La Figura 30 muestra la metodologia seguida durante la medicién del retardo
extremo a extremo.

Cliente generador de datos

Transmisién en t1

Middleware

- yaor: t @

) Cliente receptor de datos
Topic: ;

m "
eStamp~ valor: ¢1
@ Recepcion en t2
%

Retardo e2e: t1-t2

Figura 30. Esquema de medicion del retardo extremo-extremo

2 Timestamp: marca temporal de unix, se define como la cantidad de segundos transcurridos desde
el 1 de enero de 1970.

3 Para sincronizar diferentes maquinas bajo un mismo reloj se emplea el protocolo NTP (Network
Time protocolo) [36] o el protocolo PTP (Precision Time Protocol) [48] en aplicaciones de mayor
precision.

45

Capitulo 6: Resultados

Adicionalmente, se pretende calcular de forma aislada el tiempo de procesado
interno en el middleware de cada tipo de comunicacion, tanto para comunicaciones
directas entre protocolos como para comunicaciones en las que interviene la traduccion
de protocolos. Para ello se captura en la interfaz de red del dispositivo en el que se ejecuta
el middleware. Este estudio, se centra comunicaciones publish /subscribe, ya que son méas
habituales en aplicaciones orientadas a comunicaciones en tiempo real. Para ello se toma
como referencia el instante temporal en el que se recibe el mensaje del cliente publisher
y se calcula la diferencia con el instante temporal en el que se captura el envio de la
notificacion a los clientes subscriber.

6.1. Resultados escenario 1

Con el objetivo de verificar el funcionamiento del sistema y de obtener medidas
representativas de su utilizacion, y dada la gran variedad de posibles combinaciones
disponibles en las comunicaciones 0T, se han propuesto diferentes casos en funcion de
los diferentes niveles de QoS y para comunicaciones cifradas y no cifradas.

Tiempo medio extremo-extremoy RTT

En primer lugar, para comunicaciones no cifradas y niveles de QoS 0y 1
respectivamente, se comparan los distintos retardos extremo a extremo medios en
comunicaciones del tipo publicacién/suscripcion. Para ello se definen: un cliente MQTT
Suscriptor, un cliente MQTT-SN Suscriptor y un cliente CoAP observador y se procede
a publicar datos mediante: un cliente MQTT Publisher, un cliente MQTT-SN Publisher,
un cliente CoAP PUT, un servidor COAP y un cliente HTTP PUT respectivamente. Con
el fin de ser equitativo entre protocolos, la configuracion de QoS 0 de MQTT/MQTT-SN
se compara con CoAP usando mensajes NON y la configuracion de QoS 1 de
MQTT/MQTT-SN con CoAP usando mensajes CON. Como HTTP no diferencia niveles
de QoS, solo se compara con la configuracion QoS 0 de MQTT/MQTT-SN y mensajes
NON de CoAP. Los resultados se muestran en la Figura 31 y Figura 32.

46

Capitulo 6: Resultados

70

I Receptor CoAP
[Receptor MQTT

60" | N Receptor MQTT-SN 1

50 - b

I
o

Tiempo (ms)
w
o
T
L

20 - 1

Cliente MQTT Cliente CoAP Cliente MQTT-SN Servidor CoAP Cliente HTTP
Protocolo transmisor

Figura 31. Retardo medio extremo-extremo QoS 0 (MQTT/MQTT-SN) y mensajes NON (CoAP) sin TLS/DTLS,
escenario 1

70

I Receptor CoAP
60 - - Receptor MQTT
[Receptor MQTT-SN

50 - b

IS
o
T

L

Tiempo (ms)
w
o
T
L

20

Cliente MQTT Cliente CoAP Cliente MQTT-SN Servidor CoAP
Protocolo transmisor

Figura 32. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON (CoAP) sin TLS/DTLS,
escenario 1

Siguiendo la misma metodologia, se realizan las mismas pruebas para
comunicaciones cifradas y niveles de QoS 0y 1. En este caso no se incluyen resultados
para clientes MQTT-SN puesto que no cuentan con implementacion TLS. Los resultados
se muestran en la Figura 33 y Figura 34.

47

Capitulo 6: Resultados

70

I Receptor CoAP
60 | I Receptor MQTT B

50

Tiempo (ms)
w N
o o

20

10

Cliente MQTT Cliente CoAP Servidor CoAP Cliente HTTP
Protocolo transmisor

Figura 33. Retardo medio extremo-extremo QoS 0 (MQTT/MQTT-SN) y mensajes NON (CoAP) con TLS/DTLS,
escenario 1

I Receptor CoAP
80 [Receptor MQTT

Tiempo (ms)

Cliente MQTT Cliente CoAP Servidor CoAP
Protocolo transmisor

Figura 34. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON (CoAP) con TLS/DTLS,
escenario 1

De este primer estudio, se puede ver una tendencia en cuanto a la diferencia de
tiempos. En primer lugar, en todos los casos se puede observar una diferencia de tiempos
clara en las comunicaciones que requieren traduccion de protocolos (en torno a 10-12
milisegundos de diferencia) como pueden ser:

- Transmisor Cliente CoAP y receptores MQTT o MQTT-SN
- Transmisor Servidor CoAP y receptores MQTT o MQTT-SN
- Transmisor MQTT y receptor COAP

- Transmisor MQTT-SN y receptor COAP

- Transmisor HTTP y receptores COAP, MQTT y MQTT-SN

Se observa ademas que el retardo es mayor para el caso en el que se transmite
mediante un servidor CoOAP. Esto es asi porque la observacion del topic en el servidor

48

Capitulo 6: Resultados

CoAP se realiza mediante un cliente CoAP integrado en el middleware. Esto hace que
esta comunicacion y su posterior traduccion interna del middleware afiadan un retardo
adicional. En el resto de los casos, la diferencia entre retardos se debe Unicamente al
tiempo de procesado empleado por el middleware durante la traduccion de protocolos.

Un aspecto a destacar es la escasa diferencia en el retardo experimentado por los
receptores MQTT y MQTT-SN, siendo de 1 o 2 milisegundos, esto es debido a que la
comunicacion fuera de la red de sensores entre el middleware y el MQTT-SN Gateway
se realiza mediante MQTT.

Por ultimo, resulta importante destacar que, en la mayoria de los casos, la
utilizacion del mismo protocolo en transmision y en la recepcion resulta més eficiente en
términos de retardo, como era de esperar, siendo la mejor opcion en términos de retardo
el protocolo MQTT-SN.

Por otro lado, se analizan también las comunicaciones de tipo peticién/respuesta
en comunicaciones sin cifrar y cifradas para los clientes HTTP y CoAP obteniendo
informacidn a través de peticiones GET.

Cliente CoAP GET Cliente HTTP GET Cliente CoAP GET Cliente HTTP GET

a) b)

Figura 35. Retardo medio RTT para una peticion GET a un topic en memoria (a), y a un recurso alojado en un
servidor CoAP (b) sin TLS/DTLS, escenario 1

700 T T 700

Cliente CoAP GET Cliente HTTP GET Cliente CoAP GET Cliente HTTP GET

a) b)

Figura 36. Retardo medio RTT para una peticion GET a un topic en memoria (a), y a un recurso alojado en un
servidor CoAP (b) con TLS/DTLS, escenario 1

49

Capitulo 6: Resultados

Como se ve en la Figura 35 y la Figura 36, se realizan peticiones GET desde
clientes CoOAP y HTTP dirigidas al middleware. En las imagenes de la izquierda (Figura
35 a) y Figura 36 a)), el recurso se ha publicado desde clientes publisher tipo MQTT,
MQTT-SN, CoAP PUT/POST o HTTP PUT/POST, por lo que la Gltima informacion
recibida se encuentra almacenada en memoria y el middleware contesta directamente con
ella. En las imagenes de la derecha (Figura 35 b) y Figura 36 b)), se trata de un recurso
alojado en un servidor CoAP, por lo que de forma proactiva el middleware retransmite la
peticion GET al servidor para poder acceder a la informacion.

Como era de esperar en el segundo caso (Figura 35 b) y Figura 36 b)), el retardo
es mayor para ambos protocolos puesto que el middleware no contesta con la peticion
directamente, sino que la retransmite y espera a recibir la informacion para contestar. En
ambos casos, el retardo RTT medio es menor para el cliente CoAP frente al cliente HTTP.
Esto no es debido a la traduccion de protocolos en si, sino a la diferencia de
funcionamiento entre ambos protocolos. CoAP funciona sobre UDP y no esta orientado
a conexion frente a HTTP que funciona sobre TCP y en cada peticion GET debe
establecer la conexion TCP. Esto incrementa el numero de paquetes y bytes transmitidos
y por ende el retardo total.

En el caso de comunicaciones cifradas, la diferencia entre CoOAP y HTTP se
reduce drasticamente puesto que al emplear COAP sobre DTLS, este establece la conexion
segura mediante un handshake inicial muy similar al de HTTP sobre TLS, por lo que el
nimero de mensajes intercambiados y de bytes transmitidos se asemeja.

Tiempo medio de procesado en el middleware

Tanto los retardos medios extremo a extremo como los retardos RTT han sido
medidos en un escenario de red real. Esto nos permite tener una idea del comportamiento
del sistema, pero no de forma estricta, puesto que el estado de la red puede variar de una
realizacion a otra y las medidas pueden sufrir variaciones. Por esta razén, como medida
mas precisa se pretende aislar el tiempo de procesado interno del middleware a partir de
capturas de Tcpdump realizadas en la maquina en la que dicho middleware se ejecuta. La
Tabla 5 muestra un resultado mas preciso del tiempo empleado por el middleware en
procesar cada tipo de mensaje en las diferentes configuraciones.

50

Capitulo 6: Resultados

Tiempo (ms) de procesado en comunicaciones publish/subscribe
Sin cifrado Con cifrado
Transmisor | Receptor | QoS Oy NONs| QoS1yNONs | Qos0y NONs | QoS 1y NONs

CoAP 2,14 2,58 3,20 3,64

CoAP MQTT 9,27 10,39 11,24 13,12
MQTT-SN 9,35 10,72 - -

CoAP 10,74 11,45 10,05 12,49

MQTT MQTT 1,74 2,13 2,21 3,16
MQTT-SN 1,77 2,48 - -
CoAP 10,15 10,81 - -
MQTT-SN MQTT 1,64 2,11 - -
MQTT-SN 1,53 2,38 - -

. CoAP 8,65 11,31 9,10 11,69

Secrc‘)':':r MQTT 17,65 22,94 18,81 22,15
MQTT-SN 17,94 23,29 - -
CoAP 4,34 - 5,07 -
HTTP MQTT 14,95 - 14,42 -
MQTT-SN 15,61 - - -

Tabla 5. Tiempo medio de procesado en comunicaciones publish/subscribe, escenario 1

Tal y como se comentaba anteriormente, las comunicaciones que requieren
traduccion de protocolos incrementan el tiempo de procesado interno del middleware
entre 8ms y 22ms, siendo las mas elevadas en el caso de recibir informacion desde un
servidor CoAP. Adicionalmente, se ve como el uso de un nivel de QoS 1 (MQTT/MQTT-
SN) y mensajes CON (CoAP) no introduce grandes efectos negativos frente a emplear un
nivel de calidad de servicio inferior, siendo la diferencia del orden de 1ms. Por ultimo,
emplear comunicaciones cifradas también introduce en media 1ms o 2ms de retardo extra
debido a las operaciones de cifrado y descifrado realizadas.

Ancho de banda medio consumido en la red de sensores

Dada la flexibilidad que aporta el middleware a la hora de seleccionar un
protocolo de transmision de datos, para completar el estudio, se analiza el ancho de banda
consumido por los nodos transmisores en la red de sensores, en términos de bytes por
segundo. Para la realizacion de este estudio se han empleado en todos los casos clientes
que publican datos cada 2 segundos cuya carga Util es de 13 bytes. Las Figura 37,Figura
38,Figura 39 yFigura 40 muestran los resultados para las diferentes configuraciones.

51

Capitulo 6: Resultados

Bytes/s
\.'

Cliente CoAP (NONs)
Cliente MQTT (QoS 0)
Cliente MQTT-SN (QoS 0)
Servidor CoAP (NONs)
Cliente HTTP

100 1 1 L
0 50 100 150

Tiempo(s)

Figura 37. Ancho de banda medio consumido por los diferentes clientes con QoS 0 (MQTT/MQTT-SN) y mensajes

200 250 300

NON (CoAP) y HTTP sin TLS/DTLS

180 T T T T
Cliente CoAP (CONs)
160 - Cliente MQTT (QoS 1) B
Cliente MQTT-SN (QoS 1)
140 F Servidor CoAP (CONs) i
120 4
£ 100 VW W E
(2]
2
>
m 80 4
60 i WWMWMW
40 - B
20 (B
0 1 Il 1 1 1
0 50 100 150 200 250
Tiempo(s)

300

Figura 38. Ancho de banda medio consumido por los diferentes clientes con QoS 1 (MQTT/MQTT-SN) y mensajes

CON (COAP) sin TLS/DTLS

52

Capitulo 6: Resultados

Cliente CoAP (NONs)
Cliente MQTT (QoS 0)
Servidor CoAP (NONs)
Cliente HTTP

103

Bytes/s

A e S

1 1 L 1 1
0 50 100 150 200 250 300
Tiempo(s)

Figura 39. Ancho de banda medio consumido por los diferentes clientes con QoS 0 (MQTT) y mensajes NON (CoAP)
y HTTP con TLS/DTLS

600 T T T
Cliente CoAP (CONSs)
Cliente MQTT (QoS 1)
Servidor CoAP (CONSs) | 4

500

400

200

100

T =%

VAN W W, A
W VWY WV _/ WY v\n _\/\NW
I L 1 1

100 150 200 250 300
Tiempo(s)

Figura 40. Ancho de banda medio consumido por los diferentes clientes con QoS 1 (MQTT) y mensajes CON (CoAP)
con TLS/DTLS

En primer lugar, como era de esperar, el protocolo HTTP se trata el protocolo que
mas ancho de banda consume, siendo en media aproximadamente 10 veces mayor que el
ancho de banda consumido por el resto de los protocolos. No se trata de un
comportamiento anémalo puesto que HTTP no fue disefiado para aplicaciones 10T, sino
para aplicaciones de transferencia de informacion mas complejas y sin restricciones ni
energéticas ni de ancho de banda.

En segundo lugar, el protocolo que mas recursos consume se trata de MQTT tanto
en configuracion de QoS 0 o 1. Tampoco es de extrafar, ya que emplea como protocolo
de transporte TCP, lo que hace que el tamafio de la cabecera de nivel de transporte sea

53

Capitulo 6: Resultados

mayor a los protocolos que emplean UDP y ademas incluye la confirmacion de paquetes
mediante mensajes ACK.

Por ultimo, existe gran similitud en el ancho de banda consumido por el cliente
MQTT-SN, cliente CoAP y servidor CoAP puesto que los tres funcionan sobre UDP
como protocolo de transporte y el numero y tamafio de los paquetes es similar tanto para
configuraciones de QoS 0 / mensajes NON como para QoS 1/ mensajes CON, siendo el
cliente MQTT-SN en media el que menos ancho de banda consume en comunicaciones
no cifradas.

6.2. Resultados escenario 2

Mediante la realizacion de este escenario, se pretenden analizar el efecto en
términos de retardo que supondria utilizar el middleware desarrollado en un dispositivo
de bajos recursos como es una Raspberry Pi 3. Esto es de gran interés debido a la
tendencia actual de acercar los nodos de computo al borde de la red (Edge computing)
disminuyendo asi el tiempo de transmision en escenarios basados en computacion en la
nube (cloud computing).

Para poder realizar un analisis correcto, se han seleccionado los casos de uso méas
restrictivos, en este caso las configuraciones con QoS 1 (MQTT/MQTT-SN) y
mensajes CON (CoAP) con y sin cifrado. En este caso, Gnicamente se han estudiado las
comunicaciones de tipo publish/subscribe que, en principio, estan destinadas a
comunicaciones en tiempo real.

Tiempo medio extremo-extremoy RTT

Del mismo modo que en el Escenario 1, en la Figura 41y Figura 42 se representan
los retardos extremo-extremo experimentado en las comunicaciones. A primera vista se
visualiza una diferencia de tiempos mucho mayor entre protocolos heterogéneos, siendo
esta de entre 40 y 60 ms.

54

Capitulo 6: Resultados

120 T T T T
I Receptor CoAP

100 L [Receptor MQTT]
I Receptor MQTT-SN

Tiempo (ms)

Cliente MQTT Cliente CoAP Cliente MQTT-SN Servidor CoAP
Protocolo transmisor

Figura 41. Retardo medio extremo-extremo QoS 1 (MQTT/MQTT-SN) y mensajes CON (CoAP) sin TLS/DTLS,
escenario 2

120 T T T

[Receptor CoAP
[Receptor MQTT

Tiempo (ms)

Cliente MQTT Cliente CoAP Servidor CoAP
Protocolo transmisor

Figura 42. Retardo medio extremo-extremo QoS 1 (MQTT) y mensajes CON (CoAP) con TLS/DTLS, escenario 2

A continuacion, la Figura 43 y Figura 44 muestran una comparativa detallada
entre los resultados obtenidos en el Escenario 1 con los obtenidos en este escenario en lo
referente a cada protocolo de forma independiente.

55

Capitulo 6: Resultados

— 100 T T T T
(/2] 80 [_ Receptor CoAP Escenario 1
E _ Receptor CoAP Escenario 2
o 60F .
Q. -
£ 40
QL 20F B
. 0

Cliente MQTT Cliente CoAP Cliente MQTT-SN Servidor CoAP

Protocolo transmisor

— 100 T T I T
[2]) 80 L _ Receptor MQTT Escenario 1]
E |:| Receptor MQTT Escenario 2
Q 60 - -
% ;8 : . l . |
i: O 1 1 1 1

Cliente MQTT Cliente CoAP Cliente MQTT-SN Servidor CoAP

Protocolo transmisor

__100 . . , ;
7)) 80 L _ Receptor MQTT-SN Escenario 1]
E |:| Receptor MQTT-SN Escenario 2
S 60F .
Q. L -
i: 0 1 1]]

Cliente MQTT Cliente CoAP Cliente MQTT-SN Servidor CoAP
Protocolo transmisor

Figura 43. Comparativa de retado medio extremo-extremo entre el escenario 1y escenario 2, sin TLS/DTLS

~ 100 T T T
2] 80 F - Receptor CoAP Escenario 1 |
\E, - Receptor CoAP Escenario 2
8. 60
£ 40
2 20
F o

Cliente MQTT Cliente CoAP Cliente MQTT-SN

Protocolo transmisor

~ 100 T T T
g 80 I [Receptor MQTT Escenario 1
= B [—"""1 Receptor MQTT Escenario 2
o 60
g- 20| . |
o 20 i
N = . N

Cliente MQTT Cliente CoAP Cliente MQTT-SN
Protocolo transmisor

Figura 44. Comparativa de retado medio extremo-extremo entre el escenario 1y escenario 2, con TLS/DTLS

56

Capitulo 6: Resultados

Se observa una mejora en el retardo extremo a extremo en las comunicaciones en
las que los extremos (transmisor y receptor) emplean el mismo protocolo, como, por
ejemplo:

- Transmisor CoAP - Receptor COAP
- Transmisor MQTT/MQTT-SN - Receptor MQTT/MQTT-SN

Esto resulta coherente puesto que el hecho de ubicar el middleware en el borde de
la red de sensores hace que disminuya el retardo producido por el tiempo de transmision
de los datos hasta el middleware en caso de estar ubicado en la nube.

Por otro lado, el retardo extremo a extremo empeora en las comunicaciones en la
que los extremos (transmisor y receptor) emplean protocolos diferentes, como, por
ejemplo:

- Transmisor CoAP - Receptor MQTT/MQTT-SN
- Transmisor MQTT/MQTT-SN - Receptor COAP

A primera vista, los resultados no resultan coherentes puesto que el objetivo de
ubicar el middleware en el borde de la red de sensores es disminuir el retardo producido
por el tiempo de transmision de los datos hasta el middleware y con ello el retardo
extremo a extremo en la comunicacién. A pesar de esto, emplear un dispositivo de
recursos limitados influye en el tiempo que emplea el middleware en realizar la traduccion
de protocolos en comunicaciones heterogéneas, pudiendo llegar a ser mas significativo
que el tiempo de transmision de los datos.

57

Capitulo 6: Resultados

Tiempo medio de procesado en el middleware

Siguiendo la metodologia realizada en el Escenario 1, el estudio del retardo
extremo a extremo otorga una medida orientativa sobre el comportamiento del sistema,
pero no se puede tomar como una medida representativa. Por ello, a continuacion, se
adjunta la Tabla 6 en la que se muestra el tiempo empleado por el middleware en tratar
las comunicaciones, obtenido a partir de capturas de Tcpdump.

Tiempo (ms) de procesado en el middleware
Transmisor Receptor | QoS 1y CONs Sin cifrado | QoS1 y CONs Con cifrado

CoAP 13,60 14,58

CoAP MQTT 55,41 59,88
MQTT-SN 58,61 -

CoAP 62,22 72,60

MQTT MQTT 7,69 12,05
MQTT-SN 10,86 -
CoAP 61,47 -
MQTT-SN MQTT 8,26 -
MQTT-SN 10,79 -

CoAP 23,72 27,81

Servidor CoAP MQTT 61,46 66,96
MQTT-SN 63,84 -

Tabla 6. Tiempo medio de procesado en comunicaciones publish/subscribe, escenario 2

A partir de los resultados representados en la Tabla 6, se puede afirmar que, en
este caso, en lo referente a comunicaciones heterogéneas, implantar el middleware en el
borde de la red de sensores en un dispositivo de bajos recursos hardware puede resultar
perjudicial en términos de retardo en las comunicaciones puesto que el tiempo de
procesado predomina frente al tiempo de transmision.

Por Gltimo, en la Tabla 7 se muestra de manera cuantitativa la diferencia en tiempo
de procesado entre el Escenario 1y el Escenario 2.

58

Capitulo 6: Resultados

QoS 1y CONs Sin cifrado QoS 1y CONs Con cifrado
Tiempo (ms) Factor de Tiempo (ms) Factor de
Transmisor | Receptor |Escenario 1 |Escenario 2 |proporcion|Escenario1l |Escenario 2 |proporcion
CoAP 2,58 13,60 x5,3 3,64 14,58 x 4,0
CoAP MQTT 10,39 55,41 x5,3 13,12 59,88 x 4,6
MQTT-SN 10,72 58,61 x5,5 - - -
CoAP 11,45 62,22 x5,4 12,49 72,60 x5,8
MQTT MQTT 2,13 7,69 x3,6 3,16 12,05 x 3,8
MQTT-SN 2,48 10,86 X 4,4 - . .
CoAP 10,81 61,47 x5,7 - - -
MQTT-SN MQTT 2,11 8,26 x3,9 - - -
MQTT-SN 2,38 10,79 x 4,5 - - -
] CoAP 11,31 23,72 x2,1 11,69 2781 Xx2.4
Servidor : -
MQTT 22,94 61,46 x2,7 22,15 66,96 x 3,0
CoAP I'MarrsN | 239 63,84 x2,7 i]]
Tabla 7. Comparativa entre tiempos de procesado por el middleware entre el escenariol y escenario 2

Como se venia comentando, se ve claramente como en el Escenario 2 aumenta el
tiempo empleado por el middleware para tratar los mensajes viéndose multiplicado en un
factor 2 en el mejor de los casos o en un factor casi de 6 en el peor de los casos. Comentar
que este comportamiento no es Unico de las comunicaciones en las que existe traduccién
de protocolos, sino que ocurre de manera casi homogeénea en todas las comunicaciones
para el mismo protocolo transmisor.

59

Capitulo 7: Conclusiones y lineas futuras

7. Conclusiones y lineas futuras

Tras el desarrollo del middleware y su respectivo andlisis de caracteristicas y
prestaciones, se presentan las conclusiones obtenidas a partir del trabajo realizado. A
continuacidn, se plantean las conclusiones y las posibles lineas de trabajos futuros con el
fin de profundizar en estas tecnologias.

7.1. Conclusiones

Internet of Things ofrece la posibilidad de mantener comunicado cualquier
dispositivo electronico, pudiendo recibir y procesar informacion en tiempo real. Este
nuevo paradigma plantea nuevos modos de toma de decisiones basados en esta
disponibilidad de informacion y nuevas oportunidades para las empresas.

El informe 10T 2020 Bussines Report [51] publicado por la firma Schneider
Electric, muestra como dos de cada tres empresas planeaban implementar soluciones 10T
via aplicaciones moviles ya en 2016, bajo la creencia de que esta tecnologia aportara valor
a sus negocios en términos de: creacion de nuevas oportunidades de negocio, mejora de
la eficiencia en su actividad y un incremento de los beneficios a largo plazo. Esto nos
indica claramente quienes son los principales agentes impulsores de las tecnologias 10T,
las pequefias y medianas empresas (PYME), quienes a su vez también sufren las
principales dificultades como la gran heterogeneidad en los protocolos de comunicacion
loT.

Las PYME conforman la columna vertebral de la economia europea, sin embargo,
no tienen la experiencia ni las habilidades suficientes en tecnologias heterogéneas tan
utilizadas en loT como son cloud, edge o HPC (High Performance Computing) o los
diferentes protocolos de comunicaciones empleados (MQTT, CoAP, HTTP). Por esta
razén, se considera que el sistema middleware propuesto a lo largo de este proyecto puede
tener un gran impacto en este tipo de compafiias, acercando y facilitando todo tipo de
aplicaciones 10T a entornos en los que se cuenta con un menor potencial de recursos.

Bajo esta situacién y como se ha visto a lo largo del documento, en este trabajo
de fin de maéster, se plantea la necesidad de soluciones software que permitan la
comunicacion heterogénea entre diferentes tecnologias 10T, y se ha implementado un
sistema middleware que cubre dichas necesidades.

Paraello, se proponen varios objetivos parciales: familiarizarse con los principales
protocolos de aplicacion loT y sus implementaciones software, el desarrollo de un
middleware que permite la interconexion transparente entre ellos a partir de dichas
herramientas software, y su posterior evaluacion de prestaciones en escenarios basados
en cloud computing y en edge computing.

Gracias a las diferentes librerias de codigo libre, se ha podido implementar el
sistema middleware propuesto, viendo cémo es posible desplegar servicios de red que
permiten homogeneizar las comunicaciones loT en un ecosistema tan heterogéneo como
es el actual. Esto otorga una gran flexibilidad a la hora de desplegar nuevos servicios lIoT
o unificar y reutilizar las aplicaciones y servicios 10T existentes.

60

Capitulo 7: Conclusiones y lineas futuras

Por otro lado, se han estudiado diferentes alternativas en cuanto a la ubicacion del
middleware: en la nube o en el borde de la red. Se ha visto como la gran disponibilidad
de recursos hardware que se pueden emplear en escenarios basados en la nube afecta
positivamente al tiempo de computo empleado en la traduccion de protocolos llevada a
cabo en el middleware, frente a escenarios basados en el borde de la red. En
contraposicion a esto, también se ha verificado como, el hecho de ubicar el middleware
en la nube afecta negativamente al retardo de transmision que sufren las comunicaciones
frente a ubicaciones en el borde de red. Por este motivo resulta fundamental tener en
cuenta el compromiso entre tiempo de procesado y tiempo de transmision a la hora de
decidir qué estrategia tomar o incluso disefiar alternativas dindmicas que permitan
conmutar de una a otra.

Por ultimo, a pesar de que se ha trabajado con protocolos totalmente diferentes y,
por ende, las librerias empleadas estan desarrolladas bajo estructuras muy diferentes, los
objetivos propuestos al inicio del proyecto han sido completados satisfactoriamente.

7.2. Trabajos futuros

Como se ha plasmado durante el desarrollo del proyecto, Internet o Things, cloud
computing y edge/fog computing son tecnologias emergentes con un gran futuro por
delante tanto tecnoldgico como econémico, por lo que resultaria interesante llevar a cabo
los siguientes posibles trabajos futuros:

e Estudio e integracion del middleware desarrollado en entornos reales:
son muchas las plataformas que ofrecen servicios de computacion en la
nube como por ejemplo: Amazon Web Services, Google Cloud, Azure.
Resulta interesante integrar este tipo de software en plataformas
profesionales como las mencionadas puesto que ademas de ofrecer una
gran potencia computacional, disponen de innumerables servicios
orientados a la manipulacion de grandes volumenes de datos (Big Data).
El middleware desarrollado junto con este tipo de soluciones, dotarian de
gran flexibilidad a pequefias y medianas empresas que buscan la
transformacion digital de su actividad.

e Conmutacion dindmica entre cloud y edge: tal y como se ha plasmado
en este proyecto, a la hora de desplegar el middleware en un entorno cloud
0 en un entorno perimetral, es importante tener en cuenta el compromiso
entre el tiempo de transmision de la informacion y el retardo de procesado
introducido por el middleware. Por esta razon, siguiendo el paradigma
cloud computing continuum, resultaria interesante disefiar alternativas que
permitan conmutar entre una arquitectura y otra en funcién de las
caracteristicas de la red en cada momento.

e Escalabilidad dinamica del middleware: el sistema disefiado en este
proyecto permite desplegar el middleware de forma distribuida en
diferentes equipos. La solucién implementada es estatica, los equipos
distribuidos se deben configurar de forma estatica construyendo un arbol.
Con el afan de aportar un mayor dinamismo, resultaria interesante valorar

61

Capitulo 7: Conclusiones y lineas futuras

alternativas similares al Spaning Tree tradicional en el cual los dispositivos
que forman la arquitectura distribuida se autoconfiguran dindmicamente
formando un &rbol légico. Esto aporta una gran flexibilidad en caso de
perdidas o de congestion en los enlaces.

62

Bibliografia

Bibliografia

[1]

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]
[14]
[15]

[16]

A. A. da Cruz, M., J. P. C. Rodriges, J., Lorenz, P., Solic, P., Al-Muhtadi, J., & C.
Albuquerque, V. (2018). A proposal for bridging application layer protocols to
HTTP on IoT solutions. Future Generation Computer Systems, vol. 97, pp. 145-
152, Agosto 2019.

Aiocoap 0.3. (s.f.). Obtenido de https://pypi.org/project/aiocoap/
Apache Maven Project. (s.f.). Obtenido de https://maven.apache.org/

B. Babovic, Z., Protic, J., & Milutinovic, V. (s.f.). Web Performance Evaluation for
Internet of Things Applications. IEEE Access, vol. 4, pp. 6974-6992, 2016.

Bormann, C., Lemay, S., Tschofenig, H., Hartke, K., Silverajan, B., & Raymor, B.
(Febrero de 2018). RFC 8323. CoAP (Constrained Application Protocol) over TCP,
TLS and WebSockets. Obtenido de https://tools.ietf.org/html/rfc8323

CoAPthon 4.0.2. (s.f.). Obtenido de https://pypi.org/project/CoAPthon/

Data Distribution Service (DDS) Version 1.4. (Abril de 2015). Obtenido de
https://www.omg.org/spec/DDS/1.4/PDF

Dave, M., Patel, M., Doshi, J., & Arolkar, H. (s.f.). Ponte Message Broker Bridge
Configuration Using MQTT and CoAP Protocol for Interoperability of lot.
COMS2: International Conference on Computing Science, Communication and
Security, Julio 2020.

Dierks, T., & Rescorla, E. (Agosto de 2008). RFC 5246. The Transport Layer
Security (TLS) Protocol Version 1.2. Obtenido de https://tools.ietf.org/html/rfc5246

Digital Guide IONOS. (Enero de 2020). Obtenido de
https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/lenguajes-del-
lado-servidor-o-del-cliente-diferencias/

Dizdarevic, J., Carpio, F., Jukan, A., & Masip-Bruin, X. (s.f.). A survey of
Communication Protocols for Internet of Things and Related Challenges of Fog and
Cloud Computing Integration. ACM Computing Surveys, vol. 51, no. 6, Enero 2019.

Eclipse Californium. (s.f.). Obtenido de https://www.eclipse.org/californium/
Eclipse Foundation. (s.f.). Obtenido de https://www.eclipse.org/org/foundation/
Eclipse Foundation. Paho. (s.f.). Obtenido de https://www.eclipse.org/paho/

Eclipse Mosquitto. An open source MQTT broker. (s.f.). Obtenido de
https://mosquitto.org/

ETSI. Successful first Internet of Things (IoT) CoAP Plugtests. (17 de Abril de
2012). Obtenido de https://www.etsi.org/newsroom/news/390-news-release-17-
april-2012

63

Bibliografia

[17] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-
Lee, T. (Junio de 1999). RFC 2616. Hypertext Transfer Protocol -- HTTP/1.1.
Obtenido de https://tools.ietf.org/html/rfc2616

[18] Github arobenko/mqtt-sn. (s.f.). Obtenido de https://github.com/arobenko/mqtt-sn

[19] Github AsierCM/Proyecto-middleware-MQTT-HTTP-CoAP. (s.f.). Obtenido de
https://github.com/AsierCM/Proyecto-middleware-MQTT-HTTP-CoAP

[20] Github eclipse/paho.mqtt-sn.embedded-c. (s.f.). Obtenido de
https://github.com/eclipse/paho.mqtt-sn.embedded-c

[21] Github jsaak/mqtt-sn-gateway. (s.f.). Obtenido de https://github.com/jsaak/mqtt-
sn-gateway

[22] Github njh/mqtt-sn-tools. (s.f.). Obtenido de https://github.com/njh/mqtt-sn-tools
[23] Github. Eclipse/ponte. (s.f.). Obtenido de https://github.com/eclipse/ponte

[24] Github. Ibm-security-innovation/crosscoap. (s.f). Obtenido de
https://github.com/ibm-security-innovation/crosscoap

[25] Github. njh/mqtt-http-bridge. (s.f.). Obtenido de https://github.com/njh/mqtt-http-
bridge

[26] Github. petkov/http_to_maqtt. (s.f). Obtenido de
https://github.com/petkov/http_to_mqtt
[27] HiveMQ Open Source. (s.f.). Obtenido de

https://www.hivemq.com/developers/community/

[28] HiveMQ. MQTT Essentials. (Enero de 2015). Obtenido de
https://www.hivemg.com/blog/mgtt-essentials-part-1-introducing-mqtt/

[29] https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mgtt-sn. (s.f.).
OASIS. MQTT SN Subcommitee.

[30] HTTPtoMQTT. (s.f.). Obtenido de http://httptomqtt.ineptum.dk/#
[31] IEEE Standard Computer Dictionary. (s.f.).

[32] Koster, M., Keranen, A., & Jimenez, J. (Septiembre de 2019). Publish-Subscribe
Broker for the Constrained Application Protocol (CoAP). Obtenido de
https://datatracker.ietf.org/doc/draft-ietf-core-coap-pubsub/

[33] Libcoap. C-Implementation of CoAP. (s.f.). Obtenido de https://libcoap.net/

[34] Longo, E., E. C. Redondi, A., Cesana, M., Arcia-Moret, A., & Manzoni, P. (s.f.).
MQTT-ST: a Spanning Tree Protocol for Distributed MQTT Brokers. ICC 2020 -
2020 IEEE International Conference on Communications (ICC), Dublin, Irlanda,
2020, pp. 1-6. .

[35] Ludovici, A., & Calveras, A. (s.f.). A Proxy Design to Leverage the Interconnection
of CoAP Wireless Sensor Networks with Web Applications. Sensors, vol. 15, no.
1, pp. 1217-1244, Enero 2015.

64

Bibliografia

[36] Mills, D., Delaware, U., Martin, J., Burbank, J., & Kasch, W. (s.f.). RFC 5905.
Network Time Protocol Version 4: Protocol and Algorithms Specification.
Obtenido de https://tools.ietf.org/html/rfc5905

[37] Moquette MQTT broker. (s.f.). Obtenido de https://moquette-io.github.io/moquette/
[38] MQTT. The Standard for loT Messaging. (s.f.). Obtenido de https://mqtt.org/
[39] mqttsn 0.0.4. (s.f.). Obtenido de https://pypi.org/project/mattsn/

[40] Naik, N. (s.f.). Choice of effective messaging protocols for IoT systems: MQTT,
CoAP, AMQP and HTTP. 2017 IEEE International Systems Engineering
Symposium (ISSE), Vienna, 2017, pp. 1-7.

[41] NPM. Node-coap. (s.f.). Obtenido de https://www.npmjs.com/package/coap

[42] OASIS. Message Queuing Telemetry Transport (MQTT). (s.f.). Obtenido de
https://www.0asis-open.org/committees/tc_home.php?wg_abbrev=mqtt

[43] OASIS. MQTT Version 3.1.1. (29 de Octubre de 2014). Obtenido de
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/0s/mqtt-v3.1.1-0s.html

[44] OMG. Data Distribution Service (DDS). (s.f.). Obtenido de
https://www.omg.org/omg-dds-portal/

[45] Ponte. Connecting Things to Developers. (s.f.). Obtenido de
https://www.eclipse.org/ponte/#

[46] Rescorla, E. (Agosto de 2018). RFC 8446. The Transport Layer Security (TLS)
Protocol Version 1.3. Obtenido de https://tools.ietf.org/html/rfc8446

[47] Rescorla, E., & Modadugu, N. (Junio de 2012). RFC 6347. Datagram Transport
Layer Security Version 1.2. Obtenido de https://tools.ietf.org/html/rfc6347

[48] RFC 8173. Precision Time Protocol Version 2 (PTPv2). (2017). Obtenido de
https://tools.ietf.org/html/rfc8173

[49] Saint-Andre, P. (Marzo de 2011). RFC 6120. Extensible Messaging and Presence
Protocol (XMPP): Core. Obtenido de https://tools.ietf.org/html/rfc6120

[50] Saint-Andre, P. (Marzo de 2011). RFC 6121. Extensible Messaging and Presence
Protocol (XMPP): Instant Messaging and Presence. Obtenido de
https://tools.ietf.org/html/rfc6121

[51] Schneider Electric. 10T 2020 Bussiness Report. (2020). Obtenido de
https://download.schneider-
electric.com/files?&p_enDocType=Brochure&p_File_Name=998-

19699217 _GMA-US_IoT_Report_CS6_v3.pdf&p_Doc_Ref=98-
19699217 loT_Report_2016 v2.pdf

[52] Shelby, Z., Hartke, K., & Bormann, C. (2014). RFC 7252. The Constrained
Application Protocol (CoAP). Obtenido de https://tools.ietf.org/html/rfc7252

65

Bibliografia

[53] Standford-Clark, A., & Linh Truong, H. (14 de Noviembre de 2013). MQTT For
Sensor Networks (MQTT-SN) Protocol Specification. Versionl.2. Obtenido de
https://www.0asis-open.org/committees/download.php/66091/MQTT-
SN_spec_v1.2.pdf

[54] Tecnologia para los negocios. (s.f). Obtenido de
https://ticnegocios.camaravalencia.com/servicios/tendencias/caminar-con-exito-
hacia-la-industria-4-0-capitulo-12-infraestructuras-ii-protocolos/

[55] Vasters, C., & Godfrey, R. (2014). OASIS. Advanced Message Queuing Protocol
(AMQP) TC.

[56] Wiss, T. (s.f). Github tbwiss/CoAP_PubSub. Obtenido de
https://github.com/tbwiss/CoAP_PubSub

[57] WolfSSL. WolfMQTT Client Library. (s.f). Obtenido de
https://www.wolfssl.com/products/wolfmqtt/

[58] Yokotani, T., & Sasaki, Y. (s.f.). Comparison with HTTP and MQTT on required
network resources for 1oT. 2016 International Conference on Control, Electronics,
Renewable Energy and Communications (ICCEREC), Bandung, 2016, pp. 1-6.

* Todos los enlaces web y las referencias bibliograficas han sido revisadas y
verificadas a dia 22 de Septiembre de 2020.

66

ANexos

Anexos

Anexo 1: Diagrama de clases del middleware

A continuacion, en la Figura 45 se muestra el diagrama de clases del middleware.
Es necesario aclarar que las librerias empleadas para las interfaces MQTT, CoAP y
HTTP: Moquette, Californium CoAP PubSub y HTTP Oracle son sumamente extensas y
en este diagrama, Unicamente se muestran las clases empleadas para el desarrollo del
proyecto.

d Suscriptor d TopicExterno 3 GestorDescubridores d Descubridor
d Obserwvador a Topic d GestorRecursos d ClientePubSub a Migtt Cli ent
/ B
4 ClienteSubObservador /

d ProtocoloComunicacion CoAP d Protocolo ComunicacionHTTP

a PublishListener 2 Broker Message Deliver a PubSubTopic a HTTPHandler

d ProtocoloComunicacionMATT

a Server (MGQTT) d PubSubBroker [CoAP) a Hit p Serwver

Figura 45. Diagrama de clases del midddleware

En primer lugar, se emplean las clases: Server (MQTT), PubSubBroker (CoAP)
y HttpServer, que pertenecen a las librerias mencionadas. Mediante estas clases se crean
las instancias de los tres servidores que reciben los mensajes de los tres protocolos. En
estas clases se configuran los pardametros de los servidores.

A continuacion, se tienen las clases: PublishListener, BrokerMessageDeliver,
PubsubTopic y HTTPHandler. Estas clases son las encargadas de manejar los mensajes
que se reciben en los tres servidores. Dichos mensajes son los que se analizan
posteriormente en las clases de niveles superiores para llevar a cabo el funcionamiento
del middleware. A continuacion, se explica brevemente el funcionamiento de cada clase.

- PublishListener: esta clase permite analizar los mensajes MQTT entrantes
a través de los métodos onPublish(...), onSubscribe(...), entre otros. Desde
estos métodos se invoca el método iniciarComunicacion(...) de la clase
ProtocoloComunicacionMQTT para iniciar la conversion a los protocolos
CoAP y HTTP en caso de que sea necesario.

67

ANexos

- BrokerMessageDeliver: esta clase permite analizar los mensajes CoAP
entrantes mediante el método deliverRequest(...). Esta clase se emplea
para analizar si el mensaje va dirigido a un recurso existente o no. En caso
de que exista el recurso en el broker CoAP, se pasa la peticion al objeto
correspondiente de la clase PubsubTopic y este se encarga de gestionar la
peticion. Por esta razon, en la clase BrokerMessageDeliver se realiza una
primera comprobacion de si la peticion va dirigida a un topic alojado en
un servidor CoAP. En caso positivo se invoca el método
iniciarComunicacion(...) en el ProtocoloComunicacionCoAP. Si no se
realizara esta accion aqui, el metodo deliverRequest(...) responde a la
peticion mediante el cddigo de error 4.04 NOT FOUND puesto que no se
trata de un recurso publicado en el broker.

- PubSubTopic: cada instancia de esta clase, que contiene los métodos
handleGet(...), handlePut(...), handlePost(...) entre otros, hace referencia
a un topic. En caso de que el topic haya sido publicado, existira una
instancia de esta clase que gestione las peticiones entrantes a este topic. En
los métodos nombrados, es donde se invoca el método
iniciarComunicacion(...) en el ProtocoloComunicacionCoAP para iniciar
la conversion a los protocolos MQTT y HTTP en caso de que sea
necesario.

- HTTPHandler: esta clase permite analizar los mensajes HTTP recibidos
a través del método handle(...). En este se verifica si la peticion recibida
contiene un mensaje GET, PUT/POST entre otros. A partir de aqui se
invoca el método iniciarComunicacion(...) en la clase
ProtocoloComunicacionHTTP para iniciar la conversion a los protocolos
MQTT y HTTP en caso de que sea necesario.

Cabe destacar que la clase PublishListener extiende la clase
AbstractInterceptHandler de la libreria Moquette, las clases BrokerMessageDeliver y
PubSubTopic son clases del proyecto CoOAP_PubSub y la clase HTTPHandler extiende
la clase HttpHandler de la libreria de Oracle HTTP. EIl resto de clase explicadas a
continuacion se han desarrollado durante el proyecto.

Las siguientes clases en las que se basa la arquitectura del middleware son:
ProtocoloComunicacionMQTT, ProtocoloComunicacionCoAP y
ProtocoloComunicacionHTTP. Estas son las encargadas de realizar las acciones
necesarias para permitir la intercomunicaciéon entre los protocolos MQTT, CoAP y
HTTP. Para la traduccién de los mensajes entre protocolos, estas tres clases consultan y
actualizan de forma dindmica la informacion de control sobre los topics almacenada en
el objeto de la clase GestorRecursos. Las tres clases cuentan con los siguientes métodos:

- iniciarComunicacion(...): cuando se recibe un mensaje, este método es el
encargado de gestionar su posible traduccion a otro protocolo. En caso de
tratarse de un PUBLISH MQTT se traduce a un PUT/POST COAP o
HTTP y viceversa. Si lo que se recibe es un mensaje de tipo MQTT
SUBSCRIBE 0 un mensaje de tipo GET CoAP o HTTP se comprueba si
es un topic alojado en un servidor CoAP o en un middleware distribuido y
se actua en consecuencia, tal y como se detalla en la memoria del proyecto.

68

ANexos

- cancelarCounicacion(...): a través de este metodo se gestiona la
desconexion de los diferentes usuarios que se encuentran suscritos u
observando un topic. A través de él se informa al GestorRecursos para
tener control sobre ello.

Los tres ProtocolosComunicacion(MQTT, CoAP y HTTP) emplean instancias de
las clases MQTTClient y ClientPubSub. Estas clases implementan clientes MQTT y
CoAP que se encargan de generar los mensajes MQTT PUBLISH y CoAP PUT/POST
fruto de la traduccién de los mensajes recibidos.

Una vez visto donde se reciben y se manejan los mensajes entrantes da cada
protocolo, la siguiente clase importante es la clase GestorRecursos. En ella se guarda la
informacion de control necesaria para la comunicacion y sincronizacion entre los
diferentes ProtocolosComunicacion(MQTT, CoAP, HTTP). En ella, existen tres atributos
importantes: topicList, topicListTotal y topicListExternos. En estas listas se almacena la
informacion necesaria sobre topics alojados en servidores CoAP, topics publicados
mediante publicaciones MQTT-CoAP-HTTP y topics recibidos desde otros middlewares
distribuidos respectivamente. En relacion con estas listas, existen métodos como
informarTopic(..), informarTopicTotal(...) o informarTopicExterno(..), mediante los
cuales se actualiza la informacion de control necesaria sobre esos topics. También existen
los métodos comprobarTopic(...), comprobarTopicTotal(...) y
comprobarTopicExterno(..), mediante los cuales se consulta la existencia de un topic en
las distintas listas. Ademas, en relacion con los usuarios suscritos a los diferentes topics,
los métodos informarUsuario(...) e informarUsuarioTopicExterno(...) se emplean para
afiadir o borrar informacion sobre los usuarios activos. Por ultimo, en esta clase, se
almacena la lista de los identificadores y la direccion IP de los diferentes middlewares
distribuidos que forman la red.

A su vez, la clase GestorRecursos utiliza instancias de la clase Topic. Esta clase
representa un topic que ha sido publicado desde un cliente MQTT, CoAP o HTTP o que
se encuentra en un servidor CoAP y se almacena en la lista topicList y topicListTotal
dentro de GestorRecursos. Contiene informacion sobre el nombre, el protocolo desde el
cual ha sido publicado, el contenido, la lista de usuarios que estan suscritos y un objeto
de la clase Observador. En el caso de que se realice una peticion GET CoAP o HTTP o
un mensaje MQTT SUBSCRIBE hacia un topic alojado en un servidor CoAP, es
necesario lanzar un cliente CoAP creando una relacion de observacion en el servidor.
Para ello se genera la instancia de la clase Observador que también se almacena en la
clase Topic. Este es un proceso que controla una instancia de la clase
ClienteSubObservador, la cual contiene el cliente CoAP con el que se establece la
comunicacion con el servidor. Los datos recibidos en el objeto Observador son traducidos
y transmitidos internamente mediante el GestorRecursos.

Adicionalmente, la clase GestorRecursos utiliza instancias de la clase
TopicExterno. Cada instancia de esta clase representa un topic que ha sido notificado
desde otro middleware distribuido y las instancias de esta clase se almacenan en la lista
topicListExternos dentro del GestorRecursos. Contiene informacion sobre el nombre del
topic, la identidad del middleware desde el que ha sido notificado, una lista de usuarios
suscritos y un objeto de la clase Suscriptor. Este ultimo contiene un cliente MQTT
mediante el cual se realiza una suscripcion MQTT a un middleware distribuido en el caso

69

ANexos

de recibir una peticion GET CoAP o HTTP o un mensaje MQTT PUBLISH hacia un
topic controlado por otro middleware de la red.

Por ultimo, se define la clase GestorDescubridores, que contiene principalmente
una lista con las direcciones IP de todos los servidores COAP a los que el middleware da
servicio. Este se encarga de generar una instancia de la clase Descubridor para cada
servidor CoAP. Cada objeto Descubridor contiene un cliente CoAP que se encarga de
realizar una peticion GET a la URI .well-known/core del servidor CoAP correspondiente.
La respuesta obtenida contiene todos los topics alojados en este servidor. A continuacion,
esta informacion se le comunica al objeto GestorRecursos.

70

Anexos

Anexo 2: Creacion de certificados digitales

Para la utilizacion de canales cifrados mediante los protocolos TLS y DTLS es
necesario la creacion de certificados digitales tanto para el servidor como para los
diferentes clientes. Para ello se emplea la herramienta Keytool disponible en Linux. Esta
herramienta permite crear almacenes de claves e importar y exportar certificados de los
almacenes. A continuacién, se muestra un pequefio de codigo Shell a modo de ejemplo,
obtenido de la pagina oficial de Eclipse Californium Scandium.

#!/bin/bash

KEY STORE=keyStore.jks

KEY STORE_PWD=endPass
TRUST_ STORE=trustStore.jks
TRUST_STORE_PWD=rootPass
VALIDITY=365

#creating root key and certificate

echo "creating root key and certificate..."
keytool -genkeypair -alias root ~-keyalg EC -dname 'C=CA,
IoT,0U=Californium,CN=cf-root"' \
-ext BC=ca:true =-validity -keypass -keystore
-storepass

#creating CA key and certificate

echo "creating CA key and certificate..."
keytool -genkeypair -alias ca -keyalg EC -dname 'C=CA, L=Ottawa, O=Eclipse
IoT,OU=Californium,CN=cf-ca' \
-ext BC=ca:true =-validity -keypass -keystore
-storepass

keytool -keystore -storepass -certreq -alias ca | \

keytool =-keystore -storepass -alias root =-gencert -
validity -ext BC=0 -rfc | \

keytool -alias ca -importcert -keystore -storepass

#creating server key and certificate

echo "creating server key and certificate..."
keytool -genkeypair -alias server -keyalg EC -dname 'C=CA,L=0Ottawa,O=Eclipse
IoT,0U=Californium,CN=cf-server' \
-validity -keypass -keystore -storepass

keytool -keystore -storepass -certreq -alias server | \

keytool -keystore -storepass -alias ca -gencert -
validity -rfc > server.pem
keytool =-alias server -importcert -keystore -storepass -

trustcacerts -file server.pem

#creating client key and certificate

echo "creating client key and certificate..."
keytool -genkeypair =-alias client ~-keyalg EC -dname 'C=CA,
IoT,0U=Californium,CN=cf-client' \
-validity -keypass -keystore -storepass

keytool -keystore -storepass -certreq -alias client | \

keytool -keystore -storepass -alias ca -gencert -
validity -rfc > client.pem
keytool =-alias client -importcert -keystore -storepass -

trustcacerts -file client.pem

71

ANexos

Para la creaciéon de los certificados se usa una cadena de confianza de varios

niveles:

1.

2.

Par de claves privada/publica junto con un certificado autofirmado que en
conjunto representan la identidad de la CA raiz (root).

Par de claves privada/publica junto con un certificado firmado con la clave
de la CA raiz que en conjunto representan la identidad de la CA
intermediaria.

Par de claves privada/publica junto con un certificado firmado con la clave
de la CA intermediaria que en conjunto representan la identidad de un
servidor.

Par de claves privada/publica junto con un certificado firmado con la clave
de la CA intermediaria que en conjunto representan la identidad de un
cliente.

Las claves y certificados se almacenan en dos almacenes de claves: keyStore.jks y
trustStore.jks, explicados a continuacion.

1.

2.

keyStore.jks: contiene las claves y cadenas de certificados para el cliente y
el servidor,

trustStore.jks: contiene el certificado autofirmado de la CA raiz, asi como
la cadena de certificados de la CA intermedia. Estos certificados se usan
como certificados de confianza para verificar la identidad de cliente y
servidor.

Se recomienda el uso de cadenas multinivel para que, en caso de que la clave
privada de una CA intermediaria se vea comprometida, la CA raiz pueda revocar su
certificado y no comprometer la seguridad total de la cadena. Para ello se recomienda
encarecidamente mantener almacenada la clave privada de la CA raiz en hardware no
accesible desde la red y correctamente protegida.

72

