

Trabajo Fin de Grado

Biblioteca y API web para la manipulación de datos
geográficos sobre una malla global discreta

Autor/es

Javier Martínez Fernández

Director/es

Rubén Béjar Hernández

Escuela de Ingeniería y Arquitectura

Universidad de Zaragoza
2020

2

Tabla de contenido
Resumen 3

1. Introducción 4

1.1 Contexto 4

2. Análisis del problema 8

2.1 Requisitos 12
2.1.1 Biblioteca 12
2.1.2 API Web 13

3. Diseño de la solución 14

3.1 Arquitectura 14

3.2 Modelo de datos 15
3.2.1 Modelo de entidades y relaciones 15
3.2.2 Modelo de implementación 17

3.3 Paquetes y clases 20
3.3.1 Diagrama de clases 22

3.4 Componentes y conectores 27
3.4.1 Documentación de la dinámica del sistema 30

3.5 Distribución 32

3.6 Implementación 33
3.6.1 Python 33
3.6.2 MongoDB 33
3.6.3 Django REST 34
3.6.4 Proj.4 34
3.6.5 GDAL 35

3.7 Pruebas 36

4. Gestión del proyecto 38

4.1 Planificación e historia del proyecto 38

4.2 Control de esfuerzos 40

4.3 Gestión de configuraciones 40

5. Conclusiones y trabajo futuro 41

Referencias 43

Anexos 44

Anexo 1 – Ejemplos de uso de la biblioteca 44

Anexo 2 – Métodos de las clases en detalle 52

Anexo 3 – API Web (REST) del componente Grid Server (ver Figura 15) 59

Índice de figuras 82

3

Resumen
El objetivo de este TFG ha sido crear una biblioteca para la importación, transformación,

almacenamiento y recuperación de datos geográficos basados en un DGGS (Sistemas de Mallas

Globales Discretas), una aproximación novedosa y versátil al modelizado e integración de datos

geográficos, basada en jerarquías de celdas multi-resolución. Por su novedad, hay poco software

disponible para crear y manipular datos con este tipo de modelos.

Se ha comenzado por estudiar alternativas de almacenamiento persistente (BD), seleccionando

finalmente una base de datos NoSQL orientada a documentos, en concreto, MongoDB, tras

comprobar las ventajas que ofrece frente a otras alternativas. Se ha continuado por diseñar e

implementar una biblioteca Python que permite importar, manipular, recuperar y dar

persistencia a datos sobre los modelos diseñados y en la BD elegida. Permite además la

transformación de datos basados en un DGGS hacia formatos más comunes de información

geográfica como el modelo vectorial o ráster, y viceversa.

Se ha diseñado e implementado una API web, desarrollando un servidor web con el framework

Django REST, que permite la integración de la funcionalidad principal en aplicaciones web o

móviles, de modo que un cliente pueda importar, recuperar o manipular datos basados en el

modelo implementado.

Se ha colaborado con investigadores del grupo IAAA del I3A (Instituto Universitario de

Investigación de Ingeniería de Aragón) y GEOT del IUCA (Instituto Universitario de Ciencias

Ambientales) que están trabajando en un proyecto que persigue desarrollar aplicaciones para

este tipo de sistemas. Esto ha permitido trabajar con necesidades, requisitos y datos reales.

Además, estos investigadores han creado un cliente web para la captura de datos sobre DGGS,

que utiliza la API web y el almacenamiento en BD diseñados e implementados en este TFG, lo

que ha ayudado en su diseño y pruebas. Esta colaboración se ha traducido en un artículo

conjunto enviado al congreso internacional GEOProcessing 2020 (pendiente de revisión).

Tras la realización del trabajo, se ha visto que una de las líneas de trabajo futuro podría ser

realizar una implementación más eficiente en relación con el almacenamiento de Cell Datasets,

“almacenamiento ráster" de los DGGS, así como la incorporación de más formatos hacia los que

realizar transformaciones de datos basados en un DGGS. También, otra de las líneas de trabajo

fututo claras, sería la integración de este sistema en workflows de procesamiento de datos

geográficos.

4

1. Introducción
Los DGGS (Sistemas de Mallas Globales Discretas) son una aproximación novedosa y versátil al

modelizado e integración de datos geográficos, basada en jerarquías de celdas multi-resolución.

Por su novedad, hay poco software disponible para crear y manipular datos con este tipo de

modelos. El objetivo de este TFG ha sido crear una biblioteca para la importación,

transformación, almacenamiento y recuperación de datos geográficos basados en un DGGS. Se

han estudiado alternativas de almacenamiento persistente (BD) y también se ha implementado

una API web que permite la integración de la funcionalidad principal en aplicaciones web o

móviles.

Se ha colaborado con investigadores (grupo IAAA del I3A y GEOT del IUCA) que están trabajando

en un proyecto que persigue desarrollar aplicaciones para este tipo de sistemas. Esto ha

permitido trabajar con necesidades, requisitos y datos reales. Además, estos investigadores han

creado un cliente web para la captura de datos sobre DGGS, que utiliza la API web y el

almacenamiento en BD diseñados e implementados en este TFG, lo que ha ayudado en su diseño

y pruebas.

El resto del documento se estructura de la siguiente manera: primero se sitúa este trabajo en su

contexto, se sigue con el análisis del problema, explicando los requisitos de este; se continúa

con el diseño de la solución, detallando su arquitectura, la implementación y las pruebas

realizadas; se explica la gestión del proyecto y las conclusiones y trabajo futuro en relación con

el mismo.

1.1 Contexto

Un DGGS (Discrete Global Grid System) es una secuencia de cuadrículas globales discretas,

generalmente de resolución cada vez más fina. Una cuadrícula global discreta es una partición

finita de la superficie de un elipsoide, junto con un conjunto de puntos distinguidos, un punto

en cada elemento de partición. Un elemento de partición se llama celda y su punto asociado

único se llama núcleo [1].

Debido a que hay varios DGGS definidos y no hay uniformidad en los criterios sobre lo que es y

no es un DGGS, en 2017, el consorcio de estandarización OGC (Open Geospatial Consortium)

propuso una especificación abstracta para establecer los requisitos que deben cumplir [2].

El objetivo de un DGGS es mejorar la manera en la que se georreferencian datos geográficos sin

tener que hacer uso de sistemas de coordenadas proyectadas. Son una aproximación novedosa

y versátil basada en jerarquías de celdas multi-resolución. Debido a su novedad, hay poco

software disponible para crear y manipular datos con este tipo de modelos.

Los DGGS facilitan la integración de datos geográficos creados en distintas condiciones, por

ejemplo, distintas escalas, bajo distintos sistemas de referencia de coordenadas y proyecciones

cartográficas, etc. Permiten, por ejemplo, la armonización de datos ráster, vectoriales y de nube

de puntos en un marco común y coherente, lo que permite superar algunos desafíos clave

5

presentados por los enfoques SIG tradicionales. El estándar OGC DGGS Abstract Specification

define el modelo conceptual y un conjunto de reglas para construir arquitecturas altamente

eficientes para el almacenamiento, integración y análisis de datos espaciales.

Los DGGS representan la Tierra como secuencias jerárquicas de teselaciones de igual área en la

superficie de la Tierra, cada una con cobertura global y con una resolución espacial

progresivamente más fina. Las observaciones individuales pueden asignarse a una celda que

corresponda tanto a la posición como al tamaño del fenómeno que se está observando. Los

DGGS cuentan con un conjunto de algoritmos funcionales que permiten un rápido análisis de

datos de un gran número de celdas y, por su propia naturaleza, son muy adecuados para

aplicaciones de procesamiento en paralelo con múltiples resoluciones espaciales.

La ventaja de los Sistemas de Mallas Globales y Discretas es que permiten fácilmente definir un

procedimiento de identificadores únicos para cada celda, y que se encuentra asociado a un

conjunto de algoritmos que facilitan el análisis espacial eficiente de un enorme número de

celdas, estando especialmente dispuestos para ser paralelizados. Por ello, se podía considerar a

los DGGS como el sistema más adecuado si se habla, por ejemplo, de Big Data geográfico, ya

que permite una exploración, extracción y visualización rápidas y precisas de los datos. DGGS

podría representar el cambio de paradigma que permitiría superar algunas de las barreras

críticas que impiden alcanzar el verdadero potencial que Big Data puede ofrecer en el ámbito

geográfico.0

Un DGGS utiliza poliedros sólidos (Figura 1), por ejemplo, tetraedros, cubos, octaedros, para

modelar la Tierra, y estas teselaciones se proyectan inversamente para crear el sistema de

referencia.

Una teselación de celdas debe cumplir con un conjunto de criterios para ser considerado como

DGGS según la especificación de OGC, algunos de ellos son:1

0 https://www.ogc.org/pressroom/pressreleases/2656
1 https://www.geoawesomeness.com/discrete-global-grid-system-dggs-new-reference-system/

FIGURA 1 – POLIEDROS UTILIZADOS EN UN DGGS

https://www.ogc.org/pressroom/pressreleases/2656
https://www.geoawesomeness.com/discrete-global-grid-system-dggs-new-reference-system/

6

• La teselación debe cubrir toda la Tierra, aunque los datos referidos a ella pueden cubrir

solo una parte.

• Las celdas no deben superponerse.

• Se debe declarar el método de refinamiento de las celdas.

• En cualquier nivel de refinamiento, las celdas deben ser de igual área. Sin embargo, se

pueden permitir pequeñas desviaciones de la igualdad exacta del área siempre que se

declare la precisión.

• En cada nivel de refinamiento sucesivo, el área total de las celdas hijas debe ser igual al

área total de las celdas madres.

• Las celdas deben tener un sistema de referencia sistemático.

En este TFG se ha implementado software para la manipulación de distintos DGGS que hayan

sido definidos de acuerdo con la especificación de OGC. Este software permite importar,

almacenar, recuperar y transformar datos geográficos basados en un DGGS, e integrar esta

funcionalidad en aplicaciones web o móviles.

Debido a su novedad, es importante poder transformar datos basados en el modelo DGGS hacia

formatos más comunes de información geográfica como el modelo vectorial o ráster, y

viceversa.

Un modelo de datos geográfico es una forma de reducir las propiedades de la realidad geográfica

a un conjunto finito de elementos que se puedan manipular. Se distinguen dos tipos principales

de modelos de datos geográficos: ráster y vectorial. [3]

El modelo ráster (Figura 3) se basa en una división sistemática del espacio que lo cubre por

completo (teselación) en unidades elementales (celdas) que tienen valores asociados. Es

utilizado típicamente para variables continuas que toman valores en todo el espacio de trabajo

(altura sobre el nivel del mar, temperatura, etc.)

En el modelo vectorial (Figura 3) no se cubre todo el espacio, solo unas partes delimitadas por

elementos geométricos con valores asociados. La disposición de estos elementos geométricos

no es sistemática, y depende de los objetos geográficos en la zona de estudio. Es utilizado

típicamente para elementos discretos de la realidad (carreteras, ciudades, edificios, lagos etc.)

FIGURA 2 - EJEMPLOS DE DGGS BASADOS EN EL MAPEO DE LAS CARAS DE LOS SÓLIDOS

PLATÓNICOS

7

FIGURA 3 - COMPARACIÓN ENTRE LOS ESQUEMAS DEL MODELO DE REPRESENTACIÓN VECTORIAL (A) Y

RÁSTER (B)

Para transformar datos basados en un DGGS hacia un modelo vectorial o ráster, y viceversa, es

necesario realizar una reproyección, es decir, convertir las coordenadas sobre una proyección a

coordenadas sobre otra. Una proyección cartográfica permite transformar las coordenadas

sobre la superficie curva de la Tierra en coordenadas sobre una superficie plana.

En concreto, en este TFG, se realizan conversiones de coordenadas sobre la proyección

rHEALPix, explicada en la sección 2, a coordenadas sobre una proyección geodésica, es decir,

utilizando un sistema de coordenadas donde la posición de un punto se define usando los

elementos latitud, longitud, en concreto, sobre el elipsoide WGS84.

Durante el desarrollo de este trabajo, además, se ha colaborado con investigadores (grupo IAAA

del I3A y GEOT del Dpto. de Geografía y Ord. del Territorio) que están trabajando en un proyecto,

COLABOTUR2, que persigue desarrollar aplicaciones para este tipo de sistemas. Estos

investigadores han creado un cliente web para la captura de datos sobre DGGS, que utiliza la

API web y el almacenamiento en BD diseñados e implementados en este TFG, lo que ha ayudado

en su diseño y pruebas.

2 https://www.iaaa.es/colabotur

https://www.iaaa.es/colabotur

8

2. Análisis del problema
El objetivo de este TFG es diseñar e implementar una biblioteca que permita importar,

manipular, recuperar y dar persistencia a datos geográficos basados en un DGGS sobre los

modelos diseñados y en la BD elegida.

Se van a estudiar alternativas para la persistencia de los datos (BD) y seleccionar una adecuada.

También se va a diseñar e implementar una API web que permita la integración de la

funcionalidad principal en aplicaciones web o móviles, en concreto, que dé el soporte de back-

end al cliente web que está siendo desarrollado por los otros investigadores.

El diseño del sistema se debe basar en un modelo conceptual existente. A continuación, se

presenta dicho modelo (Figura 5) y se realiza un análisis de los conceptos más relevantes y a

partir de los cuales se ha realizado este trabajo.

• rHEALPix: DGGS basado en el DGGS HEALPix, que inicialmente se definió solo para

esferas, que se puede utilizar en elipsoides de revolución como el elipsoide WGS84. El

DGGS rHEALPix puede considerarse como un mapeo de un elipsoide de revolución en

un poliedro regular, es decir, un cubo (Figura 4), seguido de una división jerárquica

simétrica de las caras poliédricas junto con una selección de núcleos, seguido del mapeo

inverso del resultado en el elipsoide (Figura 6). Por lo tanto, es un ejemplo de un DGGS

geodésico cúbico. El DGHS rHEALPix y sus matemáticas asociadas han sido

completamente descritas por R G Gibb. [4]

FIGURA 4 – LA PROYECCIÓN (1,3) -RHEALPIX DEL ELIPSOIDE WGS84

FIGURA 5 - MODELO CONCEPTUAL

FIGURA 6 – LAS DOS PRIMERAS CUADRÍCULAS PLANAS Y ELIPSOIDALES PARA LA PROYECCIÓN DEL MAPA

(0, 0) -RHEALPIX

• Cell: celda, objeto fundamental de un DGGS en cada nivel de refinamiento o resolución.

Cada una con un identificador único asociado, el Cell Id del modelo conceptual.

• Cell Set: conjunto de celdas donde cada celda aparece una única vez. En concreto,

conjunto de los Cell Id de las celdas que forman el conjunto. De dicho conjunto se debe

poder obtener el nivel mínimo y máximo de refinamiento, el identificador del Boundary,

Boundary Id, que forma el conjunto, así como otros elementos como una Grid Stack a

partir del conjunto.

• Boundary Id: identificador único de un Boundary. Cadena formada a partir de los

identificadores de las celdas que forman el Boundary.

• Boundary: conjunto de celdas que cubre un área en un DGGS. Es un subtipo de Cell Set.

Un Boundary debe poder optimizarse, es decir, obtener el Optimal Boundary

correspondiente. Como la intención de un Boundary es delimitar, siempre se va a

preferir su versión óptima. También es importante la obtención del bounding box del

Boundary, es decir, el área definida por dos longitudes y dos latitudes que cubre el área

cubierta por un Boundary. Define los límites de este.

• Optimal Boundary: conjunto óptimo de celdas que cubre un área en un DGGS,

entendiendo óptimo como el conjunto más pequeño de celdas que cubren exactamente

esa área. Un Optimal Boundary debe tener asociado un AUID (Area Unique Identifier),

identificador único de un Optimal Boundary formado a partir de los identificadores de

las celdas que lo forman [5].

Para optimizar un Boundary, se recorren cada uno de los niveles de refinamiento

existentes en el conjunto buscando un conjunto de celdas que cubran la misma área que

una celda de un nivel de refinamiento menor, es decir, que, en un nivel de refinamiento,

existan todas las celdas hijas de una celda padre del nivel anterior, de forma que ese

11

conjunto de celdas pueda ser sustituido por la celda padre (Figura 7). Por ejemplo, las

celdas P20, P21, P22, P23, P24, P25, P26, P27 y P28 cubren exactamente la misma área

que la celda P2, que es la celda padre de todas ellas, por lo que pueden ser sustituidas

por una única celda, consiguiendo así el conjunto óptimo de celdas que cubren un área

en un DGGS.

FIGURA 7 - PROCESO DE OPTIMIZACIÓN DE UN BOUNDARY

• Grid: teselación de una cierta área, por lo que en sus límites cada Cell existe, no hay

vacíos ni agujeros. Es un subtipo de Cell Set, ya que es un conjunto de celdas. Todas las

celdas de dicho conjunto se encuentran en el mismo nivel de refinamiento.

• Grid Stack: lista de Grids ordenadas por su nivel de refinamiento. Es otro subtipo de Cell

Set, ya que es otro conjunto de celdas.

• Cell DataSet: conjunto de celdas, Cell Set, en el que cada una tiene asociados unos datos

concretos. Se deben poder obtener los datos asociados a una celda dado su

identificador, su Cell Id, o a una lista de celdas dada una lista de identificadores.

• Boundary Set: conjunto de Optimal Boundaries. En dicho conjunto, dos Boundaries

pueden superponerse (una celda puede estar presente en dos o más Boundaries), por

lo que un Boundary Set no puede ser un subtipo de Cell Set. De dicho conjunto se debe

poder obtener el nivel mínimo y máximo de refinamiento.

• Boundary DataSet: conjunto de Optimal Boundaries en el que cada uno tiene asociados

unos datos concretos. Se deben poder obtener los datos asociados a un Optimal

Boundary dado su identificador, o a una lista de Optimal Boundaries dada una lista de

identificadores.

• Cell Store: almacén de celdas que debe permitir importar, manipular, recuperar y dar

persistencia a Cell Datasets.

12

• Boundary Store: almacén de Boundaries que debe permitir importar, manipular,

recuperar y dar persistencia a Boundary Datasets.

2.1 Requisitos

2.1.1 Biblioteca

No funcionales

• RNF1: La biblioteca debe estar desarrollada en el lenguaje de programación Python.

• RNF2: El diseño del sistema se debe basar en un modelo conceptual existente.

Funcionales

• RF1: La biblioteca debe permitir representar una celda de un DGGS en base al

identificador único de la celda.

• RF2: La biblioteca debe permitir representar un Boundary a partir de la lista de

identificadores de las celdas que lo forman.

• RF3: La biblioteca debe permitir obtener el Boundary Bounding Box de un Boundary

concreto.

• RF4: La biblioteca debe permitir optimizar un Boundary para obtener el Optimal

Boundary correspondiente.

• RF5: La biblioteca debe permitir representar un Cell/Boundary dataset.

• RF6: La biblioteca debe dar soporte a todas las operaciones de la API Web.

• RF7: La biblioteca debe ofrecer una operación para la transformación de datos

asociados a entidades de un modelo vectorial contenidos en un shapefile en datos

asociados a un Boundary.

• RF8: La biblioteca debe ofrecer una operación para la transformación de datos

asociados a un Boundary, en datos asociados a entidades de un modelo vectorial

contenidos en un shapefile.

• RF9: La biblioteca debe ofrecer una operación para la transformación de un conjunto

de datos asociados a entidades de un modelo vectorial contenidos en un conjunto de

shapefiles, en un conjunto de datos asociados a Boundaries contenidos en un Boundary

Dataset.

• RF10: La biblioteca debe ofrecer una operación para la transformación de un conjunto

de datos asociados a Boundaries contenidos en un Boundary Dataset, en un conjunto

de datos asociados a entidades de un modelo vectorial contenidos en un conjunto de

shapefiles.

13

• RF11: La biblioteca debe ofrecer una operación para la transformación de datos

asociados a píxeles de un modelo ráster contenidos en un fichero GeoTIFF, en un

conjunto de datos asociados a Celdas contenidos en un Cell Dataset.

• RF12: La biblioteca debe ofrecer una operación para la transformación de un conjunto

de datos asociados a Celdas contenidos en un Cell Dataset, en datos asociados a píxeles

de un modelo ráster contenidos en un fichero GeoTIFF.

• RF13: Las operaciones de transformación deben poder utilizarse a través de una interfaz

de línea de comandos (CLI).

2.1.2 API Web

Funcionales

• RF14: La API Web debe permitir la inserción y borrado de Cell/Boundary datasets en la

BD, entendiendo un dataset como una lista de identificadores de Celdas/Boundaries

asociados cada uno de ellos a datos en formato JSON e incluyendo un identificador único

para dicho dataset.

• RF15: La API Web debe permitir la inserción, modificación y borrado de datos en un

Cell/Boundary dataset concreto y existente en la DB, dado el identificador del dataset y

una lista de identificadores de Celdas/Boundaries asociados cada uno de ellos a datos

en formato JSON.

• RF16: La API Web debe permitir la recuperación de todos los Cell/Boundary datasets

almacenados en la BD.

• RF17: La API Web debe permitir la recuperación de todos los datos de un Cell/Boundary

dataset concreto y existente en la BD, dado el identificador del dataset.

• RF18: La API Web debe permitir la recuperación de todos los datos asociados a una

Celda/Boundary concreto, dado el identificador de la Celda/Boundary.

• RF19: La API Web debe permitir la recuperación de los datos asociados a una

Celda/Boundary concreto de un Cell/Boundary dataset concreto y existente en la BD,

dado el identificador del dataset y el identificador de la Celda/Boundary.

• RF20: La API Web debe permitir la recuperación de los datos asociados a las

Celdas/Boundaries que intersecten con un polígono dadas sus coordenadas.

14

3. Diseño de la solución

3.1 Arquitectura

En cuanto a la arquitectura del sistema, se pueden distinguir dos desarrollos principales. En

primer lugar, una biblioteca de Python que permite importar, manipular, recuperar y dar

persistencia a los datos geográficos basados en un DGGS en una base de datos NoSQL de tipo

documental, MongoDB. Y, en segundo lugar, un servidor web basado en el framework Django

REST, que da el soporte de back-end a aplicaciones web o móviles a través de su API (Figura 8).

En la sección 3.6 se explican las tecnologías mencionadas.

FIGURA 8 - ARQUITECTURA DEL SISTEMA

En cuanto a la biblioteca Python, por un lado, incluye la implementación del modelo diseñado,

utilizando rHEALPix como DGGS por defecto (componente DGGS-rHEALPix). Dentro de esta

implementación destacan servicios como la optimización de un Boundary, que permite obtener

un conjunto óptimo de celdas que cubren un área en un DGGS, entendiendo como óptimo el

conjunto más pequeño de celdas que cubren exactamente esa área; y la transformación de

datos basados en el modelo DGGS hacia formatos más comunes de información geográfica como

el modelo vectorial o ráster, y viceversa.

Por otro lado, la biblioteca incluye la implementación de dos almacenes, componentes

Boundary Store y Cell Store, que permiten importar, manipular, recuperar y dar persistencia a

los datos en una base de datos de MongoDB, apoyando las operaciones expuestas por el API.

Estos almacenes hacen uso de la implementación del modelo DGGS anteriormente mencionado.

15

En cuanto a la API, se ha utilizado el framework Django REST para el desarrollo del servidor web

(componente Grid Server) que un cliente puede utilizar para importar, recuperar o manipular

datos basados en el modelo implementado a través de su API. El servidor hace uso de las

operaciones del Boundary y Cell store incluidos en la biblioteca Python desarrollada.

3.2 Modelo de datos

A la hora de hablar del modelo de datos, existe una división derivada de los dos almacenes

distintos que se han desarrollado. Por una parte, el almacén de Boundaries, o Boundary store,

con el que se da persistencia a Boundary Data Sets, es decir, a conjuntos de Boundaries en los

que cada Boundary tiene asociado unos datos concretos, entendiendo un Boundary como un

conjunto de Celdas que delimitan un área en un DGGS. Y, por otra parte, el almacén de Celdas,

o Cell store, con el que se da persistencia a Cell Data Sets, es decir, a conjuntos de Celdas en los

que se asocian datos a cada una de las celdas que los forman.

Por ello, a continuación, se presenta un modelo de entidades y relaciones mediante un diagrama

de clases UML, diferenciando lo relacionado con los Boundaries y lo relacionado con las celdas.

3.2.1 Modelo de entidades y relaciones

En la Figura 9 se presenta el diagrama de clases que define el modelo formado por las entidades

y relaciones asociadas a un conjunto de Boundaries. A continuación, se definen cada una de las

entidades, los atributos que las forman y las relaciones entre ellas.

• La entidad Boundary, modeliza el concepto de mismo nombre del diagrama conceptual.

Esta entidad cuenta con el atributo AUID, que define un identificador único formado a

partir de los identificadores de las celdas que forman el Boundary [5] . Cada Boundary

tiene asociado un bounding box que define los límites del área en cuestión, de ahí la

relación presentada.

• La entidad BBOX define el bounding box de un Boundary, es decir, área definida por 4

puntos, superior izquierda, superior derecha, inferior derecha e inferior izquierda, que

cubre el área cubierta por un Boundary.

• La entidad Data define los datos asociados a un Boundary y cuenta con un atributo que

define estos datos en formato JSON.

16

FIGURA 9 – MODELO DE ENTIDADES Y RELACIONES – BOUNDARY STORE

• La entidad BoundaryDataSet define un conjunto de Boundaries en el que cada

Boundary tiene asociados unos datos concretos, tal y como se define el concepto de

mismo nombre del diagrama conceptual. Esto se representa en el modelo mediante

una agregación de tuplas Boundary-Data, representadas mediante la entidad

BoundaryDataTuple, que define la relación entre un Boundary y sus datos. Tal y como

se explica en el diagrama, un BoundaryDataSet no puede tener dos tuplas asociadas al

mismo Boundary. Además, un BoundaryDataSet cuenta con el atributo id, que define

el identificador de un conjunto, lo que permite realizar operaciones sobre un conjunto

concreto dado su identificador.

En la Figura 10 se presenta el diagrama de clases que define el modelo formado por las entidades

y relaciones asociadas a un conjunto de celdas. A continuación, se definen sus entidades, los

atributos que las forman y las relaciones entre ellas.

• La entidad Cell, modeliza el concepto de mismo nombre del diagrama conceptual. Cada

una de las Celdas tiene asociado un identificador único, y este está definido por el

atributo id de esta entidad.

• La entidad Data define los datos asociados a una Celda y cuenta con un atributo que

define estos datos en formato JSON.

17

FIGURA 10 – MODELO DE ENTIDADES Y RELACIONES – CELL STORE

• La entidad CellDataSet define un conjunto de Celdas en el que cada Celda tiene

asociados unos datos concretos, tal y como se define el concepto de mismo nombre del

diagrama conceptual. Esto se representa en el modelo mediante una agregación de

tuplas Cell-Data, representadas mediante la entidad CellDataTuple, que define la

relación entre una Celda y sus datos. Tal y como se explica en el diagrama, un

BoundaryDataSet no puede tener dos tuplas asociadas a la misma Celda. Además, un

CellDataSet cuenta con el atributo id, que define el identificador de un conjunto, lo que

permite realizar operaciones sobre un conjunto concreto dado su identificador.

3.2.2 Modelo de implementación

Tras el estudio de diferentes alternativas para la persistencia de los datos (BD), se ha decidido

usar una base de datos NoSQL orientada a documentos, en concreto, MongoDB.

MongoDB guarda estructuras de datos BSON (una especificación similar a JSON) con un

esquema dinámico. Esto implica que las entidades definidas en el modelo de datos se

implementan como documentos BSON, y las relaciones entre ellas como referencias entre

dichos documentos. En la sección 3.6 se explica esta tecnología, así como las alternativas

probadas. A continuación, se describe cómo se implementa el modelo haciendo uso de estas

estructuras de datos.

En la Figura 11 pueden observarse los dos documentos que forman la implementación de un

Boundary store. Por una parte, el BoundaryDataSet document, que representa el conjunto de

Boundaries junto con los datos asociados. Está formado únicamente por el campo _id, un String

que define el identificador del conjunto. Este identificador es usado en el documento de un

Boundary para hacer referencia al conjunto al que pertenece, de esta forma, se agrupan los

Boundaries y sus datos formando un Boundary Data Set.

Por otra parte, el Boundary document representa la tupla Boundary-Data, es decir, la asociación

entre un Boundary y unos datos concretos. Este documento cuenta con los siguientes campos:

18

• El campo AUID, un String que representa el identificador único del Boundary.

• El campo bbox, un polígono GeoJSON que representa el bounding box del Boundary.

Este campo está formado a su vez por otros dos: un campo llamado type que especifica

el tipo de objeto GeoJSON y un campo llamado coordinates que especifica las

coordenadas del objeto.

• El campo data, que son los datos en formato JSON asociados al Boundary en cuestión.

• El campo boundary_dataset_id, identificador del Boundary Data Set al que pertenece

el Boundary y datos asociados.

FIGURA 11 – MODELO DE IMPLEMENTACIÓN – DOCUMENTOS DE BOUNDARY STORE

En cuanto a la implementación de un Cell store, en la Figura 12 pueden observarse los dos

documentos que la forman. Por una parte, el CellDataSet document, que representa el conjunto

de Celdas junto con los datos asociados. Está formado únicamente con el campo _id, un String

que, al igual que en el caso anterior, define el identificador del conjunto.

Por otra parte, el Cell document representa la tupla Cell-Data, es decir, la asociación entre una

Celda y unos datos concretos. Este documento cuenta con los siguientes campos:

• El campo CellID, un String que representa el identificador único de la Celda.

• El campo data, que son los datos en formato JSON asociados a la Celda en cuestión.

• El campo cell_dataset_id, identificador del Cell Data Set al que pertenece la Celda y

datos asociados.

19

FIGURA 12 – MODELO DE IMPLEMENTACIÓN – DOCUMENTOS DE CELL STORE

20

3.3 Paquetes y clases

A continuación, se presenta un diagrama UML con los paquetes principales del sistema,

pudiendo diferenciar 2 paquetes principales, coincidiendo con la división del desarrollo ya

mencionada. El paquete dggs, que incluye la biblioteca de Python que permite importar,

manipular, recuperar y dar persistencia a los datos basados en un DGGS, y el paquete api_dggs,

que incluye la implementación de la API que da el soporte de back-end a aplicaciones web o

móviles.

FIGURA 13 – DIAGRAMA DE PAQUETES DEL SISTEMA

21

En la Figura 13 pueden observarse los dos paquetes principales mencionados junto con los

subpaquetes y clases que los forman. A continuación, se describen los paquetes más destacables

del sistema y las dependencias que existen entre ellos.

Paquete dggs

Incluye la biblioteca Python que permite importar, manipular, recuperar y dar persistencia a los

datos basados en un DGGS. Este paquete está formado por los siguientes subpaquetes y clases:

• Clase rHEALPix: en ella se implementa el DGGS rHEALPix.

• Clase CellID: representa el identificador de una celda.

• Paquete Boundary_ID: Agrupa las clases que representan identificadores de un

Boundary, es decir, BoundaryID y AUID.

• Paquete CellSet: Agrupa las clases que representan un conjunto de celdas. Estas son,

CellSet, Boundary, OptimalBoundary, Grid, y GridStack. Ya que todas son conjuntos de

celdas, de todos estos conjuntos puede obtenerse un identificador único, es decir, un

BoundaryID, por ello este paquete depende del paquete boundary_id. También existen

dependencias con las clases esenciales rHEALPix y CellID.

• Paquete Dataset: Agrupa las clases que representan un conjunto de datos asociados a

Boundaries o Celdas, BoundaryDataSet y CellDataSet, así como la clase que representa

esos datos, Data. Este paquete, en concreto la clase BoundaryDataSet, depende del

paquete CellSet, ya que en dicha clase, un Boundary es el objeto fundamental. También

existen dependencias con las clases esenciales rHEALPix y CellID.

• Paquete Store: Este paquete recoge las clases que definen los dos almacenes, el

almacén de Boundaries, BoundaryStore, y el almacén de celdas, CellStore. Estos

almacenes trabajan con datasets, tanto de Boundaries como de Celdas, de ahí la

dependencia con el paquete DataSet. También existen una dependencia con la clase

fundamental rHEALPix.

• Paquete Dggs_auids: Contiene la clase con las operaciones para generar los AUIDs a

partir de un conjunto de identificadores de celdas y viceversa, así como otras utilidades

relacionadas con los identificadores, desarrolladas por el grupo grupo IAAA del I3A3.

• Paquete Dggs_utils: Agrupa las clases que permiten realizar transformaciones de datos

basados en un DGGS a formatos más habituales. En concreto, las clases DGGSShpUtils

y ShpDGGSUtils, y las clases DGGSTifUtils y TifDGGSUtils. Se pueden observar

dependencias con las clases esenciales rHEALPix y CellID, así como con los paquetes

CellSet y DataSet, debido a la conversión desde y hace esos tipos.

3 https://github.com/IAAA-Lab/dggs-auids

https://github.com/IAAA-Lab/dggs-auids

22

Paquete api_dggs

Incluye la implementación de la API que da el soporte de back-end a aplicaciones web o móviles.

Este paquete está formado por los siguientes subpaquetes y clases:

• Paquete Api.views: Agrupa las vistas basadas en clases que se corresponden con los

métodos HTTP utilizados para CRUD. Las clases BoundaryDatasetsView, BoundaryView

y BoundaryDatasetsIDsView contienen las vistas que controlan la inserción, consulta,

modificación y borrado de Boundaries Data Sets. Las clases CellDatasetsView, CellView

y CellDatasetsIDsView contienen las vistas que controlan la inserción, consulta,

modificación y borrado de Cell Data Sets. Estas vistas dependen de los serializadores y

deserializadores agrupados en el paquete api.serializers.

• Paquete Api.serializers: Agrupa los serializadores que convierten objetos Python al

formato de datos JSON (serialización) y viceversa (deserialización). Las clases

BoundaryDatasetSerializer, BoundaryDataSeriealizer y BoundaryDatasetIDSerializer

contienen los serializadores y deserializadores de los objetos Boundary, Data y

BoundaryDataSet. Las clases CellDatasetSerializer y CellDataSeriealizer contienen los

serializadores y deserializadores de los objetos Cell, Data y CellDataSet.

3.3.1 Diagrama de clases

El apartado anterior se ha centrado en presentar y describir los paquetes más relevantes del

sistema y las clases que agrupan estos paquetes. En este, se detallan las principales clases

existentes, las relaciones que existen entre ellas, y las operaciones y los atributos más relevantes

(Figura 14).

• rHEALPix: clase que implementa el DGGS rHEALPix. Entre lo atributos con los que cuenta

esta clase destacan el atributo N_side, entero, mínimo 2, de modo que cada celda tiene

N_side x N_side celdas hijas; north_square, entero entre 0 y 3 que indica la posición del

cuadrado polar norte; south_square, entero entre 0 y 3 que indica la posición del

cuadrado del polo sur; y max_area, área, en metros cuadrados, de las celdas de la rejilla

elipsoidal más pequeña. Esta clase cuenta con métodos que permiten obtener

información de las celdas como su ancho, su fila y columna, así como sus coordenadas

proyectadas o geodésicas, o la obtención de una celda dadas las coordenadas de un

punto. En el Anexo 1 se detalla cada uno de los métodos de esta clase.

• CellID: clase que representa el identificador de una celda. Tiene un único atributo value

que es la cadena del identificador. Cuenta con una operación getRefinement() que

devuelve el nivel de refinamiento de la celda. Por ejemplo, la celda con identificador

N01 tendría un nivel de refinamiento igual a 2, la celda P tendría un nivel de

refinamiento igual a 0.

FIGURA 14 - DIAGRAMA DE CLASES

• BoundaryID: representa el identificador único de un Boundary formado a partir de los

identificadores de las celdas que lo forman. Tiene un único atributo value que es la

cadena del identificador.

o AUID: identificador único de un Optimal Boundary formado a partir de los

identificadores de las celdas que lo forman tal y como se define en el AGILE19

paper. Tiene un único atributo value que es la cadena del identificador

• CellSet: clase que representa un conjunto de celdas. El atributo cells es el conjunto de

identificadores de celdas (CellID) que forman el CellSet, el atributo boundary_ID es la

cadena con el identificador único del conjunto, formada por la concatenación de los

identificadores de celdas, y el atributo dggs, que hace referencia al dggs utilizado, en

este caso rHEALPix. Los métodos de esta clase permiten obtener información del

conjunto como su nivel máximo y mínimo de refinamiento, así como obtener otras

formas de representación del mismo, como por ejemplo un trie o una Grid Stack. En el

Anexo 1 se detalla cada uno de los métodos de esta clase.

o Boundary: conjunto de Celdas que delimitan un área en un DGGS.

Especialización de la clase CellSet, por lo que hereda todos sus atributos y

operaciones, a los que se añade el atributo optimal, booleano que indica si el

Boundary es óptimo o no, y las operaciones optimize(), que optimiza el

Boundary en cuestión, devolviendo un OptimalBoundary, y la operación

get_bbox(), que devuelve las coordenadas geodésicas del bbox (bounding box)

del Boundary (inferior izquierda, inferior derecha, superior derecha, superior

izquierda).

 OptimalBoundary: conjunto óptimo de Celdas que cubre un área en un

DGGS, entendiendo óptimo como el conjunto más pequeño de celdas

que cubren exactamente esa área. Especialización de la clase Boundary,

por lo que hereda todos sus atributos y operaciones, pero en este caso,

el identificador boundary_id es del tipo AUID, ya que debe ser óptimo.

A las operaciones que hereda se añade la operación AUID_to_CUIDs(),

que devuelve el identificador como concatenación simple de

identificadores de celda, es decir, como un BoundaryID.

o Grid: una teselación de una cierta área, por lo que en sus límites cada celda

existe, no hay vacíos ni agujeros. Es otra especialización de la clase CellSet, y, en

este caso, todas las Celdas del conjunto tienen el mismo nivel de refinamiento,

por lo que se añade el atributo refinement_level, que es el nivel de refinamiento

del conjunto o Grid.

o GridStack: una serie de Grids que están ordenadas por su nivel de refinamiento.

• BoundaryDataSet: conjunto de Boundaries en el que cada Boundary tiene asociados

unos datos concretos. Cuenta con 3 atributos: id, que define el identificador del

conjunto, lo que permite realizar operaciones sobre un conjunto concreto dado su

identificador; dggs, que hace referencia al dggs utilizado, en este caso rHEALPix; y el

conjunto de Boundaries junto con los datos asociados a cada uno de ellos,

boundary_data_set. Esta clase cuenta con métodos que permiten obtener información

25

del conjunto como su nivel máximo y mínimo de refinamiento, así como la inserción de

Boundaries en el mismo o, por ejemplo, la obtención de un Boundary y sus datos dado

el BoundaryID. En el Anexo 1 se detalla cada uno de estos métodos.

• CellDataSet: conjunto de Celdas en el que cada Celda tiene asociados unos datos

concretos. Cuenta con 3 atributos: id, que define el identificador del conjunto, lo que

permite realizar operaciones sobre un conjunto concreto dado su identificador; dggs,

que hace referencia al dggs utilizado, en este caso rHEALPix; y el conjunto de Celdas

junto con los datos asociados a cada una de ellas, cell_data_set. Esta clase cuenta con

métodos que permiten obtener información del conjunto como su nivel máximo y

mínimo de refinamiento, así como la inserción de celdas en el mismo o, por ejemplo, la

obtención de una celda y sus datos dado el CellID. En el Anexo 1 se detalla cada uno de

estos métodos.

Todas las clases anteriores se localizan en el componente DGGS-rHEALPix. En la siguiente

sección, Componentes y conectores, se describe dicho componente.

• BoundaryStore: clase que representa el almacén de Boundaries. Cuenta con 2

atributos, el atributo dggs, que hace referencia al dggs utilizado, en este caso rHEALPix,

y el atributo db, que es la base de datos en la que se da persistencia, en este caso, un

cliente de MongoDB. En cuanto a los métodos con los que cuenta esta clase,

implementan las operaciones de inserción, consulta, modificación y borrado de datos

en el almacén. En el Anexo 1 se detalla cada uno de estos métodos. Esta clase se localiza

en el componente Boundary Store, que expone a través de su interfaz los métodos de

esta para ser utilizados por el servidor. En la siguiente sección Componentes y

conectores se describe dicho componente.

• CellStore: clase que representa el almacén de Celdas. Cuenta con 2 atributos, el

atributo dggs, que hace referencia al dggs utilizado, en este caso rHEALPix; y el atributo

db, que es la base de datos en la que se da persistencia, en este caso, un cliente de

MongoDB. En cuanto a los métodos con las que cuenta esta clase, implementan las

operaciones de inserción, consulta, modificación y borrado de datos en el almacén. En

el Anexo 1 se detalla cada uno de estos métodos. Esta clase se localiza en el

componente Cell Store, que expone a través de su interfaz los métodos de esta para

ser utilizados por el servidor. En la siguiente sección Componentes y conectores se

describe dicho componente.

• DGGSShpUtils: clase que contiene las operaciones para transformar datos asociados a

un Boundary, en datos asociados a entidades de un modelo vectorial contenidos en un

shapefile; así como, un conjunto datos asociados a Boundaries contenidos en un

Boundary Datase,t en un conjunto de datos asociados a entidades de un modelo

vectorial contenidos en un conjunto de shapefiles. Destaca el atributo dggs, que hace

referencia al dggs utilizado, en este caso rHEALPix. En el Anexo 1 se detalla cada uno de

sus métodos. Esta clase se localiza en el componente DGGS-rHEALPix, que expone a

26

través de su interfaz los métodos de esta para ser utilizados por otros. En la siguiente

sección Componentes y conectores se describe dicho componente.

• ShpDGGSUtils: clase que contiene las operaciones para transformar datos asociados a

entidades de un modelo vectorial contenidos en un shapefile, en datos asociados a un

Boundary; así como, un conjunto de datos asociados a entidades de un modelo vectorial

contenidos en un conjunto de shapefiles, en un conjunto de datos asociados a

Boundaries contenidos en un Boundary Dataset. Destaca el atributo dggs, que hace

referencia al dggs utilizado, en este caso rHEALPix. En el Anexo 1 se detalla cada uno de

sus métodos. Esta clase se localiza en el componente DGGS-rHEALPix, que expone a

través de su interfaz los métodos de esta para ser utilizados por otros. En la siguiente

sección, Componentes y conectores, se describe dicho componente.

• DGGSTifUtils: clase que contiene las operaciones para transformar datos asociados a

celdas contenidos en un Cell Dataset, en datos asociados a píxeles de un modelo ráster

contenidos en un fichero GeoTIFF. Destaca el atributo dggs, que hace referencia al dggs

utilizado, en este caso rHEALPix. En el Anexo 1 se detalla cada uno de sus métodos. Esta

clase se localiza en el componente DGGS-rHEALPix, que expone a través de su interfaz

los métodos de esta para ser utilizados por otros. En la siguiente sección, Componentes

y conectores, se describe dicho componente.

• TifDGGSUtils: clase que contiene las operaciones para transformar datos asociados a

píxeles de un modelo ráster contenidos en un fichero GeoTIFF, en un conjunto datos

asociados a celdas contenidos en un Cell Dataset. Destaca el atributo dggs, que hace

referencia al dggs utilizado, en este caso rHEALPix. En el Anexo 1 se detalla cada uno de

sus métodos. Esta clase se localiza en el componente DGGS-rHEALPix, que expone a

través de su interfaz los métodos de esta para ser utilizados por otros. En la siguiente

sección, Componentes y conectores, se describe dicho componente.

27

3.4 Componentes y conectores

En la Figura 15 se presenta un diagrama UML con los componentes principales del sistema y sus

conectores. A continuación, se describe cada componente, qué permite cada conector, y se

documentan las interfaces más relevantes del sistema.

FIGURA 15 - DIAGRAMA DE COMPONENTES Y CONECTORES DEL SISTEMA

• Grid Server: servidor desarrollado con el framework Django REST que expone una API,

descrita en el Anexo 3, que permite a un cliente web o móvil importar, recuperar o

manipular datos basados en el modelo de DGGS implementado. El servidor hace uso de

las operaciones del Boundary y Cell Store incluidos en la biblioteca Python desarrollada.

• Boundary Store: almacén de Boundaries con el que se da persistencia, sobre una base

de datos MongoDB, a Boundary Data Sets, es decir, a conjuntos de Boundaries en los

que cada Boundary tiene asociado unos datos concretos.

Tal y como ya se ha explicado en la sección anterior, este componente expone a través

de su interfaz las operaciones de la clase BoundaryStore, de la que hace uso el

componente Grid Server y sobre la que se sustenta la API que este expone, de ahí el

conector entre estos dos componentes en el diagrama. La descripción por tanto de las

operaciones con las que cuenta la interfaz de este componente se detallan en el Anexo

1, en la descripción de los métodos de la clase BoundaryStore.

28

A la hora de insertar un BoundaryDataSet, tal y como se explica en el Modelo de datos,

cada Boundary perteneciente al conjunto se inserta junto con su bounding box, de

forma que puedan realizarse operaciones como la de búsqueda mediante intersección

de un polígono. La operación insert(BoundaryDataSet), descrita en el Anexo 1, calcula

dicho bounding box, antes de insertar el documento de MongoDB en la base de datos.

Para realizar este cálculo, este componente utiliza la operación ofrecida por el

componente DGGS-rHEALPix: boundary.get_bbox(). Además, a la hora de realizar

búsquedas mediante un identificador de un Boundary, dado que en la base de datos se

guarda el AUID de cada uno de ellos, se optimiza el Boundary, si no es un

OptimalBoundary, antes de realizarla. Para ello, este componente hace uso de la

operación boundary.optimize(), ofrecida también por el componente DGGS-rHEALPix.

El uso de estas operaciones y de los constructores de las clases Boundary,

OptimalBoundary, AUID, Data y BoundaryDatSet para la creación de objetos de estos

tipos se representa en el diagrama mediante el conector entre Boundary Store y DGGS-

rHEALPix.

El almacén se implementa sobre una base de datos MongoDB, por ello, este

componente utiliza el driver pymongo 4 para trabajar con dicha base. La comunicación

entre el Boundary Store y la base de datos MongoDB a través de dicho driver, se ve

reflejada en el diagrama mediante un conector.

• Cell Store: almacén de Celdas con el que se da persistencia, sobre una base de datos

MongoDB, a Cell Data Sets, es decir, a conjuntos de Celdas en los que se asocian datos

a cada una de las celdas que los forman.

Al igual que el componente anterior, este componente expone a través de su interfaz

las operaciones de la clase CellStore, de la que hace uso el componente Grid Server y

sobre la que se sustenta la API que este expone, de ahí el conector entre estos dos

componentes en el diagrama. La descripción por tanto de las operaciones con las que

cuenta la interfaz de este componente se detallan en el Anexo 1, en la descripción de

los métodos de la clase CellStore.

El uso los constructores de las clases CellID, Data y CellDatSet para la creación de objetos

de estos tipos se representa en el diagrama mediante el conector entre Cell Store y

DGGS-rHEALPix.

El almacén se implementa sobre una base de datos MongoDB, por ello, este

componente utiliza el driver pymongo para trabajar con dicha base. La comunicación

entre el Cell Store y la base de datos MongoDB a través de dicho driver se ve reflejada

en el diagrama mediante un conector.

• DGGS-rHEALPix: implementación del modelo DGGS diseñado, utilizando rHEALPix como

DGGS por defecto. Permite a los componentes BoundaryStore y CellStore la creación

de objetos de tipo Boundary, OptimalBoundary, AUID, CellID, Data, BoundaryDatSet, así

como el uso de servicios como obtención del bounding box de un Boundary mediante

la operación get_bbox() o la optimización y obtención de un OptimalBoundary mediante

4 https://pymongo.readthedocs.io/en/stable/

https://pymongo.readthedocs.io/en/stable/

29

la operación optimize(), operaciones de la clase Boundary descrita en la sección

anterior.

Además, este componente ofrece una interfaz para la realización de transformaciones

de datos basados en un DGGS a otros formatos más habituales, en concreto, Shapefile

y GeoTiff, y viceversa. A través de esta interfaz, tal y como ya se ha explicado en la

sección anterior, se exponen las operaciones de las clases DGGSShpUtils,

ShpDGGSUtils, DGGSTifUtils y TifDGGSUtils, descritas en el Anexo 1.

• Proj.4: biblioteca de proyecciones cartográficas y transformaciones de coordenadas.

Ofrece una interfaz Python utilizada por el componente DGGS-rHEALPix.

• GDAL: biblioteca de traductores para formatos de datos geoespaciales ráster y

vectoriales. Ofrece una interfaz Python utilizada por el componente DGGS-rHEALPix.

• MongoDB: base de datos sobre la que se implementan los dos almacenes descritos

anteriormente. Como ya se ha explicado, se utiliza el driver pymongo para trabajar con

ella. De entre las operaciones que ofrece dicho driver, se han utilizado las siguientes:

o insert_one(): permite insertar un documento único (un BoundaryDataSet o un

CellDataSet).

o create_index(): crea un índice en una colección.

o find(): permite consultar la base de datos.

o update_many: actualiza uno o más documentos que coincidan con el filtro.

o delete_many(): elimina uno o más documentos que coincidan con el filtro.

30

3.4.1 Documentación de la dinámica del sistema

Como ejemplo interesante de funcionamiento del sistema que involucra la interacción entre

varios componentes de este, en la Figura 16, se presenta un diagrama que muestra de forma

resumida el proceso de inserción de un BoundaryDataSet en la base de datos.

FIGURA 16 - DIAGRAMA DE SECUENCIA. INSERCIÓN DE UN BOUNDARYDATASET

31

El proceso comienza con una petición POST al Grid server en la que el BoundaryDataSet a

insertar es pasado en el cuerpo de la petición en formato JSON. La vista recibe los datos, estos

son serializados y validados. Se construye el objeto BoundaryDataSet, y por cada Boundary del

conjunto, se realiza una llamada a la función add() de este objeto, con el Boundary y los datos

asociados a este pasados como parámetro. Esta función comprueba si el Boundary es óptimo, si

no lo es, lo optimiza obteniendo el Optimal Boundary correspondiente. Un vez el objeto

BoundaryDataSet tiene todo el conjunto, se pasa como parámetro a la función insert() del

BoundaryStore.

La función insert()del BoundaryStore, en primer lugar, inserta un documento en la colección de

Boundary Data Sets con su identificador. En segundo lugar, por cada uno de los Boundaries del

conjunto, calcula su bounding box para incluirlo en el documento a insertar en la colección de

Boundaries. Se calculan los vértices superior izquierdo e inferior derecho del bounding box a

partir las celdas superior izquierda e inferior derecha del conjunto. Una vez obtenidos los

vértices, se convierten sus coordenadas, de proyectadas (proyección rHEALPix) a geodésicas

(longitud y latitud sobre el elipsoide WGS84). Se devuelve al BoundaryStore el vértice inferior

izquierdo, inferior derecho, superior derecho y superior izquierdo del bounding box.

Se inserta un documento en la colección de Boundaries con su AUID, bbox, datos asociados y el

identificador del BoundaryDataSet al que pertenece. Una vez insertados todos los Boundaries

del BoundaryDataSet, el Grid server devuelve 201 al cliente.

32

3.5 Distribución

En la Figura 17 se presenta un diagrama UML de despliegue del sistema. En él puede observarse

que la base de datos MongoDB se ha desplegado en un contenedor Docker5. Un contenedor es

una unidad de software estándar que empaqueta el código y todas sus dependencias para que

la aplicación se ejecute de manera rápida y fiable de un entorno a otro. Los contenedores son

una abstracción en la capa de la aplicación que agrupa el código y las dependencias juntas. Se

pueden ejecutar varios contenedores en la misma máquina y compartir el núcleo del sistema

operativo con otros contenedores, cada uno de los cuales se ejecuta como procesos aislados en

el espacio del usuario.

Para realizar este despliegue mediante Docker, se ha creado un Dockerfile que permite a Docker

construir la imagen de MongoDB de forma automática. En él se describe la configuración del

contenedor de MongoDB, con un puerto externo 27017 que será usado por el servidor y un

puerto interno 27017 que en este caso no es usado, y sus volúmenes montados, en este caso

uno en /data/db, donde se mantiene los datos de configuración. El servidor se comunica con la

base de datos mediante el driver pymongo, que ofrece un conjunto de herramientas para

interactuar con MongoDB a través de Python.

FIGURA 17 - DIAGRAMA DE DESPLIEGUE

5 https://www.docker.com/

https://www.docker.com/

33

3.6 Implementación

A continuación, se van a explicar algunos aspectos interesantes de la implementación del

sistema como las tecnologías o librerías que se han utilizado.

3.6.1 Python

Para el desarrollo de este trabajo se ha utilizado Python6, un lenguaje de programación

interpretado cuya filosofía hace hincapié en la legibilidad de su código. Se trata de un lenguaje

de programación multiparadigma, ya que soporta orientación a objetos, programación

imperativa y, en menor medida, programación funcional. Es un lenguaje interpretado, dinámico

y multiplataforma. Es administrado por la Python Software Foundation. Posee una licencia de

código abierto, denominada Python Software Foundation License. Entre las ventajas de utilizar

Python frente a otros lenguajes destacan la gran cantidad de bibliotecas, lo que favorece la

productividad a la hora de programar; la facilidad de uso de las estructuras de datos, Python

ofrece también la opción de tipado dinámico de datos de alto nivel que reduce la longitud del

código; es de código abierto, Python se desarrolla bajo una licencia de código abierto aprobada

por OSI, que lo hace libre de usar y distribuir, incluso con fines comerciales; es extensible,

Python se puede extender a otros lenguajes; y es fácil de comprender y codificar, debido a que

no es un lenguaje tan detallado, leer Python es muy parecido a leer en inglés, lo que hace

también que se requiera menos codificación con respecto a otros lenguajes.

3.6.2 MongoDB

Al inicio de este trabajo se estudiaron diferentes alternativas para la persistencia de los datos

(BD) para seleccionar la más adecuada. Entre estas alternativas destacan las bases de datos

orientadas a documentos, a grafos, clave-valor, orientadas a columnas y a arrays. En cuanto a

las orientadas a grafos, se han hecho pruebas con Neo4J, pero el hecho de que sea un modelo

muy flexible puede hacer que los datasets se expandan demasiado, debido a la facilidad de

añadir nuevas relaciones. En relación con las clave-valor, se ha probado Riak, pero el hecho de

que algunos Boundaries pueden estar ligados a distintos datos en distintos Boundary Datasets

hace más complicado una implementación en este tipo de base de datos con respecto a las

demás. Se contempló la posibilidad de usar Cassandra, como base de datos orientada a

columnas, incluso el uso de una base de datos SQL. En cuanto a las orientadas a arrays, se analizó

TileDB, un motor diseñado en torno a arrays multidimensionales que permite almacenar y

acceder a matrices densas (p. Ej., Imágenes de satélite), matrices dispersas (p. Ej., LiDAR,

genómica), dataframes (cualquier dato en forma tabular) y valores-clave. Pero al final se decidió

usar MongoDB para dar persistencia al modelo.

MongoDB 7es un sistema de base de datos NoSQL, orientado a documentos y de código abierto.

MongoDB guarda estructuras de datos BSON (una especificación similar a JSON) con un

esquema dinámico, haciendo que la integración de los datos en ciertas aplicaciones sea más fácil

y rápida. Entre las razones por las que se ha decidido utilizar este tipo de base de datos destacan

6 https://www.python.org/
7 https://www.mongodb.com/es

https://www.python.org/
https://www.mongodb.com/es

34

la flexibilidad, ya que permite que los datos estructurados, semiestructurados y no

estructurados se puedan almacenar juntos, sin necesidad de una conversión previa. Además,

que los datos se almacenen en estructuras parecidas a un JSON hace que el flujo de datos dentro

de la aplicación no tenga mayores cambios en la estructura de datos; la escalabilidad, MongoDB,

al ser una base de datos distribuida puede escalar no solamente de forma vertical (CPU y RAM)

si no que también de forma horizontal (creando más nodos); buena sintaxis para hacer

consultas, cuenta con múltiples operadores que permiten crear consultas con poco código,

además cuenta con las agregaciones que permiten realizar operaciones entre múltiples

colecciones; alta disponibilidad, MongoDB permite tener clúster distribuidos, lo que mejora la

velocidad de consulta al disminuir la latencia que existe entre el clúster de base de datos y el

servicio que ejecuta la query; y que es de código abierto.

3.6.3 Django REST

Django REST framework 8es un kit de herramientas potente y flexible para crear API web. Alguna

de las razones por las que se ha seleccionado este framework para el desarrollo de esta son la

opción de tener una API navegable desde el navegador (Figura 18), lo que facilita mucho la

realización de pruebas; la serialización de datos a partir de fuentes de datos ORM o no ORM;

muy buena documentación y amplia comunidad al ser open source; y muy personalizable.

FIGURA 18 - API NAVEGABLE

3.6.4 Proj.4

La conversión de coordenadas proyectadas (proyección rHEALPix) a geodésicas (longitud y

latitud sobre el elipsoide WGS84), y viceversa, es necesaria en numerosas operaciones de la

bilbioteca desarrollada. Para realizar dicha conversión se ha utilizado Proj49, que es una

biblioteca que proporciona métodos para transformar entre sistemas de referencia de

8 https://www.django-rest-framework.org/
9 https://proj.org

https://www.django-rest-framework.org/
https://proj.org/

35

coordenadas diferentes. Sus características principales son que proporciona el punto de

transformación de un sistema de referencia de coordenadas a otro, que incluye transformación

entre datums (datos de referencia), y la gran cantidad de clases de proyección compatibles. En

concreto se ha utilizado pyproj10, una interfaz de Python para PROJ, para ejecutar una

proyección rHEALPix en un modelo elipsoidal WGS84 y viceversa.

3.6.5 GDAL

A la hora de transformar datos asociados a píxeles de un modelo ráster contenidos en un fichero

GeoTIFF en un conjunto datos asociados a Celdas contenidos en un Cell Dataset, es necesaria

también una conversión de coordenadas a rHEALPix. Para ello se ha utilizado GDAL11, que es una

biblioteca de traducción o transformación para formatos de datos geoespaciales ráster y

vectoriales que la Open Source Geospatial Foundation publica bajo una licencia de código

abierto estilo X / MIT. En concreto se ha utilizado gdalwarp12, una utilidad de mosaico de

imágenes, reproyección y deformación. El programa puede reproyectar a cualquier proyección

soportada.

10 https://pypi.org/project/pyproj/
11 https://gdal.org
12 https://gdal.org/programs/gdalwarp.html

https://pypi.org/project/pyproj/
https://gdal.org/
https://gdal.org/programs/gdalwarp.html

36

3.7 Pruebas

En este trabajo se incluye una colección de tests automáticos en los que se realizan pruebas

sobre las operaciones más críticas del sistema, así como pruebas con datos reales

proporcionados por GEOT del Dpto. de Geografía y Ord. del Territorio, que han permitido probar

las transformaciones de formatos. A continuación, se explican de manera resumida los tests

realizados:

• Boundary tests

Conjunto de pruebas realizadas sobre los objetos Boundary. Se incluyen pruebas como

la obtención de un Boundary a partir de su identificador y a partir de un conjunto de

celdas (test_boundary_from_boundary_ID() y test_boundary_from_cells()), la correcta

obtención de un GridStack (test_grid_stack()), y del nivel mínimo y máximo de

refinamiento (test_min_refinement(), test_max_refinement()), así como el correcto

funcionamiento de las operaciones de optimización, obtención de las coordenadas de

las celdas de un Boundary, u obtención del bbox (test_optimize_boundary(),

test_boundary_projected_coordinates(), test_boundary_geodetic_coordinates() y

test_bbox()).

• BoundaryDataSet tests

Conjunto de pruebas realizadas sobre los objetos BoundaryDataSet. Se incluyen pruebas

como la creación de un BoundaryDataSet (test_boundary_dataset()), la inclusión de un

Boundary o una lista de ellos al conjunto (test_boundary_dataset_add() y

test_boundary_dataset_add_list()), la obtención de la lista de Boundaries o lista de

tuplas Boundary-Data del conjunto (test_get_boundaries() y

test_get_boundaries_and_data()), la correcta obtención del nivel mínimo y máximo de

refinamiento (test_min_refinement(), test_max_refinement()), y de los datos a partir

de un Boundary o lista de Boundaries (test_get_boundary_data() y

test_get_boundary_data_list()).

• BoundaryStore tests

Conjunto de pruebas realizadas sobre los objetos BoundaryStore. Se incluyen pruebas

de todas las operaciones de inserción, recuperación, modificación y borrado en el

almacén.

• CellDataSet tests

Conjunto de pruebas realizadas sobre los objetos CellDataSet. Se incluyen pruebas como

la creación de un CellDataSet (test_cell_dataset()), la inclusión de una Celda o una lista

de ellas al conjunto (test_cell_dataset_add() y test_cell_dataset_add_list()), la

obtención de la lista de Celdas o lista de tuplas Celda-Data del conjunto (test_get_cells()

y test_get_cells_and_data()), la correcta obtención del nivel mínimo y máximo de

refinamiento (test_min_refinement(), test_max_refinement()), y de los datos a partir

de una Celda o lista de Celdas (test_get_cell_data() y test_get_cell_data_list()).

37

• CellStore tests

Conjunto de pruebas realizadas sobre los objetos CellStore. Se incluyen pruebas de

todas las operaciones de inserción, recuperación, modificación y borrado en el almacén.

• rHEALPix tests

Conjunto de pruebas realizadas sobre las operaciones principales del DGGS rHEALPix.

Se incluyen pruebas como el cálculo correcto del ancho de una Celda (test_cell_width()),

la obtención de la fila y columna de una Celda (test_rowcol()), la comprobación de si

una Celda está más arriba, abajo, más a la izquierda o a la derecha que otra

(test_up_down() y test_right_left()), la correcta obtención del vértice superior

izquierdo de un Celda (test_cell_ul_vertex()), de las coordenadas proyectadas y

geodésicas de una Celda (test_cell_projected_coordinates() y

test_cell_geodetic_coordinates()), y la correcta obtención de una Celda a partir de las

coordenadas de un punto (test_cell_from_point()).

• Tests de transformaciones

En primer lugar, un conjunto de pruebas para verificar la correcta transformación de un

Boundary y BoundaryDataSet en un shapefle y viceversa:

(test_shp_file_from_boundary(), test_shp_files_from_boundary_dataset(),

test_get_boundary_from_shp_file() y test_get_boundary_dataset_from_shp_file()).

Por otra parte, un conjunto de pruebas para verificar la correcta transformación de un

CellDataSet en un fichero GeoTIFF y viceversa: (test_tif_file_from_cell_dataset() y

test_cell_dataset_from_tif_file())

Estos tests se han realizado utilizando el módulo unittest 13de Python, un marco de pruebas

inspirado originalmente en JUnit y similar a los principales frameworks de pruebas unitarias en

otros lenguajes. Admite la automatización de pruebas, códigos de configuración y cierre para

pruebas, la agregación de pruebas en colecciones y la independencia de las pruebas del marco

de informes.

13 https://docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html

38

4. Gestión del proyecto
En esta sección se detalla cómo se ha llevado a cabo el proyecto, teniendo en cuenta aspectos

como la planificación e historia del proyecto, el control de esfuerzos y la gestión de

configuraciones.

4.1 Planificación e historia del proyecto

Tal y como se describió en la propuesta del trabajo, se planificaron las siguientes fases:

• Colaborar con los investigadores en el diseño de modelos de datos geográficos DGGS.

• Estudiar alternativas para la persistencia de los datos (BD) y seleccionar una adecuada.

• Diseñar e implementar una biblioteca Python que permita importar, manipular,

recuperar y dar persistencia a datos sobre los modelos diseñados y en la BD elegida.

• Diseñar e implementar una API web que dé el soporte de back-end al cliente web que

está siendo desarrollado por los otros investigadores.

• Carga de datos reales. Pruebas del sistema.

• Completar la documentación y la memoria del TFG.

A continuación, se detalla la historia del proyecto, que a grandes rasgos coincide con la

planificación anterior. El desarrollo del proyecto se extiende desde noviembre de 2019 hasta

septiembre de 2020.

Primera fase

Se estableció el objetivo general del trabajo, es decir, avanzar hacia una infraestructura de datos

geográficos creados sobre uno o más DGGS. Soportar el almacenamiento (esquema de datos

adecuado para DGGS), acceso a través de la red, conversión desde y hacia formatos más

habituales de información geográfica, etc.

Como tareas a destacar en esta primera fase se encuentran: familiarizarse con DGGS,

familiarizarse con datos geográficos y estudiar alternativas para la persistencia de los datos (BD),

y seleccionar una adecuada. Se decidió realizar la implementación de Boundary en una BD

NoSQL documental, en concreto, MongoDB. Se consideró el modelo de grafos interesante, pero

se vio que era añadir complejidad extra.

Segunda fase

Como objetivo de esta fase se planteó la localización espacial de los Boundaries en la base de

datos. Aprovechar el potencial espacial de la BD para poder responder a la query espacial básica:

¿qué Boundaries intersectan con este rectángulo?

39

Se decidió que lo más sencillo era almacenar el bounding box de cada Boundary en la BD, en el

formato de geometría adecuado, indexar esa columna y luego consultar por ella. No tenía

sentido convertir el Boundary en geometría y almacenar esa en la BD, dado que se estaría

almacenando la geometría dos veces. Además, supondría la conversión de datos discretos a

continuos perdiendo una de las ventajas de los DGGS.

Todo esto suponía pasar de id de celda rHEALPix a coordenadas lon/lat (EPSG:4326) y viceversa.

Eso es necesario para poder asignar los bounding boxes de los Boundaries en la BD y así poder

hacer consultas espaciales de los mismos.

Tercera fase

Una vez resuelto el problema de pasar de id de celda rHEALPix a coordenadas lon/lat

(EPSG:4326), se comenzó a implementar el modelo, objetivo de esta tercera fase. Se diseñó e

implementó una biblioteca Python para importar, manipular, recuperar y dar persistencia a

datos sobre el modelo diseñado y en la BD elegida. En un principio, todo este trabajo se centró

en los Boundaries y Boundary Datasets, y su respectivo almacén, ya que era lo que iba a ser

utilizado en el proyecto de los investigadores, COLABOTUR.

Se implementaron en Python cada uno de los conceptos del modelo ya presentado, diseñando

y ejecutando a su vez un conjunto de pruebas unitarias para cada uno de ellos.

Cuarta fase

En esta cuarta fase, se continuó refinando la implementación del modelo, centrándose esta vez

en los Cell Datasets. Además, se diseñó e implementó la API web que da el soporte de back-end

al cliente web que estaba siendo desarrollado por los otros investigadores.

Además, se recibieron conjuntos de datos reales de los investigadores GEOT del Dpto. de

Geografía y Ord. del Territorio. Esto permitió empezar a hacer pruebas con datos reales.

Almacenarlos y recuperarlos, y descubrir en el proceso problemas o necesidades inesperados

que pudiesen surgir.

Quinta fase

Esta quinta fase se centró en la implementación de la parte de la biblioteca dedicada a la

transformación de los datos basados en el modelo DGGS hacia formatos más comunes de

información geográfica como el modelo vectorial o ráster, y viceversa. En concreto, los formatos

escogidos fueron Shapefile y GeoTIFF. Se realizaron pruebas con datos reales para comprobar la

correcta transformación de estos.

Además, durante esta fase se colaboró en la redacción del artículo sobre COLABOTUR enviado

al GEOProcessing 2020. Por otra parte, se comenzó con la redacción de la memoria del trabajo.

40

Sexta fase

Esta última fase, se centró en la redacción de la memoria del trabajo, así como con tareas de

documentación y de corrección de errores.

4.2 Control de esfuerzos

El tiempo dedicado a cada parte del proyecto se ha registrado desde el inicio de este. Para llevar

un seguimiento de los esfuerzos se ha usado la herramienta Clockify14. Cada tarea registrada en

dicha herramienta se ha etiquetado según la fase del desarrollo a la que pertenecía: análisis y

diseño, implementación, documentación o pruebas. A continuación, en la Figura 19, se muestra

la distribución de horas en función de las fases del desarrollo del proyecto.

FIGURA 19 - DISTRIBUCIÓN DE HORAS

El tiempo total destinado a la realización del proyecto ha sido de 608 horas. La mayor parte del

tiempo se ha invertido en la implementación de la biblioteca y API web, un 38,7%, y en las

pruebas realizadas, un 27% del total. El resto del tiempo se ha invertido en el análisis y diseño,

un 18,3%, y en la documentación, un 16%.

4.3 Gestión de configuraciones

Durante el trabajo se ha mantenido un control de versiones tanto del código desarrollado, como

de la documentación relacionada, para ello se han utilizado las herramientas GitHub y Google

Drive.

El código del sistema se encuentra en un repositorio público de GitHub15 bajo la licencia

European Union Public License, una licencia de software libre.

14 https://clockify.me
15 https://github.com/IAAA-Lab/grid-server

https://clockify.me/
https://github.com/IAAA-Lab/grid-server

41

5. Conclusiones y trabajo futuro
El objetivo de este trabajo ha sido crear una biblioteca para la importación, transformación,

almacenamiento, y recuperación de datos geográficos basados en un DGGS, así como la

implementación de una API web que permita la integración de la funcionalidad principal en

aplicaciones web o móviles.

En este trabajo se han estudiado alternativas de almacenamiento persistente (BD), se ha

diseñado e implementado una biblioteca Python que permite importar, manipular, recuperar y

dar persistencia a datos sobre los modelos diseñados y en la BD elegida. Se ha diseñado e

implementado una API web, que permite a un cliente importar, recuperar o manipular datos

basados en el modelo implementado.

La colaboración con investigadores, en concreto, con el grupo IAAA del I3A (Instituto

Universitario de Investigación de Ingeniería de Aragón) y GEOT del IUCA (Instituto Universitario

de Ciencias Ambientales), es otro aspecto a destacar. Esto ha permitido trabajar con

necesidades, requisitos y datos reales, ya que están trabajando en un proyecto que persigue

desarrollar aplicaciones para este tipo de sistemas. Estos investigadores han creado un cliente

web para la captura de datos sobre DGGS, que utiliza la API web y el almacenamiento en BD

diseñados e implementados en este TFG, lo que ha ayudado en su diseño y pruebas. Esta

colaboración se ha traducido en la redacción de un artículo conjunto enviado al congreso

internacional GEOProcessing 2020 (pendiente de revisión).

Tras la realización del trabajo, se ha visto que una de las líneas de trabajo futuro más claras

podría ser realizar una implementación más eficiente en relación con la parte del almacén de

Cell Datasets, “almacenamiento ráster" de los DGGS. Almacenarlos como arrays de manera

eficiente (BD orientada a arrays, formatos de fichero tipo HDF5...) pero, a la hora de realizar las

consultas, extraerlos como si cada celda de estos estuviera indexada por su CellID. Una de las

posibilidades sería utilizar TileDB15, motor diseñado en torno a arrays multidimensionales,

siendo esta una de las alternativas para la persistencia de los datos analizadas, que, una vez

finalizado este TFG, se ve posiblemente como más adecuada en este caso.

La biblioteca Python implementada permite la transformación de datos basados en un DGGS

hacia formatos más comunes de información geográfica como el modelo vectorial o ráster, y

viceversa, en concreto, Shapefile y GeoTIFF respectivamente. En relación con esto, otra de las

líneas de trabajo futuro sería incorporar más formatos hacia los que realizar estas

transformaciones.

Entre otras muchas líneas en las que se podría basar un trabajo futuro, se podría destacar la

integración de este sistema en workflows de procesamiento de datos geográficos, de manera

que se pudieran aprovechar las virtudes de los DGGS para, por ejemplo, automatizar alguna

toma de decisiones que ahora requiere intervención humana, como, por ejemplo, a qué sistema

15 https://tiledb.com

https://tiledb.com/

42

de coordenadas transformar datos que están en sistemas distintos cuando se quieren combinar

en un análisis geográfico.

Con la realización de este trabajo se ha obtenido experiencia en el tratamiento de datos

geográficos, en el desarrollo de código Python, así como en el diseño e implementación de

sistemas. Se considera la colaboración con investigadores uno de los aspectos más positivos de

este trabajo, de gran valor para el futuro profesional.

43

Referencias

1. Gibb, R. G., & Raichev, A. & Speth, M. 2016. The rHEALPix Discrete Global Grid System.

https://raichev.net/files/rhealpix_dggs_preprint.pdf

2. Purss, M. (ed.) 2015. DGGS. OGC Abstract Specifications OGC 15-104r5.

http://docs.opengeospatial.org/as/15-104r5/15-104r5.html

3. Víctor Olaya. 2016. Sistemas de Información Geográfica. Un libro libre de Víctor Olaya.

https://volaya.github.io/libro-sig/index.html

4. Gibb, R. G. 2016. The rHEALPix Discrete Global Grid System. IOP Conference Series:

Earth and Environmental Science. https://iopscience.iop.org/article/10.1088/1755-

1315/34/1/012012/pdf

5. Rubén Béjar, Miguel Á. Latre, Francisco J. Lopez-Pellicer, Javier Nogueras-Iso, F. Javier

Zarazaga-Soria. 2019. AGILE 2019. On the problem of providing unique identifiers for

areas with any shape on Discrete Global Grid Systems. https://agile-

online.org/images/conference_2019/documents/short_papers/58_Upload_your_PDF_

file.pdf

https://raichev.net/files/rhealpix_dggs_preprint.pdf
http://docs.opengeospatial.org/as/15-104r5/15-104r5.html
https://volaya.github.io/libro-sig/index.html
https://iopscience.iop.org/article/10.1088/1755-1315/34/1/012012/pdf
https://iopscience.iop.org/article/10.1088/1755-1315/34/1/012012/pdf
https://agile-online.org/images/conference_2019/documents/short_papers/58_Upload_your_PDF_file.pdf
https://agile-online.org/images/conference_2019/documents/short_papers/58_Upload_your_PDF_file.pdf
https://agile-online.org/images/conference_2019/documents/short_papers/58_Upload_your_PDF_file.pdf

44

Anexos

Anexo 1 – Ejemplos de uso de la biblioteca

Stores

BoundaryStore

La clase BoundaryStore representa el almacén de Boundaries con el que se da persistencia,
sobre una base de datos MongoDB, a Boundary Data Sets, es decir, a conjuntos de Boundaries
en los que cada Boundary tiene asociados unos datos concretos. A continuación, se presentan
ejemplos de inserción de un Boundary Dataset, la consulta de un Boundary dado su
identificador, el borrado de un Boundary dado su identificador, la consulta de un Boundary
DataSet dado su identificador, y la consulta de un Boundary en un Boundary Dataset concreto
dados sus identificadores.

from dggs.cellset.boundary import Boundary

from dggs.boundary_ID import BoundaryID

from dggs.dataset.boundary_dataset import BoundaryDataSet

from dggs.store.boundary_store import BoundaryStore

from dggs.dataset.data import Data

store = BoundaryStore()

BoundaryStore por defecto utiliza la configuración de conexión a la base de

datos especificada en el archivo mongodb_config.py .

Inserción

bds = BoundaryDataSet("id")

boundaries = ['O23P12P34S56', 'P10P11P2', 'N0', 'N8O2P0', 'O6S0S1S2', 'Q']

for boundary in boundaries:

 bds.add(Boundary(boundary_ID=BoundaryID(boundary)), Data("test"))

store.insert(bds)

Consulta por BoundaryID

stored_boundaries =

store.query_by_boundary((Boundary(boundary_ID=BoundaryID('O23P12P34S56'))))

for boundary in stored_boundaries:

 print(boundary[0]. boundary_ID.value) # BoundaryID
 print(boundary[1].content) # Data

>> “O23P12P34S56”

>> “test”

Borrado por BoundaryID

deleted_boundaries =

store.delete_boundary((Boundary(boundary_ID=BoundaryID('O23P12P34S56'))))

45

print(deleted_boundaries)

>> 1

Consulta por Boundary Dataset ID

stored_bds = store.query_by_boundary_dataset_id("id")

for bds in stored_bds:

 for boundary in bds.get_boundaries():

 print(boundary[0]. boundary_ID.value) # BoundaryID
 print(boundary[1].content) # Data

>> “P10P11P2”

>> “test”

>> “N0”

>> “test”

>> “N8O2P0”

>> “test”

>> “O6S0S1S2”

>> “test”

>> “Q”

>> “test”

Consulta por BoundaryID en Boundary Dataset concreto

stored_bds = store.query_by_boundary_in_boundary_datasets("id",

(Boundary(boundary_ID=BoundaryID(' P10P11P2'))))

for bds in stored_bds:

 for boundary in bds.get_boundaries():

 print(boundary[0]. boundary_ID.value) # BoundaryID
 print(boundary[1].content) # Data

>> “P10P11P2”

>> “test”

CellStore

La clase CellStore representa el almacén de celdas con el que se da persistencia, sobre una base
de datos MongoDB, a Cell Data Sets, es decir, a conjuntos de celdas en los que cada una tiene
asociado unos datos concretos. A continuación, se presentan ejemplos de inserción de un Cell
Dataset, la consulta de una celda dado su identificador, el borrado de una celda dado su
identificador, la consulta de un Cell DataSet dado su identificador y la consulta de una celda en
un Cell Dataset concreto dados sus identificadores.

46

from dggs.cell_ID import CellID

from dggs.dataset.cell_dataset import CellDataSet

from dggs.store.cell_store import CellStore

from dggs.dataset.data import Data

store = CellStore()

CellStore por defecto utiliza la configuración de conexión a la base de

datos especificada en el archivo mongodb_config.py .

Inserción

cds = CellDataSet("id")

cells = ['P0', 'P1', 'P2', 'P3', 'P4', 'P5']

for cell in cells:

 cds.add(CellID(cell), Data("test"))

store.insert(cds)

Consulta por CellID

stored_cells = store.query_by_cell(CellID('P0'))

for cell in stored_cells:

 print(cell[0].value) # CellID

 print(cell[1].content) # Data

>> “P0”

>> “test”

Borrado por CellID

deleted_cells = store.delete_cell(CellID('P0'))

print(deleted_cells)

>> 1

Consulta por Cell Dataset ID

stored_cds = store.query_by_cell_dataset_id("id")

for cds in stored_cds:

 for cell in cds.get_cells():

 print(cell[0].value) # CellID

 print(cell[1].content) # Data

>> “P1”

>> “test”

>> “P2”

>> “test”

>> “P3”

>> “test”

>> “P4”

>> “test”

47

>> “P5”

>> “test”

Consulta por CellID en Cell Dataset concreto

stored_cds = store.query_by_cell_in_cell_datasets("id", CellID('P1'))

for cds in stored_cds:

 for cell in cds.get_cells():

 print(cell[0].value) # CellID

 print(cell[1].content) # Data

>> “P1”

>> “test”

48

Transformaciones

Shapefile

A continuación, se presentan ejemplos de transformación de datos basados en un DGGS hacia
un formato vectorial, en concreto, Shapefile, y viceversa. En primer lugar, se muestra
directamente el uso de las operaciones de la clase que permiten estas transformaciones. Por
otro lado, se muestra cómo se pueden realizar estas transformaciones utilizando la interfaz de
línea de comandos (CLI).

from dggs.cellset.boundary import Boundary

from dggs.dataset.boundary_dataset import BoundaryDataSet

from dggs.cell_ID import CellID

from dggs.dataset.data import Data

from dggs.dggs_utils.dggs_to_shp_utils import DGGSShpUtils

from dggs.dggs_utils.shp_to_dggs_utils import ShpDGGSUtils

shp_utils = ShpDGGSUtils()

dggs_utils = DGGSShpUtils()

cells = [CellID('P22220720648'), CellID('P22220720656'),

CellID('P22220720657'),CellID('P22220720672'), CellID('P22220720680'),

CellID('P22220720681')]

boundary = Boundary(cells=cells)

data = Data("data_test")

b_dataset = BoundaryDataSet('test_id')

b_dataset.add(boundary, data)

input_file = 'input.shp'

output_file = 'output.shp'

Shapefile a partir de un Boundary

dggs_utils.shp_file_from_boundary(boundary, output_file)

Boundary a partir de un Shapefile

boundary, data = shp_utils.get_boundary_from_shp_file(input_file, with_ids

=True)

Shapefiles a partir de un Boundary dataset

dggs_utils.shp_files_from_boundary_dataset(b_dataset, output_file)

Boundary dataset a partir de Shapefiles

bds = shp_utils.get_boundary_dataset_from_shp_file('./', 'test_id', with_ids

=True, unic_data=True)

49

##########

CLI ##

##########

Help DGGS to shp

>> python dggs_to_shp_utils.py -h

#>> -i | --input= -> input json file (defining a boundary or a boundary

dataset)

#>> -t | --type= -> 0 if file defines a boundary or 1 if defines a boundary

dataset

#>> -o | --output= -> output shapefile (.shp)

Shapefile a partir de un Boundary

>> python dggs_to_shp_utils.py -–input=input.json –-type=0 --

output=output.shp

Shapefiles a partir de un Boundary dataset

>> python dggs_to_shp_utils.py -–input=input.json –-type=1 --

output=output.shp

Help shp to DGGS

>> python shp_to_dggs_utils.py -h

#>> -f | --file= -> input shapefile (if you want to get a boundary)

#>> -d | --dir= -> directory with shapefiles (if you want to get a boundary

dataset)

#>> --id -> Boundary Dataset identifier

#>> --with_ids -> if in the shapefile there is an id property that indicates

the identifier of the cells

#>> -s | --save= -> if you want to save in a file, the output file (.json)

#>> -o | --optimal= -> include AUID (Optimal Boundary)

Boundary a partir de un Shapefile

>> python shp_to_dggs_utils.py -–file=input.shp -–with_ids -–save=output.json

--optimal

Boundary Dataset a partir de Shapefiles

>> python shp_to_dggs_utils.py -–dir=input_dir -–with_ids -–save=output.json

–-optimal –-id=tests

50

GeoTiff

A continuación, se presentan ejemplos de transformación de datos basados en un DGGS hacia
un formato ráster, en concreto, GeoTiff, y viceversa. En primer lugar, se muestra directamente
el uso de las operaciones de la clase que permiten estas transformaciones. Por otro lado, se
muestra cómo se pueden realizar estas transformaciones utilizando la interfaz de línea de
comandos (CLI).

from dggs.dggs_utils.dggs_to_tif_utils import DGGSTifUtils

from dggs.dggs_utils.tif_to_dggs_utils import TifDGGSUtils

tif_utils = TifDGGSUtils()

dggs_utils = DGGSTifUtils()

input_file = 'input.tif'

output_file = 'output.tif'

cells = [CellID('N01'), CellID('N02'), CellID('N03')]

data = Data('test')

c_dataset = CellDataSet('test_id')

c_dataset.add(cells[0], data)

c_dataset.add(cells[1], data)

c_dataset.add(cells[2], data)

GeoTiff a partir de un Cell dataset

dggs_utils.tif_file_from_cell_dataset(c_dataset, self.output_file)

Cell dataset a partir de un GeoTiff

c_dataset = tif_utils.get_cell_dataset_from_tif_file(input_file, 'test_id')

##########

CLI ##

##########

Help DGGS to tif

>> python dggs_to_tif_utils.py -h

#>> -i | --input= -> input json file (defining a cell dataset)

#>> -o | --output= -> output GeoTiff (.tif)

GeoTiff a partir de un Cell Dataset

>> python dggs_to_ tif _utils.py -–input=input.json --output=output.tif

Help tif to DGGS

51

>> python tif_to_dggs_utils.py -h

#>> -i | --input= -> input GeoTiff

#>> -o | --output= -> if you want to save in a file, the output file (.json)

#>> --id -> Cell Dataset identifier

Cell Dataset a partir de un GeoTiff

>> python tif_to_dggs_utils.py -–file=input.tif --output=output.json

-–id=test

52

Anexo 2 – Métodos de las clases en detalle

rHEALPix

• cell_width(Integer): devuelve el ancho de una celda cuyo nivel de refinamiento es el

pasado como parámetro.

• rowcol(CellID): devuelve la fila y la columna de la celda pasada como parámetro.

• up(CellID, CellID), down(CellID, CellID), left(CellID, CellID) y right(CellID, CellID):

devuelve True si la primera Celda pasada como parámetro está más arriba/abajo/a la

izquierda/derecha, que la segunda Celda.

• get_cell_ul_vertex (CellID): devuelve las coordenadas proyectadas (proyección

rHEALPix) del vértice superior izquierdo de la Celda pasada como parámetro.

• get_cell_projected_coordinates(CellID): devuelve las coordenadas proyectadas

(proyección rHEALPix) de los vértices y núcleo de la Celda pasada como parámetro.

• get_cell_geodetic_coordinates(CellID): devuelve las coordenadas geodésicas

(WGS84) de los vértices y núcleo de la Celda pasada como parámetro.

• get_geodetic_coordinates_from_bbox(bounds): devuelve las coordenadas geodésicas

(WGS84) de los vértices del bbox pasado como parámetro.

• get_cell_from_point(Integer, point: (Float, Float)): devuelve la Celda (CellID) que

contiene el punto pasado como parámetro para el nivel de refinamiento especificado.

CellSet

• get_as_tree(), que devuelve un trie o prefix trie que representa el conjunto con los

identificadores de las celdas como claves de este.

• get_as_grid_stack(), que devuelve el conjunto de celdas como una serie de Grids

ordenadas por su nivel de refinamiento, es decir, un GridStack.

• get_min_refinement(), devuelve un entero que representa el mínimo refinamiento del

conjunto, es decir, de las Celdas que lo componen, el refinamiento de la Celda con el

menor refinamiento.

• get_max_refinement(), que devuelve un entero que representa el máximo

refinamiento del conjunto, es decir, de las Celdas que lo componen, el refinamiento de

la Celda con el mayor refinamiento.

53

BoundaryDataSet

• add(Boundary, Data): Inserta el par Boundary-Data pasado como parámetro si en el

conjunto no existen datos asociados a dicho Boundary.

• addList(List<(Boundary, Data)>): Inserta la lista de pares Boundary-Data pasada como

parámetro. Si en el conjunto existen datos asociados a un Boundary de la lista, no se

inserta.

• get_boundaries(): Set<OptimalBounday>: devuelve el conjunto de

OptimalBoundaries que forman el BoundaryDataSet.

• get_boundaries_and_data(): Set<(OptimalBounday, Data)>: devuelve el conjunto de

pares OptimalBoundary-Data que forman el BoundaryDataSet.

• get_min_refinement(): devuelve un entero que representa el mínimo refinamiento del

conjunto.

• get_max_refinement(): devuelve un entero que representa el máximo refinamiento

del conjunto.

• get_boundary_data(BoundaryID): dado un identificador de un Boundary

(BoundaryID), devuelve, si existe dicho Boundary en el conjunto, los datos asociados a

este.

• get_boundary_data_list(List<BoundaryID>): dada una lista de identificadores de

Boundaries (BoundaryID), devuelve, si existen dichos Boundaries en el conjunto, los

datos asociados a estos.

CellDataSet

• add(CellID, Data): Inserta el par CellID-Data pasado como parámetro si en el conjunto

no existen datos asociados a dicha Celda.

• addList(List<(CellID, Data)>): Inserta la lista de pares CellID-Data pasada como

parámetro. Si en el conjunto existen datos asociados a una Celda de la lista, no se

inserta.

• get_cells(): Set<CellID>: devuelve el conjunto de Celdas que forman el CellDataSet.

• get_cells_and_data(): Set<(CellID, Data)>: devuelve el conjunto de pares CellID-Data

que forman el CellDataSet.

• get_min_refinement(): devuelve un entero que representa el mínimo refinamiento del

conjunto.

• get_max_refinement(): devuelve un entero que representa el máximo refinamiento del

conjunto.

• get_cell_data(CellID): dado un identificador de una Celda (CellID), devuelve, si existe

dicha Celda en el conjunto, los datos asociados a esta.

• get_cell_data_list(List<CellID>): dada una lista de identificadores de Celdas (CellID),

devuelve, si existen dichas Celdas en el conjunto, los datos asociados a estas.

54

BoundaryStore

• insert(BoundaryDataSet): operación de inserción de un BoundaryDataSet en el

almacén. Tiene como parámetro el BoundaryDataSet a insertar.

• all_boundaries(): operación que devuelve una lista de tuplas (OptimalBoundary, Data)

con todos los Boundaries almacenados y sus datos asociados.

• query_by_boundary(Boundary): devuelve una lista de tuplas (OptimalBoundary, Data)

con los Boundaries almacenados con identificador igual al del Boundary pasado como

parámetro y sus datos asociados.

• query_by_polygon(Polygon): devuelve una lista de tuplas (OptimalBoundary, Data)

con los Boundaries almacenados cuyo bbox intersecta con el polígono pasado como

parámetro y sus datos asociados. El polígono pasado como parámetro es una lista de

vértices tal y como especifica el tipo Polygon de MongoDB.

• delete_boundary(Boundary): elimina todos los Boundaries almacenados con

identificador igual al del Boundary pasado como parámetro y sus datos asociados.

• all_boundary_datasets(): devuelve una lista de BoundayDataSets con todos los

conjuntos de Boundaries almacenados y sus datos.

• query_by_boundary_to_boundary_datasets(Boundary): devuelve una lista de

BoundayDataSets con todos los conjuntos de Boundaries almacenados en los que

existe un Boundary con identificador igual al del Boundary pasado como parámetro.

• query_by_boundary_dataset_id(id: String): devuelve, si existe, el BoundayDataSet

almacenado cuyo identificador es igual al pasado como parámetro.

• query_by_boundary_in_boundary_datasets(id: String, Boundary): devuelve, si existe,

el Boundary y sus datos asociados con identificador igual al del Boundary pasado como

parámetro, en el BoundayDataSet almacenado cuyo identificador es igual al pasado

como parámetro.

• update_boundary_dataset(BoundaryDataSet): reemplaza, si existe, el

BoundaryDataSet almacenado cuyo identificador es igual al del BoundaryDataSet

pasado como parámetro, por el BoundaryDataSet pasado como parámetro.

• update_boundary_in_boundary_dataset(id: String, Boundary, Data): actualiza, si

existen, los datos asociados al Boundary con identificador igual al del Boundary

pasado como parámetro, en el BoundayDataSet almacenado cuyo identificador es

igual al pasado como parámetro.

• delete_boundary_dataset(id: String): elimina, si existe, el BoundayDataSet

almacenado cuyo identificador es igual al pasado como parámetro.

• delete_boundary_in_boundary_dataset(id: String, Boundary): elimina, si existen, los

datos y el Boundary con identificador igual al del Boundary pasado como parámetro,

55

en el BoundayDataSet almacenado cuyo identificador es igual al pasado como

parámetro.

• boundary_datasets_ids(): devuelve la lista de identificadores de todos los

BoundayDataSets almacenados.

• boundary_datasets_last_id(): devuelve el identificador del último BoundayDataSet

almacenado.

• dropAll(): elimina todos BoundayDataSets almacenados.

CellStore

• insert(CellDataSet): operación de inserción de un CellDataSet en el almacén. Tiene

como parámetro el CellDataSet a insertar.

• all_cells(): operación que devuelve una lista de tuplas (CellID, Data) con todas las Celdas

almacenados y sus datos asociados.

• query_by_cell(CellID): devuelve una lista de tuplas (CellID, Data) con las Celdas

almacenados con identificador al pasado como parámetro y sus datos asociados.

• delete_cell(CellID): elimina todas las Celdas almacenadas con identificador igual al

pasado como parámetro y sus datos asociados.

• all_cell_datasets(): devuelve una lista de CellDataSets con todos los conjuntos de Celdas

almacenados y sus datos.

• query_by_cell_to_cell_datasets(CellID): devuelve una lista de CellDataSets con todos

los conjuntos de Celdas almacenados en los que existe una Celda con identificador igual

al pasado como parámetro.

• query_by_cell_dataset_id(id: String): devuelve, si existe, el CellDataSet almacenado

cuyo identificador es igual al pasado como parámetro.

• query_by_cell_in_cell_datasets(id: String, CellID): devuelve, si existe, la Celda y sus

datos asociados con identificador igual al pasado como parámetro, en el CellDataSet

almacenado cuyo identificador es igual al pasado como parámetro.

• update_cell_dataset(CellDataSet): reemplaza, si existe, el CellDataSet almacenado

cuyo identificador es igual al del CellDataSet pasado como parámetro, por el CellDataSet

pasado como parámetro.

• update_cell_in_cell_dataset(id: String, CellID, Data): actualiza, si existen, los datos

asociados a la Celda con identificador igual al pasado como parámetro, en el CellDataSet

almacenado cuyo identificador es igual al pasado como parámetro.

• delete_cell_dataset(id: String): elimina, si existe, el CellDataSet almacenado cuyo

identificador es igual al pasado como parámetro.

• delete_cell_in_cell_dataset(id: String, CellID): elimina, si existen, los datos y la Celda

con identificador igual al pasado como parámetro, en el CellDataSet almacenado cuyo

identificador es igual al pasado como parámetro.

56

• cell_datasets_ids(): devuelve la lista de identificadores de todos los CellDataSets

almacenados.

• cell_datasets_last_id(): devuelve el identificador del último CellDataSet almacenado.

• dropAll(): elimina todos CellDataSets almacenados.

DGGSShpUtils

• shp_file_from_cells(List<CellID>, out_shp: String, Data): genera un shapefile con

nombre out_shp con una entidad formada por las celdas pasadas como parámetro a la

operación. Si el parámetro de tipo Data es distinto a None, la entidad formada por el

conjunto de celdas tendrá asociados dichos datos.

• shp_file_from_boundary(Boundary, out_shp: String, Data): genera un shapefile con

nombre out_shp con una entidad formada por el Boundary pasado como parámetro a

la operación. Si el parámetro de tipo Data es distinto a None, la entidad formada por el

Boundary tendrá asociados dichos datos.

• shp_files_from_boundary_dataset(BoundaryDataSet, out_shp: String): genera un

shapefile por cada Boundary perteneciente al BoundaryDataSet pasado como

parámetro con una entidad formada por dicho Boundary y sus datos asociados.

• shp_file_from_boundary_cli(boundary_file: String, out_shp: String): genera un

shapefile con nombre out_shp con una entidad formada por el Boundary descrito en

formato JSON en el fichero pasado como parámetro. Esta operación se utiliza para

realizar estas transformaciones a través de una interfaz de línea de comandos (CLI).

• shp_files_from_boundary_dataset_cli(boundary_dataset_file: String, out_shp:

String): genera un shapefile por cada Boundary perteneciente al BoundaryDataSet

(descrito en formato JSON en el fichero pasado como parámetro pasado como

parámetro) con una entidad formada por dicho Boundary y sus datos asociados. Esta

operación se utiliza para realizar estas transformaciones a través de una interfaz de línea

de comandos (CLI).

ShpDGGSUtils

• get_cells_from_shp_file(file: String, with_ids: Boolean, unic_data: Boolean): devuelve

un conjunto de Celdas a partir de los polígonos (que definen Celdas) que forman la

entidad definida en el shapefile pasado como parámetro. El parámetro with_ids es un

booleano que indica si cada polígono (Celda) definido en el shapefile contiene el

identificador de dicha Celda o no, y en caso de que no lo tengan, son calculados. El

parámetro unic_data es un booleano que indica si todos los polígonos/celdas que

forman la entidad en el shapefile tiene asociados los mismos datos o cada celda tiene

unos distintos.

57

• get_boundary_from_shp_file(file: String, with_ids: Boolean, unic_data: Boolean):

devuelve un Boundary formado por las Celdas a partir de los polígonos (que definen

Celdas) que forman la entidad definida en el shapefile pasado como parámetro. El

significado de los parámetros with_ids y unic_data es el explicado anteriormente.

• get_optimal_boundary_from_shp_file(file: String, with_ids: Boolean, unic_data:

Boolean): devuelve un OptimalBoundary formado por las Celdas a partir de los

polígonos (que definen Celdas) que forman la entidad definida en el shapefile pasado

como parámetro. El significado de los parámetros with_ids y unic_data es el explicado

anteriormente.

• get_boundary_dataset_from_shp_file(dir: String, id: String, with_ids: Boolean,

unic_data: Boolean): devuelve un BoundaryDataSet formado por los Boundaries y datos

obtenidos a partir de los shapefiles contenidos en el directorio pasado como parámetro.

El significado de los parámetros with_ids y unic_data es el explicado anteriormente. El

parámetro id indica el identificador del BoundaryDataSet.

• get_boundary_from_shp_file_cli(file: String, with_ids: Boolean, output_file: String,

optimal: Boolean): genera un fichero en formato JSON con nombre output_file o

imprime por pantalla si dicho parámetro es None, con un Boundary en formato JSON

formado por las Celdas a partir de los polígonos (que definen Celdas) que forman la

entidad definida en el shapefile pasado como parámetro. El parámetro optimal es un

booleano que indica si en el JSON de salida se debe incluir el AUID del Boundary creado.

Esta operación se utiliza para realizar estas transformaciones a través de una interfaz de

línea de comandos (CLI).

• get_boundary_dataset_from_shp_file_cli(dir: String, id: String, with_ids: Boolean,

output_file: String, optimal: Boolean): genera un fichero en formato JSON con nombre

output_file o imprime por pantalla si dicho parámetro es None, con un BoundaryDataSet

en formato JSON formado por formado por los Boundaries y datos obtenidos a partir de

los shapefiles contenidos en el directorio pasado como parámetro. El parámetro

optimal es un booleano que indica si en el JSON de salida, cada Boundary debe incluir

su AUID. El parámetro id indica el identificador del BoundaryDataSet. Esta operación se

utiliza para realizar estas transformaciones a través de una interfaz de línea de

comandos (CLI).

DGGSTifUtils

• tif_file_from_cell_dataset(CellDataSet, out_tif: String): genera un GeoTiff con nombre

out_tif con un píxel por cada celda del CellDataSet pasado como parámetro y con sus

datos asociados.

• tif_file_from_cell_dataset_cli(cell_dataset_file: String, out_tif: String): genera un

GeoTiff con nombre out_tif con un píxel por cada celda del CellDataSet descrito en

formato JSON en el fichero pasado como parámetro y con sus datos asociados.

58

TifDGGSUtils

• get_cell_dataset_from_tif_file(file: String, id: String): devuelve un CellDataSet

formado por las Celdas generadas a partir de cada uno de los píxeles del fichero GeoTiff

pasado como parámetro y datos asociados a cada una de ellas. El parámetro id indica el

identificador del CellDataSet.

• get_cell_dataset_from_tif_file_cli(file: String, id: String, output_file: String): genera un

fichero en formato JSON con nombre output_file o imprime por pantalla si dicho

parámetro es None, con un CellDataSet en formato JSON formado por las Celdas

generadas a partir de cada uno de los píxeles del fichero GeoTiff pasado como

parámetro y datos asociados a cada una de ellas. El parámetro id indica el identificador

del CellDataSet.

59

Anexo 3 – API Web (REST) del componente Grid

Server (ver Figura 15)

API Resources (Boundary Dataset)

GET /bdatasets

Returns all BoundaryDatasets stored

Example: GET http://example.com/bdatasets

Response body:

[

 {

 "id": "id_1",

 "boundary_data_set": [

 {

 "AUID": "RO23$))))P12$)))34$))))S56$)))))",

 "boundary": "O23P12P34S56",

 "data": "test"

 },

 {

 "AUID": "RP10$))1$)))2$))))",

 "boundary": "P10P11P2",

 "data": "test"

 },

 {

 "AUID": "RR1$))2$))))",

 "boundary": "R1R2",

 "data": "test"

 }

http://example.com/bdatasets

60

]

 },

 {

 "id": "id_2",

 "boundary_data_set": [

 {

 "AUID": "RQ1$))2$))))",

 "boundary": "Q1Q2",

 "data": "test"

 },

 {

 "AUID": "RQ3$))4$))))",

 "boundary": "Q3Q4",

 "data": "test"

 }

]

 }

]

POST /bdatasets

Insert a BoundaryDataset

Example: POST http://example.com/bdatasets

Request body:

{

 "id": "id_1",

 "boundary_data_set": [

http://example.com/bdatasets

61

 {

 "boundary": "P1P2P3",

 "data": "test"

 },

 {

 "boundary": "Q14Q15",

 "data": "test"

 },

 {

 "boundary": "O22O23",

 "data": "test"

 }

]

 }

GET /bdatasets/[bdatasets_id]

Returns the BoundaryDataset with that id.

Parameters

Parameter
Parameter

Type
Description

bdatasets_id Path
BoundaryDataset

identifier

Example: GET http://example.com/bdatasets/id_1

Response body:

[

 {

http://example.com/bdatasets/id_1

62

 "id": "id_1",

 "boundary_data_set": [

 {

 "AUID": "RO23$))))P12$)))34$))))S56$)))))",

 "boundary": "O23P12P34S56",

 "data": "test"

 },

 {

 "AUID": "RP10$))1$)))2$))))",

 "boundary": "P10P11P12",

 "data": "test"

 },

 {

 "AUID": "RR1$))2$))))",

 "boundary": "R1R2",

 "data": "test"

 }

]

 }

]

GET /bdatasets/[bdatasets_id]/[boundary_id]

Returns the Boundary with that id along with the Data associated to it, in the BoundaryDataset

with that id.

Parameters

63

Parameter
Parameter

Type
Description

bdatasets_id Path BoundaryDataset identifier

boundary_id Path
Boundary identifier (Cell

identifier sequence)

Example: GET http://example.com/bdatasets/id_1/P10P11P2

Response body:

[

 {

 "id": "id_1",

 "boundary_data_set": [

 {

 "AUID": "RP10$))1$)))2$))))",

 "boundary": "P10P11P2",

 "data": "test"

 },

]

 }

]

PUT /bdatasets/[bdatasets_id]

Update the BoundaryDataset with that id.

Parameters

Parameter
Parameter

Type
Description

bdatasets_id Path
BoundaryDataset

identifier

http://example.com/bdatasets/id_1/P10P11P2

64

Example: PUT http://example.com/bdatasets/id_1

Request body:

{

 "boundary_data_set": [

 {

 "boundary": "P1P2P3",

 "data": "test"

 },

 {

 "boundary": "Q14Q15",

 "data": "test"

 },

 {

 "boundary": "O22O23",

 "data": "test"

 }

]

 }

PUT /bdatasets/[bdatasets_id]/[boundary_id]

Update the Boundary with that id, in the BoundaryDataset with that id.

Parameters

Parameter
Parameter

Type
Description

bdatasets_id Path BoundaryDataset identifier

http://example.com/bdatasets/id_1

65

Parameter
Parameter

Type
Description

boundary_id Path
Boundary identifier (Cell

identifier sequence)

Example: PUT http://example.com/bdatasets/id_1/P10P11P2

Request body:

 {

 "data": "test2"

 }

DELETE /bdatasets/[bdatasets_id]

Deletes the BoundaryDataset with that id.

Parameters

Parameter
Parameter

Type
Description

bdatasets_id Path
BoundaryDataset

identifier

Example: DELETE http://example.com/bdatasets/id_1

DELETE /bdatasets/[bdatasets_id]/[boundary_id]

Deletes the Boundary with that id along with the Data associated to it, in the BoundaryDataset

with that id.

Parameters

Parameter
Parameter

Type
Description

bdatasets_id Path BoundaryDataset identifier

boundary_id Path
Boundary identifier (Cell

identifier sequence)

http://example.com/bdatasets/id_1/P10P11P2
http://example.com/bdatasets/id_1

66

Example: DELETE http://example.com/bdatasets/id_1/P10P11P2

GET /boundaries

Returns all Boundaries along with the Data associated to them.

Possible parameters

Parameters referring to the vertices of a polygon can be added to filter out those

Boundaries that intersect it.

Parameter
Parameter

Type
Description

dlx QueryParam

x coordinate of lower left

vertex of the polygon to

intersect

dly QueryParam

y coordinate of lower left

vertex of the polygon to

intersect

urx QueryParam

x coordinate of upper right

vertex of the polygon to

intersect

ury QueryParam

y coordinate of upper right

vertex of the polygon to

intersect

Parameter
Parameter

Type
Description

dlx QueryParam

x coordinate of lower left

vertex of the polygon to

intersect

dly QueryParam

y coordinate of lower left

vertex of the polygon to

intersect

drx QueryParam

x coordinate of lower right

vertex of the polygon to

intersect

dry QueryParam

y coordinate of lower right

vertex of the polygon to

intersect

http://example.com/bdatasets/id_1/P10P11P2

67

Parameter
Parameter

Type
Description

urx QueryParam

x coordinate of upper right

vertex of the polygon to

intersect

ury QueryParam

y coordinate of upper right

vertex of the polygon to

intersect

ulx QueryParam

x coordinate of upper left

vertex of the polygon to

intersect

uly QueryParam

y coordinate of upper left

vertex of the polygon to

intersect

Example: GET http://example.com/boundaries

Response body:

[

 {

 "AUID": "RO23$))))P12$)))34$))))S56$)))))",

 "boundary": "O23P12P34S56",

 "data": "test"

 },

 {

 "AUID": "RP10$))1$)))2$))))",

 "boundary": "P10P11P2",

 "data": "test"

 },

 {

 "AUID": "RR1$))2$))))",

http://example.com/boundaries

68

 "boundary": "R1R2",

 "data": "test"

 },

 {

 "AUID": "RQ1$))2$))))",

 "boundary": "Q1Q2",

 "data": "test"

 },

 {

 "AUID": "RQ3$))4$))))",

 "boundary": "Q3Q4",

 "data": "test"

 }

]

Example: GET http://example.com/boundaries/?dlx=-

179.9999997096064&dly=12.895313217732834&urx=-

90.00000014160271&ury=41.93785365811587

Response body:

[

 {

 "AUID": "RO22$))3$)))))",

 "boundary": "O22O23",

 "data": "test"

 }

]

http://example.com/boundaries/?dlx=-179.9999997096064&dly=12.895313217732834&urx=-90.00000014160271&ury=41.93785365811587
http://example.com/boundaries/?dlx=-179.9999997096064&dly=12.895313217732834&urx=-90.00000014160271&ury=41.93785365811587
http://example.com/boundaries/?dlx=-179.9999997096064&dly=12.895313217732834&urx=-90.00000014160271&ury=41.93785365811587

69

GET /boundaries/[boundary_id]

Returns the Boundary (or Boundaries if it exists in different BoundaryDatasets) with that id along

with the Data associated to it.

Parameters

Parameter
Parameter

Type
Description

boundary_id Path
Boundary identifier (Cell

identifier sequence)

Example: GET http://example.com/boundaries/P1P2P3

Response body:

[

 {

 "AUID": "RP1$))2$))3$))))",

 "boundary": "P1P2P3",

 "data": "test"

 },

]

DELETE /boundaries/[boundary_id]

Deletes the Boundary (or Boundaries if it exists in different BoundaryDatasets) with that id along

with the Data associated to it.

Parameters

Parameter
Parameter

Type
Description

boundary_id Path
Boundary identifier (Cell

identifier sequence)

http://example.com/boundaries/P1P2P3

70

Example: DELETE http://example.com/boundaries/P1P2P3

GET /idsbdatasets

Returns all BoundaryDatasets identifiers

Example: GET http://example.com/idsbdatasets

Response body:

[

 {

 "id": "test1",

 },

 {

 "id": "test2",

 },

 {

 "id": "test3",

 },

]

GET /idsbdatasets/last

Returns the identifier of the last BoundaryDataset stored

Example: GET http://example.com/idsbdatasets/last

Response body:

[

 {

 "id": "test3",

http://example.com/boundaries/P1P2P3
http://example.com/idsbdatasets
http://example.com/idsbdatasets/last

71

 }

]

API Resources (Cell Dataset)

GET /cdatasets

Returns all CellDatasets stored

Example: GET http://example.com/cdatasets

Response body:

[

 {

 "id": "id_1",

 "cell_data_set": [

 {

 "cellID": "P0",

 "data": "test"

 },

 {

 "cellID": "P1",

 "data": "test"

 },

 {

 "cellID": "P2",

 "data": "test"

http://example.com/cdatasets

72

 }

]

 },

 {

 "id": "id_2",

 "cell_data_set": [

 {

 "cellID": "S0",

 "data": "test"

 },

 {

 "cellID": "S1",

 "data": "test"

 },

]

 },

]

POST /cdatasets

Insert a CellDataset

Example: POST http://example.com/cdatasets

Request body:

{

 "id": "id_1",

 "cell_data_set": [

 {

http://example.com/cdatasets

73

 "cellID": "P0",

 "data": "test"

 },

 {

 "cellID": "P1",

 "data": "test"

 },

 {

 "cellID": "P2",

 "data": "test"

 }

]

 },

GET /cdatasets/[cdatasets_id]

Returns the cellDataset with that id.

Parameters

Parameter Parameter Type Description

cdatasets_id Path CellDataset identifier

Example: GET http://example.com/cdatasets/id_1

Response body:

[

 {

 "id": "id_1",

 "cell_data_set": [

http://example.com/cdatasets/id_1

74

 {

 "cellID": "P0",

 "data": "test"

 },

 {

 "cellID": "P1",

 "data": "test"

 },

 {

 "cellID": "P2",

 "data": "test"

 }

]

 }

]

GET /cdatasets/[cdatasets_id]/[cell_id]

Returns the cell with that id along with the Data associated to it, in the cellDataset with that id.

Parameters

Parameter
Parameter

Type
Description

cdatasets_id Path CellDataset identifier

cell_id Path
cell identifier (Cell identifier

sequence)

Example: GET http://example.com/cdatasets/id_1/P0

http://example.com/cdatasets/id_1/P0

75

Response body:

[

 {

 "id": "id_1",

 "cell_data_set": [

 {

 "cellID": "P0",

 "data": "test"

 }

]

 },

]

PUT /cdatasets/[cdatasets_id]

Update the cellDataset with that id.

Parameters

Parameter Parameter Type Description

cdatasets_id Path CellDataset identifier

Example: PUT http://example.com/cdatasets/id_1

Request body:

{

 "cell_data_set": [

 {

 "cellID": "Q0",

http://example.com/cdatasets/id_1

76

 "data": "test"

 },

 {

 "cellID": "Q1",

 "data": "test"

 },

 {

 "cellID": "Q2",

 "data": "test"

 }

]

 }

PUT /cdatasets/[cdatasets_id]/[cell_id]

Update the cell with that id, in the CellDataset with that id.

Parameters

Parameter
Parameter

Type
Description

cdatasets_id Path CellDataset identifier

cell_id Path
Cell identifier (Cell identifier

sequence)

Example: PUT http://example.com/cdatasets/id_1/P0

Request body:

{

 {

http://example.com/cdatasets/id_1/P0

77

 "data": "test2"

 }

 }

DELETE /cdatasets/[cdatasets_id]

Deletes the CellDataset with that id.

Parameters

Parameter Parameter Type Description

cdatasets_id Path cellDataset identifier

Example: DELETE http://example.com/cdatasets/id_1

DELETE /cdatasets/[cdatasets_id]/[cell_id]

Deletes the cell with that id along with the Data associated to it, in the CellDataset with that id.

Parameters

Parameter
Parameter

Type
Description

cdatasets_id Path CellDataset identifier

cell_id Path
cell identifier (Cell identifier

sequence)

Example: DELETE http://example.com/cdatasets/id_1/P0

GET /cells

http://example.com/cdatasets/id_1
http://example.com/cdatasets/id_1/P0

78

Returns all cells along with the Data associated to them.

Example: GET http://example.com/cells

Response body:

[

 {

 "cellID": "P0",

 "data": "test"

 },

 {

 "cellID": "P1",

 "data": "test"

 },

 {

 "cellID": "P2",

 "data": "test"

 },

 {

 "cellID": "S0",

 "data": "test"

 },

 {

 "cellID": "S1",

 "data": "test"

 },

http://example.com/cells

79

]

GET /cells/[cell_id]

Returns the cell (or cells if it exists in different CellDatasets) with that id along with the Data

associated to it.

Parameters

Parameter
Parameter

Type
Description

cell_id Path
cell identifier (Cell identifier

sequence)

Example: GET http://example.com/cells/P0

Response body:

[

 {

 "cellID": "P0",

 "data": "test"

 },

]

DELETE /cells/[cell_id]

Deletes the cell (or cells if it exists in different CellDatasets) with that id along with the Data

associated to it.

Parameters

http://example.com/cells/P0

80

Parameter
Parameter

Type
Description

cell_id Path
cell identifier (Cell identifier

sequence)

Example: DELETE http://example.com/cells/P0

GET /idscdatasets

Returns all CellDatasets identifiers

Example: GET http://example.com/idscdatasets

Response body:

[

 {

 "id": "test1",

 },

 {

 "id": "test2",

 },

 {

 "id": "test3",

 },

]

http://example.com/cells/P0
http://example.com/idscdatasets

81

GET /idscdatasets/last

Returns the identifier of the last CellDataset stored

Example: GET http://example.com/idscdatasets/last

Response body:

[

 {

 "id": "test3",

 }

]

http://example.com/idscdatasets/last

82

Índice de figuras
FIGURA 1 – POLIEDROS UTILIZADOS EN UN DGGS ... 5
FIGURA 2 - EJEMPLOS DE DGGS BASADOS EN EL MAPEO DE LAS CARAS DE LOS SÓLIDOS PLATÓNICOS................................. 6
FIGURA 3 - COMPARACIÓN ENTRE LOS ESQUEMAS DEL MODELO DE REPRESENTACIÓN VECTORIAL (A) Y RÁSTER (B) 7
FIGURA 4 – LA PROYECCIÓN (1,3) -RHEALPIX DEL ELIPSOIDE WGS84.. 8
FIGURA 5 - MODELO CONCEPTUAL .. 9
FIGURA 6 – LAS DOS PRIMERAS CUADRÍCULAS PLANAS Y ELIPSOIDALES PARA LA PROYECCIÓN DEL MAPA (0, 0) -RHEALPIX .. 10
FIGURA 7 - PROCESO DE OPTIMIZACIÓN DE UN BOUNDARY .. 11
FIGURA 8 - ARQUITECTURA DEL SISTEMA .. 14
FIGURA 9 – MODELO DE ENTIDADES Y RELACIONES – BOUNDARY STORE .. 16
FIGURA 10 – MODELO DE ENTIDADES Y RELACIONES – CELL STORE ... 17
FIGURA 11 – MODELO DE IMPLEMENTACIÓN – DOCUMENTOS DE BOUNDARY STORE ... 18
FIGURA 12 – MODELO DE IMPLEMENTACIÓN – DOCUMENTOS DE CELL STORE .. 19
FIGURA 13 – DIAGRAMA DE PAQUETES DEL SISTEMA .. 20
FIGURA 14 - DIAGRAMA DE CLASES ... 23
FIGURA 15 - DIAGRAMA DE COMPONENTES Y CONECTORES DEL SISTEMA ... 27
FIGURA 16 - DIAGRAMA DE SECUENCIA. INSERCIÓN DE UN BOUNDARYDATASET ... 30
FIGURA 17 - DIAGRAMA DE DESPLIEGUE .. 32
FIGURA 18 - API NAVEGABLE ... 34
FIGURA 19 - DISTRIBUCIÓN DE HORAS ... 40

/Users/javiermartinezfernandez/Documents/UNIVERSIDAD/TFG/Memoria%20TFG%20Javier%20Martínez%20v4.docx#_Toc51614964
/Users/javiermartinezfernandez/Documents/UNIVERSIDAD/TFG/Memoria%20TFG%20Javier%20Martínez%20v4.docx#_Toc51614965
/Users/javiermartinezfernandez/Documents/UNIVERSIDAD/TFG/Memoria%20TFG%20Javier%20Martínez%20v4.docx#_Toc51614968
/Users/javiermartinezfernandez/Documents/UNIVERSIDAD/TFG/Memoria%20TFG%20Javier%20Martínez%20v4.docx#_Toc51614977
/Users/javiermartinezfernandez/Documents/UNIVERSIDAD/TFG/Memoria%20TFG%20Javier%20Martínez%20v4.docx#_Toc51614979

	Resumen
	1. Introducción
	1.1 Contexto

	2. Análisis del problema
	2.1 Requisitos
	2.1.1 Biblioteca
	No funcionales
	Funcionales

	2.1.2 API Web
	Funcionales

	3. Diseño de la solución
	3.1 Arquitectura
	3.2 Modelo de datos
	3.2.1 Modelo de entidades y relaciones
	3.2.2 Modelo de implementación

	3.3 Paquetes y clases
	Paquete dggs
	Paquete api_dggs
	3.3.1 Diagrama de clases

	3.4 Componentes y conectores
	3.4.1 Documentación de la dinámica del sistema

	3.5 Distribución
	3.6 Implementación
	3.6.1 Python
	3.6.2 MongoDB
	3.6.3 Django REST
	3.6.4 Proj.4
	3.6.5 GDAL

	3.7 Pruebas

	4. Gestión del proyecto
	4.1 Planificación e historia del proyecto
	Primera fase
	Segunda fase
	Tercera fase
	Cuarta fase
	Quinta fase
	Sexta fase

	4.2 Control de esfuerzos
	4.3 Gestión de configuraciones

	5. Conclusiones y trabajo futuro
	Referencias
	Anexos
	Anexo 1 – Ejemplos de uso de la biblioteca
	Stores
	Transformaciones

	Anexo 2 – Métodos de las clases en detalle
	rHEALPix
	CellSet
	BoundaryDataSet
	CellDataSet
	BoundaryStore
	CellStore
	DGGSShpUtils
	ShpDGGSUtils
	DGGSTifUtils
	TifDGGSUtils

	Anexo 3 – API Web (REST) del componente Grid Server (ver Figura 15)
	API Resources (Boundary Dataset)
	GET /bdatasets
	POST /bdatasets
	GET /bdatasets/[bdatasets_id]
	Parameters

	GET /bdatasets/[bdatasets_id]/[boundary_id]
	Parameters

	PUT /bdatasets/[bdatasets_id]
	Parameters

	PUT /bdatasets/[bdatasets_id]/[boundary_id]
	Parameters

	DELETE /bdatasets/[bdatasets_id]
	Parameters

	DELETE /bdatasets/[bdatasets_id]/[boundary_id]
	Parameters

	GET /boundaries
	Possible parameters

	GET /boundaries/[boundary_id]
	Parameters

	DELETE /boundaries/[boundary_id]
	Parameters

	GET /idsbdatasets
	GET /idsbdatasets/last

	API Resources (Cell Dataset)
	GET /cdatasets
	POST /cdatasets
	GET /cdatasets/[cdatasets_id]
	Parameters

	GET /cdatasets/[cdatasets_id]/[cell_id]
	Parameters

	PUT /cdatasets/[cdatasets_id]
	Parameters

	PUT /cdatasets/[cdatasets_id]/[cell_id]
	Parameters

	DELETE /cdatasets/[cdatasets_id]
	Parameters

	DELETE /cdatasets/[cdatasets_id]/[cell_id]
	Parameters

	GET /cells
	GET /cells/[cell_id]
	Parameters

	DELETE /cells/[cell_id]
	Parameters

	GET /idscdatasets
	GET /idscdatasets/last

	Índice de figuras

