Universidad
Zaragoza

annan
ane

1542

Trabajo Fin de Grado

Biblioteca y APl web para |la manipulacion de datos
geograficos sobre una malla global discreta

Autor/es

Javier Martinez Fernandez

Director/es

Rubén Béjar Hernandez

Escuela de Ingenieria y Arquitectura
Universidad de Zaragoza
2020




Tabla de contenido

Resumen
1. Introduccion
1.1 Contexto
2. Andlisis del problema

2.1 Requisitos
2.1.1 Biblioteca
2.1.2 APl Web

3. Disefio de la solucion
3.1 Arquitectura

3.2 Modelo de datos
3.2.1 Modelo de entidades y relaciones
3.2.2 Modelo de implementacidn

3.3 Paquetes y clases
3.3.1 Diagrama de clases

3.4 Componentes y conectores
3.4.1 Documentacion de la dinamica del sistema

3.5 Distribucion

3.6 Implementacidén
3.6.1 Python
3.6.2 MongoDB
3.6.3 Django REST
3.6.4 Proj.4
3.6.5 GDAL

3.7 Pruebas
4. Gestion del proyecto
4.1 Planificacion e historia del proyecto
4.2 Control de esfuerzos
4.3 Gestidn de configuraciones
5. Conclusiones y trabajo futuro
Referencias
Anexos
Anexo 1 - Ejemplos de uso de la biblioteca

Anexo 2 — Métodos de las clases en detalle

Anexo 3 — APl Web (REST) del componente Grid Server (ver Figura 15)

indice de figuras

© & H W



Resumen

El objetivo de este TFG ha sido crear una biblioteca para la importacién, transformacion,
almacenamiento y recuperacion de datos geograficos basados en un DGGS (Sistemas de Mallas
Globales Discretas), una aproximacion novedosa y versatil al modelizado e integracion de datos
geograficos, basada en jerarquias de celdas multi-resolucidn. Por su novedad, hay poco software
disponible para crear y manipular datos con este tipo de modelos.

Se ha comenzado por estudiar alternativas de almacenamiento persistente (BD), seleccionando
finalmente una base de datos NoSQL orientada a documentos, en concreto, MongoDB, tras
comprobar las ventajas que ofrece frente a otras alternativas. Se ha continuado por disefiar e
implementar una biblioteca Python que permite importar, manipular, recuperar y dar
persistencia a datos sobre los modelos disefiados y en la BD elegida. Permite ademas la
transformacion de datos basados en un DGGS hacia formatos mas comunes de informacion
geografica como el modelo vectorial o raster, y viceversa.

Se ha disefiado e implementado una APl web, desarrollando un servidor web con el framework
Django REST, que permite la integracion de la funcionalidad principal en aplicaciones web o
moviles, de modo que un cliente pueda importar, recuperar o manipular datos basados en el
modelo implementado.

Se ha colaborado con investigadores del grupo IAAA del I3A (Instituto Universitario de
Investigacion de Ingenieria de Aragdn) y GEOT del IUCA (Instituto Universitario de Ciencias
Ambientales) que estan trabajando en un proyecto que persigue desarrollar aplicaciones para
este tipo de sistemas. Esto ha permitido trabajar con necesidades, requisitos y datos reales.
Ademas, estos investigadores han creado un cliente web para la captura de datos sobre DGGS,
que utiliza la APl web y el almacenamiento en BD disefiados e implementados en este TFG, lo
qgue ha ayudado en su disefio y pruebas. Esta colaboracién se ha traducido en un articulo
conjunto enviado al congreso internacional GEOProcessing 2020 (pendiente de revision).

Tras la realizacion del trabajo, se ha visto que una de las lineas de trabajo futuro podria ser
realizar una implementacién mds eficiente en relacion con el almacenamiento de Cell Datasets,
“almacenamiento raster" de los DGGS, asi como la incorporacion de mds formatos hacia los que
realizar transformaciones de datos basados en un DGGS. También, otra de las lineas de trabajo
fututo claras, seria la integracion de este sistema en workflows de procesamiento de datos
geograficos.



1. Introduccion

Los DGGS (Sistemas de Mallas Globales Discretas) son una aproximacién novedosa y versatil al
modelizado e integracion de datos geograficos, basada en jerarquias de celdas multi-resolucién.
Por su novedad, hay poco software disponible para crear y manipular datos con este tipo de
modelos. El objetivo de este TFG ha sido crear una biblioteca para la importacion,
transformacion, almacenamiento y recuperacion de datos geograficos basados en un DGGS. Se
han estudiado alternativas de almacenamiento persistente (BD) y también se ha implementado
una APl web que permite la integracion de la funcionalidad principal en aplicaciones web o
moviles.

Se ha colaborado con investigadores (grupo IAAA del I3A y GEOT del IUCA) que estan trabajando
en un proyecto que persigue desarrollar aplicaciones para este tipo de sistemas. Esto ha
permitido trabajar con necesidades, requisitos y datos reales. Ademas, estos investigadores han
creado un cliente web para la captura de datos sobre DGGS, que utiliza la APl web vy el
almacenamiento en BD disefiados e implementados en este TFG, lo que ha ayudado en su diseiio
y pruebas.

El resto del documento se estructura de la siguiente manera: primero se situa este trabajo en su
contexto, se sigue con el analisis del problema, explicando los requisitos de este; se continua
con el disefio de la solucién, detallando su arquitectura, la implementacion y las pruebas
realizadas; se explica la gestidn del proyecto y las conclusiones y trabajo futuro en relacién con
el mismo.

1.1 Contexto

Un DGGS (Discrete Global Grid System) es una secuencia de cuadriculas globales discretas,
generalmente de resolucion cada vez mds fina. Una cuadricula global discreta es una particion
finita de la superficie de un elipsoide, junto con un conjunto de puntos distinguidos, un punto
en cada elemento de particidon. Un elemento de particidn se llama celda y su punto asociado
Unico se llama nucleo [1].

Debido a que hay varios DGGS definidos y no hay uniformidad en los criterios sobre lo que es 'y
no es un DGGS, en 2017, el consorcio de estandarizacion OGC (Open Geospatial Consortium)
propuso una especificacion abstracta para establecer los requisitos que deben cumplir [2].

El objetivo de un DGGS es mejorar la manera en la que se georreferencian datos geograficos sin
tener que hacer uso de sistemas de coordenadas proyectadas. Son una aproximacién novedosa
y versatil basada en jerarquias de celdas multi-resolucién. Debido a su novedad, hay poco
software disponible para crear y manipular datos con este tipo de modelos.

Los DGGS facilitan la integracién de datos geograficos creados en distintas condiciones, por
ejemplo, distintas escalas, bajo distintos sistemas de referencia de coordenadas y proyecciones
cartograficas, etc. Permiten, por ejemplo, la armonizacién de datos raster, vectoriales y de nube
de puntos en un marco comun y coherente, lo que permite superar algunos desafios clave



presentados por los enfoques SIG tradicionales. El estandar OGC DGGS Abstract Specification
define el modelo conceptual y un conjunto de reglas para construir arquitecturas altamente
eficientes para el almacenamiento, integracién y analisis de datos espaciales.

Los DGGS representan la Tierra como secuencias jerarquicas de teselaciones de igual area en la
superficie de la Tierra, cada una con cobertura global y con una resolucidon espacial
progresivamente mas fina. Las observaciones individuales pueden asignarse a una celda que
corresponda tanto a la posicién como al tamafio del fendmeno que se estd observando. Los
DGGS cuentan con un conjunto de algoritmos funcionales que permiten un rapido andlisis de
datos de un gran nimero de celdas y, por su propia naturaleza, son muy adecuados para
aplicaciones de procesamiento en paralelo con multiples resoluciones espaciales.

La ventaja de los Sistemas de Mallas Globales y Discretas es que permiten facilmente definir un
procedimiento de identificadores Unicos para cada celda, y que se encuentra asociado a un
conjunto de algoritmos que facilitan el analisis espacial eficiente de un enorme numero de
celdas, estando especialmente dispuestos para ser paralelizados. Por ello, se podia considerar a
los DGGS como el sistema mas adecuado si se habla, por ejemplo, de Big Data geografico, ya
que permite una exploracién, extraccién y visualizacidn rapidas y precisas de los datos. DGGS
podria representar el cambio de paradigma que permitiria superar algunas de las barreras
criticas que impiden alcanzar el verdadero potencial que Big Data puede ofrecer en el dmbito
geografico.’

Un DGGS utiliza poliedros sélidos (Figura 1), por ejemplo, tetraedros, cubos, octaedros, para
modelar la Tierra, y estas teselaciones se proyectan inversamente para crear el sistema de
referencia.

B
P9

FIGURA 1 — POLIEDROS UTILIZADOS EN UN DGGS

Una teselacion de celdas debe cumplir con un conjunto de criterios para ser considerado como
DGGS segun la especificacion de OGC, algunos de ellos son:*

0 https://www.ogc.org/pressroom/pressreleases/2656
1 https://www.geoawesomeness.com/discrete-global-grid-system-dggs-new-reference-system/



https://www.ogc.org/pressroom/pressreleases/2656
https://www.geoawesomeness.com/discrete-global-grid-system-dggs-new-reference-system/

e Lateselacidn debe cubrir toda la Tierra, aunque los datos referidos a ella pueden cubrir
solo una parte.

e Las celdas no deben superponerse.

e Se debe declarar el método de refinamiento de las celdas.

e En cualquier nivel de refinamiento, las celdas deben ser de igual drea. Sin embargo, se
pueden permitir pequenas desviaciones de la igualdad exacta del area siempre que se
declare la precision.

e En cada nivel de refinamiento sucesivo, el area total de las celdas hijas debe ser igual al
area total de las celdas madres.

e Las celdas deben tener un sistema de referencia sistematico.

FIGURA 2 - EJEMPLOS DE DGGS BASADOS EN EL MAPEO DE LAS CARAS DE LOS SOLIDOS
PLATONICOS

En este TFG se ha implementado software para la manipulacién de distintos DGGS que hayan
sido definidos de acuerdo con la especificacion de OGC. Este software permite importar,
almacenar, recuperar y transformar datos geograficos basados en un DGGS, e integrar esta
funcionalidad en aplicaciones web o moviles.

Debido a su novedad, es importante poder transformar datos basados en el modelo DGGS hacia
formatos mas comunes de informacién geografica como el modelo vectorial o réaster, y
viceversa.

Un modelo de datos geografico es una forma de reducir las propiedades de la realidad geografica
a un conjunto finito de elementos que se puedan manipular. Se distinguen dos tipos principales
de modelos de datos geograficos: raster y vectorial. [3]

El modelo raster (Figura 3) se basa en una division sistematica del espacio que lo cubre por
completo (teselacidon) en unidades elementales (celdas) que tienen valores asociados. Es
utilizado tipicamente para variables continuas que toman valores en todo el espacio de trabajo
(altura sobre el nivel del mar, temperatura, etc.)

En el modelo vectorial (Figura 3) no se cubre todo el espacio, solo unas partes delimitadas por
elementos geométricos con valores asociados. La disposicidon de estos elementos geométricos
no es sistematica, y depende de los objetos geograficos en la zona de estudio. Es utilizado
tipicamente para elementos discretos de la realidad (carreteras, ciudades, edificios, lagos etc.)



. ee e

-
| S

FIGURA 3 - COMPARACION ENTRE LOS ESQUEMAS DEL MODELO DE REPRESENTACION VECTORIAL (A) Y
RASTER (B)

Para transformar datos basados en un DGGS hacia un modelo vectorial o raster, y viceversa, es
necesario realizar una reproyeccion, es decir, convertir las coordenadas sobre una proyeccion a
coordenadas sobre otra. Una proyeccion cartografica permite transformar las coordenadas
sobre la superficie curva de la Tierra en coordenadas sobre una superficie plana.

En concreto, en este TFG, se realizan conversiones de coordenadas sobre la proyeccion
rHEALPix, explicada en la seccién 2, a coordenadas sobre una proyeccién geodésica, es decir,
utilizando un sistema de coordenadas donde la posicién de un punto se define usando los
elementos latitud, longitud, en concreto, sobre el elipsoide WGS84.

Durante el desarrollo de este trabajo, ademas, se ha colaborado con investigadores (grupo IAAA
del I3Ay GEOT del Dpto. de Geografia y Ord. del Territorio) que estan trabajando en un proyecto,
COLABOTUR?, que persigue desarrollar aplicaciones para este tipo de sistemas. Estos
investigadores han creado un cliente web para la captura de datos sobre DGGS, que utiliza la
APl web y el almacenamiento en BD disefiados e implementados en este TFG, lo que ha ayudado
en su disefio y pruebas.

2 https://www.iaaa.es/colabotur



https://www.iaaa.es/colabotur

2. Analisis del problema

El objetivo de este TFG es disefiar e implementar una biblioteca que permita importar,
manipular, recuperar y dar persistencia a datos geograficos basados en un DGGS sobre los
modelos disefiados y en la BD elegida.

Se van a estudiar alternativas para la persistencia de los datos (BD) y seleccionar una adecuada.
También se va a disefar e implementar una APl web que permita la integracion de la
funcionalidad principal en aplicaciones web o mdviles, en concreto, que dé el soporte de back-
end al cliente web que esta siendo desarrollado por los otros investigadores.

El disefio del sistema se debe basar en un modelo conceptual existente. A continuacion, se
presenta dicho modelo (Figura 5) y se realiza un andlisis de los conceptos mas relevantes y a
partir de los cuales se ha realizado este trabajo.

e rHEALPix: DGGS basado en el DGGS HEALPix, que inicialmente se definié solo para
esferas, que se puede utilizar en elipsoides de revolucidon como el elipsoide WGS84. El
DGGS rHEALPix puede considerarse como un mapeo de un elipsoide de revolucién en
un poliedro regular, es decir, un cubo (Figura 4), seguido de una divisidén jerarquica
simétrica de las caras poliédricas junto con una seleccidn de nucleos, seguido del mapeo
inverso del resultado en el elipsoide (Figura 6). Por lo tanto, es un ejemplo de un DGGS
geodésico cubico. El DGHS rHEALPix y sus matemadticas asociadas han sido
completamente descritas por R G Gibb. [4]

FIGURA 4 — LA PROYECCION (1,3) -RHEALPIX DEL ELIPSOIDE WGS84



IFor now, | will consider that in a Boundary Set two different
[Boundaries can overlap (a single cell may be present in two or
{more boundaries), so a

[Set (where each cell appears once and only once).

Set can't be a subtype of Cell

+ getBounds()

L Set <Optimal
+ getMinRefinement() : 0..maxint
+ getMaxRefinement(): 0..maxint
+getDGGS()

+ getBoundaryData(Boundary |d) : Data
+ getBoundaryData(List<Boundary Id>): List<Data>

boundaries and not to cells).

[A Cell Set intended to delimit an entity or feature.
[As its intention Is to delimit, you will always prefer the
foptimal version

nterface>>
Cell Set

Cell Id

+ value : String

getBounds()
+ getAsTree()

+ getMaxRefinement()
+getDGGS()

1 +getCelis() : Set<Cell id>

+getBoundaryld() : Boundary Id

getAsGridStack()
+ getMinRefinement() : 0..maxint

): 0..maxint

Boundary Id

+value : String
+hash: String

+ getURL(baseURL) : URL

[KBoundary is optimal if 1 s the smallest one thal delmits exactly fts

|area. E.g. there are not

any , not 4 cells of resolution R
[cell of resolution R-1 would be the same etc.

DGGS
i vell id) : Geom
+ refinementLevel : 0..maxint
el id): Set<Cell id>

urdlud) Atessellation of a certain area. So in
« its bounds, every cell exists, there

are not any gaps, holes...

oguﬁum-mcuu) Set<Cell ic>

+insert(cs : Cell Dataset)
+delete()

Dataset
+ Insert(bs : Boundary Dataset)+ dele!

Array BD Store

FIGURA 5 - MODELO CONCEPTUAL

+getGrids(): List<Gric>
Anumber of grids which are ordered
1 by their refinement level
<<interface>>
Cell Dataset A
1
AUID
+ id) : Data
As defined in the AGILE19 + getCeliData(List<Cell id>) : List<Data>...
Vo
3
n'j )
Cell Data Patch .
Cell Data Grid Stack
A number of possibly disconnected 1.0
cells in a number of resolution levels + getDataGrids() : List<Data Grid> {ordered)]
with data associated to each of them.
Cell Store Bounday Store
+dggs: DGGS + dggs: DGGS
+ query(...): Cell Dataset + query(...): Boundary

Discrete Global Grid

Asingle tessellation of the Earth
It can be initial, or a refinement of
the initial

Note that addresses are a

pmebmdDGGS(sym) not
DGGs. However, for

lmphmomﬂlon it may be better

to have each DGG in a DGGS to

“know" their proper

(identifiers)

in this diagram are Discrete, so | will avoid
the word Discrete everywhere

Grids ir
terms

except for OGC




]
£
3

wln[n|wlafe

Py Ps|Ps |Q3 O8O
e o [n

glels|R|2|2

G,

FIGURA 6 — LAS DOS PRIMERAS CUADRICULAS PLANAS Y ELIPSOIDALES PARA LA PROYECCION DEL MAPA
(0, 0) -RHEALPIX

e Cell: celda, objeto fundamental de un DGGS en cada nivel de refinamiento o resolucién.
Cada una con un identificador Unico asociado, el Cell Id del modelo conceptual.

e Cell Set: conjunto de celdas donde cada celda aparece una Unica vez. En concreto,
conjunto de los Cell Id de las celdas que forman el conjunto. De dicho conjunto se debe
poder obtener el nivel minimo y maximo de refinamiento, el identificador del Boundary,
Boundary Id, que forma el conjunto, asi como otros elementos como una Grid Stack a
partir del conjunto.

e Boundary Id: identificador Unico de un Boundary. Cadena formada a partir de los
identificadores de las celdas que forman el Boundary.

e Boundary: conjunto de celdas que cubre un area en un DGGS. Es un subtipo de Cell Set.
Un Boundary debe poder optimizarse, es decir, obtener el Optimal Boundary
correspondiente. Como la intencidon de un Boundary es delimitar, siempre se va a
preferir su version éptima. También es importante la obtencion del bounding box del
Boundary, es decir, el drea definida por dos longitudes y dos latitudes que cubre el area
cubierta por un Boundary. Define los limites de este.

e Optimal Boundary: conjunto 6ptimo de celdas que cubre un area en un DGGS,
entendiendo dptimo como el conjunto mas pequeno de celdas que cubren exactamente
esa area. Un Optimal Boundary debe tener asociado un AUID (Area Unique |dentifier),
identificador Unico de un Optimal Boundary formado a partir de los identificadores de
las celdas que lo forman [5].

Para optimizar un Boundary, se recorren cada uno de los niveles de refinamiento
existentes en el conjunto buscando un conjunto de celdas que cubran la misma area que
una celda de un nivel de refinamiento menor, es decir, que, en un nivel de refinamiento,
existan todas las celdas hijas de una celda padre del nivel anterior, de forma que ese



conjunto de celdas pueda ser sustituido por la celda padre (Figura 7). Por ejemplo, las
celdas P20, P21, P22, P23, P24, P25, P26, P27 y P28 cubren exactamente la misma area
que la celda P2, que es la celda padre de todas ellas, por lo que pueden ser sustituidas
por una unica celda, consiguiendo asi el conjunto éptimo de celdas que cubren un area
en un DGGS.

Boundary Optimal Boundary

FIGURA 7 - PROCESO DE OPTIMIZACION DE UN BOUNDARY

Grid: teselacién de una cierta area, por lo que en sus limites cada Cell existe, no hay
vacios ni agujeros. Es un subtipo de Cell Set, ya que es un conjunto de celdas. Todas las
celdas de dicho conjunto se encuentran en el mismo nivel de refinamiento.

Grid Stack: lista de Grids ordenadas por su nivel de refinamiento. Es otro subtipo de Cell
Set, ya que es otro conjunto de celdas.

Cell DataSet: conjunto de celdas, Cell Set, en el que cada una tiene asociados unos datos
concretos. Se deben poder obtener los datos asociados a una celda dado su
identificador, su Cell Id, o a una lista de celdas dada una lista de identificadores.

Boundary Set: conjunto de Optimal Boundaries. En dicho conjunto, dos Boundaries
pueden superponerse (una celda puede estar presente en dos o mas Boundaries), por
lo que un Boundary Set no puede ser un subtipo de Cell Set. De dicho conjunto se debe
poder obtener el nivel minimo y maximo de refinamiento.

Boundary DataSet: conjunto de Optimal Boundaries en el que cada uno tiene asociados
unos datos concretos. Se deben poder obtener los datos asociados a un Optimal
Boundary dado su identificador, o a una lista de Optimal Boundaries dada una lista de
identificadores.

Cell Store: almacén de celdas que debe permitir importar, manipular, recuperar y dar
persistencia a Cell Datasets.

11



e Boundary Store: almacén de Boundaries que debe permitir importar, manipular,
recuperar y dar persistencia a Boundary Datasets.

2.1 Requisitos
2.1.1 Biblioteca

No funcionales
e RNF1: La biblioteca debe estar desarrollada en el lenguaje de programacion Python.

e RNF2: El disefio del sistema se debe basar en un modelo conceptual existente.

Funcionales

e RF1: La biblioteca debe permitir representar una celda de un DGGS en base al
identificador Unico de la celda.

e RF2: La biblioteca debe permitir representar un Boundary a partir de la lista de
identificadores de las celdas que lo forman.

e RF3: La biblioteca debe permitir obtener el Boundary Bounding Box de un Boundary
concreto.

e RF4: La biblioteca debe permitir optimizar un Boundary para obtener el Optimal
Boundary correspondiente.

e RF5: La biblioteca debe permitir representar un Cell/Boundary dataset.

e RF6: La biblioteca debe dar soporte a todas las operaciones de la APl Web.

e RF7: La biblioteca debe ofrecer una operacion para la transformacion de datos
asociados a entidades de un modelo vectorial contenidos en un shapefile en datos
asociados a un Boundary.

e RF8: La biblioteca debe ofrecer una operacion para la transformaciéon de datos
asociados a un Boundary, en datos asociados a entidades de un modelo vectorial
contenidos en un shapefile.

e RF9: La biblioteca debe ofrecer una operacion para la transformaciéon de un conjunto
de datos asociados a entidades de un modelo vectorial contenidos en un conjunto de
shapefiles, en un conjunto de datos asociados a Boundaries contenidos en un Boundary
Dataset.

e RF10: La biblioteca debe ofrecer una operacién para la transformacién de un conjunto
de datos asociados a Boundaries contenidos en un Boundary Dataset, en un conjunto
de datos asociados a entidades de un modelo vectorial contenidos en un conjunto de
shapefiles.

12



e RF11: La biblioteca debe ofrecer una operacién para la transformaciéon de datos
asociados a pixeles de un modelo rdster contenidos en un fichero GeoTIFF, en un
conjunto de datos asociados a Celdas contenidos en un Cell Dataset.

e RF12: La biblioteca debe ofrecer una operacién para la transformacion de un conjunto
de datos asociados a Celdas contenidos en un Cell Dataset, en datos asociados a pixeles
de un modelo raster contenidos en un fichero GeoTIFF.

e RF13: Las operaciones de transformacién deben poder utilizarse a través de una interfaz
de linea de comandos (CLI).

2.1.2 APl Web

Funcionales

e RF14: La API Web debe permitir |a insercion y borrado de Cell/Boundary datasets en la
BD, entendiendo un dataset como una lista de identificadores de Celdas/Boundaries
asociados cada uno de ellos a datos en formato JSON e incluyendo un identificador Unico
para dicho dataset.

e RF15: La APl Web debe permitir la insercién, modificacion y borrado de datos en un
Cell/Boundary dataset concreto y existente en la DB, dado el identificador del dataset y
una lista de identificadores de Celdas/Boundaries asociados cada uno de ellos a datos
en formato JSON.

e RF16: La APl Web debe permitir la recuperacién de todos los Cell/Boundary datasets
almacenados en la BD.

e RF17: La APl Web debe permitir la recuperacion de todos los datos de un Cell/Boundary
dataset concreto y existente en la BD, dado el identificador del dataset.

e RF18: La APl Web debe permitir la recuperacion de todos los datos asociados a una
Celda/Boundary concreto, dado el identificador de la Celda/Boundary.

e RF19: La APl Web debe permitir la recuperacion de los datos asociados a una
Celda/Boundary concreto de un Cell/Boundary dataset concreto y existente en la BD,
dado el identificador del dataset y el identificador de la Celda/Boundary.

e RF20: La APl Web debe permitir la recuperacion de los datos asociados a las
Celdas/Boundaries que intersecten con un poligono dadas sus coordenadas.

13



3. Diseno de la solucion
3.1 Arquitectura

En cuanto a la arquitectura del sistema, se pueden distinguir dos desarrollos principales. En
primer lugar, una biblioteca de Python que permite importar, manipular, recuperar y dar
persistencia a los datos geograficos basados en un DGGS en una base de datos NoSQL de tipo
documental, MongoDB. Y, en segundo lugar, un servidor web basado en el framework Django
REST, que da el soporte de back-end a aplicaciones web o méviles a través de su API (Figura 8).
En la seccién 3.6 se explican las tecnologias mencionadas.

Servidor T REST API

i
|
|
! £]
|
i

Grid Server
\ ——————————————————————————————————————————————————
e e .

| Biblioteca |
i i
i a3 |
. Boundary Store Cell Store .
I |
I |
I |
I 2] [ |
i Proj4 g | b—-d DGGS - HEALPix [ GDAL g ] |
I ‘ |
I I_Q |
. DGGS Utils :
\ /

O -

C m!

MongoDB

FIGURA 8 - ARQUITECTURA DEL SISTEMA

En cuanto a la biblioteca Python, por un lado, incluye la implementacion del modelo disefiado,
utilizando rHEALPix como DGGS por defecto (componente DGGS-rHEALPix). Dentro de esta
implementacidn destacan servicios como la optimizacién de un Boundary, que permite obtener
un conjunto dptimo de celdas que cubren un area en un DGGS, entendiendo como déptimo el
conjunto mas pequefio de celdas que cubren exactamente esa area; y la transformacion de
datos basados en el modelo DGGS hacia formatos mas comunes de informacidn geografica como
el modelo vectorial o raster, y viceversa.

Por otro lado, la biblioteca incluye la implementacion de dos almacenes, componentes
Boundary Store y Cell Store, que permiten importar, manipular, recuperar y dar persistencia a
los datos en una base de datos de MongoDB, apoyando las operaciones expuestas por el API.
Estos almacenes hacen uso de laimplementacién del modelo DGGS anteriormente mencionado.

14



En cuanto a la API, se ha utilizado el framework Django REST para el desarrollo del servidor web
(componente Grid Server) que un cliente puede utilizar para importar, recuperar o manipular
datos basados en el modelo implementado a través de su API. El servidor hace uso de las
operaciones del Boundary y Cell store incluidos en la biblioteca Python desarrollada.

3.2 Modelo de datos

A la hora de hablar del modelo de datos, existe una division derivada de los dos almacenes
distintos que se han desarrollado. Por una parte, el almacén de Boundaries, o Boundary store,
con el que se da persistencia a Boundary Data Sets, es decir, a conjuntos de Boundaries en los
que cada Boundary tiene asociado unos datos concretos, entendiendo un Boundary como un
conjunto de Celdas que delimitan un drea en un DGGS. Y, por otra parte, el almacén de Celdas,
o Cell store, con el que se da persistencia a Cell Data Sets, es decir, a conjuntos de Celdas en los
gue se asocian datos a cada una de las celdas que los forman.

Por ello, a continuacidn, se presenta un modelo de entidades y relaciones mediante un diagrama
de clases UML, diferenciando lo relacionado con los Boundaries y lo relacionado con las celdas.

3.2.1 Modelo de entidades y relaciones

En la Figura 9 se presenta el diagrama de clases que define el modelo formado por las entidades
y relaciones asociadas a un conjunto de Boundaries. A continuacion, se definen cada una de las
entidades, los atributos que las forman y las relaciones entre ellas.

e Laentidad Boundary, modeliza el concepto de mismo nombre del diagrama conceptual.
Esta entidad cuenta con el atributo AUID, que define un identificador unico formado a
partir de los identificadores de las celdas que forman el Boundary [5] . Cada Boundary
tiene asociado un bounding box que define los limites del area en cuestion, de ahi la
relacidn presentada.

e La entidad BBOX define el bounding box de un Boundary, es decir, drea definida por 4
puntos, superior izquierda, superior derecha, inferior derecha e inferior izquierda, que
cubre el drea cubierta por un Boundary.

e Laentidad Data define los datos asociados a un Boundary y cuenta con un atributo que
define estos datos en formato JSON.

15



No pueden existir

BoundaryDataSet .2 tuplas con el mismo
- Boundary

+ id: String

*

boundary data
‘ B daryDataTuple

E i 1

1 1

Boundary Data

+ AUID: String + content: JSON

1

BBOX

+ ul: (Float, Float)
+ ur: (Float, Float)
+ dr: (Float, Float)
+ dI: (Float, Float)

FIGURA 9 — MODELO DE ENTIDADES Y RELACIONES — BOUNDARY STORE

e La entidad BoundaryDataSet define un conjunto de Boundaries en el que cada
Boundary tiene asociados unos datos concretos, tal y como se define el concepto de
mismo nombre del diagrama conceptual. Esto se representa en el modelo mediante
una agregacion de tuplas Boundary-Data, representadas mediante la entidad
BoundaryDataTuple, que define la relacion entre un Boundary y sus datos. Tal y como
se explica en el diagrama, un BoundaryDataSet no puede tener dos tuplas asociadas al
mismo Boundary. Ademas, un BoundaryDataSet cuenta con el atributo id, que define
el identificador de un conjunto, lo que permite realizar operaciones sobre un conjunto
concreto dado su identificador.

En la Figura 10 se presenta el diagrama de clases que define el modelo formado por las entidades
y relaciones asociadas a un conjunto de celdas. A continuacidn, se definen sus entidades, los
atributos que las forman y las relaciones entre ellas.

e Laentidad Cell, modeliza el concepto de mismo nombre del diagrama conceptual. Cada
una de las Celdas tiene asociado un identificador Unico, y este esta definido por el
atributo id de esta entidad.

e La entidad Data define los datos asociados a una Celda y cuenta con un atributo que
define estos datos en formato JSON.

16



No pueden existir
2 tuplas con la misma
Celda

CellDataSet

+id: String

cell data
CellDataTuple

3 1

1 1
Cell Data

+id: String + content: JSON

FIGURA 10 — MODELO DE ENTIDADES Y RELACIONES — CELL STORE

e La entidad CellDataSet define un conjunto de Celdas en el que cada Celda tiene
asociados unos datos concretos, tal y como se define el concepto de mismo nombre del
diagrama conceptual. Esto se representa en el modelo mediante una agregacién de
tuplas Cell-Data, representadas mediante la entidad CellDataTuple, que define la
relacion entre una Celda y sus datos. Tal y como se explica en el diagrama, un
BoundaryDataSet no puede tener dos tuplas asociadas a la misma Celda. Ademas, un
CellDataSet cuenta con el atributo id, que define el identificador de un conjunto, lo que
permite realizar operaciones sobre un conjunto concreto dado su identificador.

3.2.2 Modelo de implementacion

Tras el estudio de diferentes alternativas para la persistencia de los datos (BD), se ha decidido
usar una base de datos NoSQL orientada a documentos, en concreto, MongoDB.

MongoDB guarda estructuras de datos BSON (una especificacién similar a JSON) con un
esquema dindmico. Esto implica que las entidades definidas en el modelo de datos se
implementan como documentos BSON, y las relaciones entre ellas como referencias entre
dichos documentos. En la seccién 3.6 se explica esta tecnologia, asi como las alternativas
probadas. A continuacién, se describe como se implementa el modelo haciendo uso de estas
estructuras de datos.

En la Figura 11 pueden observarse los dos documentos que forman la implementacién de un
Boundary store. Por una parte, el BoundaryDataSet document, que representa el conjunto de
Boundaries junto con los datos asociados. Estd formado Unicamente por el campo _id, un String
gue define el identificador del conjunto. Este identificador es usado en el documento de un
Boundary para hacer referencia al conjunto al que pertenece, de esta forma, se agrupan los
Boundaries y sus datos formando un Boundary Data Set.

Por otra parte, el Boundary document representa la tupla Boundary-Data, es decir, la asociacion
entre un Boundary y unos datos concretos. Este documento cuenta con los siguientes campos:

17



e El campo AUID, un String que representa el identificador Unico del Boundary.

e El campo bbox, un poligono GeoJSON que representa el bounding box del Boundary.
Este campo esta formado a su vez por otros dos: un campo llamado type que especifica
el tipo de objeto GeoJSON y un campo llamado coordinates que especifica las
coordenadas del objeto.

e El campo data, que son los datos en formato JSON asociados al Boundary en cuestion.

e El campo boundary_dataset_id, identificador del Boundary Data Set al que pertenece
el Boundary y datos asociados.

BoundaryDataSet document Boundary document
{ {
_id: String AUID: String
} \ bbox: {
type: Polygon

coordinates: Array
}
data: JSON
boundary_dataset_id: String

FIGURA 11 — MODELO DE IMPLEMENTACION — DOCUMENTOS DE BOUNDARY STORE

En cuanto a la implementacién de un Cell store, en la Figura 12 pueden observarse los dos
documentos que la forman. Por una parte, el CellDataSet document, que representa el conjunto
de Celdas junto con los datos asociados. Esta formado Unicamente con el campo _id, un String
que, al igual que en el caso anterior, define el identificador del conjunto.

Por otra parte, el Cell document representa la tupla Cell-Data, es decir, la asociacién entre una
Celda y unos datos concretos. Este documento cuenta con los siguientes campos:

e El campo CelllD, un String que representa el identificador unico de la Celda.

e El campo data, que son los datos en formato JSON asociados a la Celda en cuestion.

e El campo cell_dataset_id, identificador del Cell Data Set al que pertenece la Celda y
datos asociados.

18



CellDataSet document Cell document

{ {

_id: String \ CelllD: String
} ~—_ data: JSON

cell_dataset_id: String

FIGURA 12 — MODELO DE IMPLEMENTACION — DOCUMENTOS DE CELL STORE



3.3 Paquetes y clases

A continuacion, se presenta un diagrama UML con los paquetes principales del sistema,
pudiendo diferenciar 2 paquetes principales, coincidiendo con la division del desarrollo ya
mencionada. El paquete dggs, que incluye la biblioteca de Python que permite importar,

manipular, recuperar y dar persistencia a los datos basados en un DGGS, y el paquete api_dgsgs,

gue incluye la implementacién de la APl que da el soporte de back-end a aplicaciones web o

moviles.

api_dggs
api
views
| | Lo |
| BoundaryView l I CellView I ______ .
[pouncarusssaiosvon] [ covansemosven ||
serializers |
| } CellD: |
| BoundaryDataSerializer | CellDataSerializer | le....
|Buundaryl]masel\0$snalusr] i CellDatasetIDSerializer |

dggs
—l dataset
boundary_id
BoundaryDataSet |- CellDataSet
- BoundarylD AUID :
Data
; celiset i H
; : : st
: M : ore
i A B et THEALPix
‘ Boundary | lopllmnlﬁoundam | BoundaryStore CellStore |
idStack
{ Grid | | GridStack | [ N cellD e
I
dggs_auids : i | dags.utis
Y H
‘DGGSShpUIIIs ‘ DGGSTiUls
’ ShpDGGSUtils: l THDGGSUtils I

FIGURA 13 — DIAGRAMA DE PAQUETES DEL SISTEMA

20



En la Figura 13 pueden observarse los dos paquetes principales mencionados junto con los
subpaquetes y clases que los forman. A continuacion, se describen los paquetes mas destacables
del sistema y las dependencias que existen entre ellos.

Paquete dggs

Incluye la biblioteca Python que permite importar, manipular, recuperar y dar persistencia a los
datos basados en un DGGS. Este paquete esta formado por los siguientes subpaquetes y clases:

e Clase rHEALPix: en ella se implementa el DGGS rHEALPix.
e Clase CelllD: representa el identificador de una celda.

e Paquete Boundary_ID: Agrupa las clases que representan identificadores de un
Boundary, es decir, BoundarylD y AUID.

e Paquete CellSet: Agrupa las clases que representan un conjunto de celdas. Estas son,
CellSet, Boundary, OptimalBoundary, Grid, y GridStack. Ya que todas son conjuntos de
celdas, de todos estos conjuntos puede obtenerse un identificador Unico, es decir, un
BoundarylD, por ello este paquete depende del paquete boundary_id. También existen
dependencias con las clases esenciales rHEALPix y CellID.

e Paquete Dataset: Agrupa las clases que representan un conjunto de datos asociados a
Boundaries o Celdas, BoundaryDataSet y CellDataSet, asi como la clase que representa
esos datos, Data. Este paquete, en concreto la clase BoundaryDataSet, depende del
paquete CellSet, ya que en dicha clase, un Boundary es el objeto fundamental. También
existen dependencias con las clases esenciales rHEALPix y CellID.

e Paquete Store: Este paquete recoge las clases que definen los dos almacenes, el
almacén de Boundaries, BoundaryStore, y el almacén de celdas, CellStore. Estos
almacenes trabajan con datasets, tanto de Boundaries como de Celdas, de ahi la
dependencia con el paquete DataSet. También existen una dependencia con la clase
fundamental rHEALPix.

e Paquete Dggs_auids: Contiene la clase con las operaciones para generar los AUIDs a
partir de un conjunto de identificadores de celdas y viceversa, asi como otras utilidades
relacionadas con los identificadores, desarrolladas por el grupo grupo IAAA del I3A3.

e Paquete Dggs_utils: Agrupa las clases que permiten realizar transformaciones de datos
basados en un DGGS a formatos mas habituales. En concreto, las clases DGGSShpUtils
y ShpDGGSUtils, y las clases DGGSTifUtils y TifDGGSUtils. Se pueden observar
dependencias con las clases esenciales rHEALPix y CelllD, asi como con los paquetes
CellSet y DataSet, debido a la conversion desde y hace esos tipos.

3 https://github.com/IAAA-Lab/dggs-auids

21


https://github.com/IAAA-Lab/dggs-auids

Paquete api_dggs

Incluye laimplementacion de la APl que da el soporte de back-end a aplicaciones web o méviles.
Este paquete esta formado por los siguientes subpaquetes y clases:

e Paquete Api.views: Agrupa las vistas basadas en clases que se corresponden con los
métodos HTTP utilizados para CRUD. Las clases BoundaryDatasetsView, BoundaryView
y BoundaryDatasetsIDsView contienen las vistas que controlan la insercidn, consulta,
modificacién y borrado de Boundaries Data Sets. Las clases CellDatasetsView, CellView
y CellDatasetsIDsView contienen las vistas que controlan la insercién, consulta,
modificacién y borrado de Cell Data Sets. Estas vistas dependen de los serializadores y
deserializadores agrupados en el paquete api.serializers.

e Paquete Api.serializers: Agrupa los serializadores que convierten objetos Python al
formato de datos JSON (serializacién) y viceversa (deserializacion). Las clases
BoundaryDatasetSerializer, BoundaryDataSeriealizer y BoundaryDatasetIDSerializer
contienen los serializadores y deserializadores de los objetos Boundary, Data y
BoundaryDataSet. Las clases CellDatasetSerializer y CellDataSeriealizer contienen los
serializadores y deserializadores de los objetos Cell, Data y CellDataSet.

3.3.1 Diagrama de clases

El apartado anterior se ha centrado en presentar y describir los paquetes mas relevantes del
sistema vy las clases que agrupan estos paquetes. En este, se detallan las principales clases
existentes, las relaciones que existen entre ellas, y las operaciones y los atributos mas relevantes
(Figura 14).

e rHEALPix: clase que implementa el DGGS rHEALPix. Entre lo atributos con los que cuenta
esta clase destacan el atributo N_side, entero, minimo 2, de modo que cada celda tiene
N_side x N_side celdas hijas; north_square, entero entre 0y 3 que indica la posicion del
cuadrado polar norte; south_square, entero entre 0 y 3 que indica la posicion del
cuadrado del polo sur; y max_area, area, en metros cuadrados, de las celdas de la rejilla
elipsoidal mas pequefia. Esta clase cuenta con métodos que permiten obtener
informacion de las celdas como su ancho, su fila y columna, asi como sus coordenadas
proyectadas o geodésicas, o la obtencion de una celda dadas las coordenadas de un
punto. En el Anexo 1 se detalla cada uno de los métodos de esta clase.

e CelllD: clase que representa el identificador de una celda. Tiene un Unico atributo value
que es la cadena del identificador. Cuenta con una operacién getRefinement() que
devuelve el nivel de refinamiento de la celda. Por ejemplo, la celda con identificador
NO1 tendria un nivel de refinamiento igual a 2, la celda P tendria un nivel de
refinamiento igual a 0.

22



Grid

+ rafinement_}

CelllD
+ value: String
CellDataSet Imager
oo
+id: String rokaran(: g
+ dggs: HEALPix oo Cot
O—|_> + data: Data e m
+ optimal Boolean
+ add{CelliD. Data) + valus: String
+ addList(List<{CeliD, Data}>)
+ get_colls{): Sei<Celll ‘optimizel): OptimalBoundary
+ Gol_cat_andaa(): Sekd(CUID, D> * get poont)
get_min_refinement); Integer
p:_mn_m n nngu
g
+get_cell mu-(umm List<Datax
BoundaryDataSet
+id: String
+ dggs: HEALPIX
‘BoundaryDataTuple ‘OptimalBoundary
+ Data) + boundary: Boundary
+ addList(List{Boundary, Data)>) +data: Data
+ get_boundaries{y
X |_data): Set<{OptimalBounday, Data)>
« gat_min_rafinemant(): Integer
+ get_max_refinement(): integer
. _data(BoundarylD): Data
get_boundary_data_listiList<BoundaryiDn): ListeData>
BoundaryStore CeliStore FHEALPix
+dggs: HEALPiX +dggs: rHEALPix + N_side: Integer
b +db: MongoClent + narth_square: 0.3
+ south_square: 0.3
¢ e e
+inseniiCelDataSel + ool sl
N ndarionl): + all_colts(): an Datals + RO, ul_vm s-msamn. {Fioat, Fioat))>
+ quory_by._boundany(Boundary]: List<{OptimalBoundary, Datal> 4y wn} umn(caln. Dataj> + call_RO: LiskeSings
e oy v ) g i ety UsicCalDataSens e 20 Setc(Stnng, (nteger, Ineger)
+all_boundary_datasets(): Li +query_by_cell_to_cell_datasets(CelllD): List<GellDataSet> t
+query_by boundary to_boundary_datasets(Boundary): List<BoundaryDataSet> +query_by_cell_dataset_id(id: String):
+quary_by_boundary._¢ Umln(id String): Bﬂmm Aoulrv by_cell_in_osll L dataset(ic: Sting, CelliD): CelDataSet
+ query_by_boundary_in_boundary_ String, Boundary): BoundaryDataSet (CelDataSat)
+updale_boundary_datasel( +m¢m call_in_cell_dataset{id: String, CelliD, Data) + coll_widthirefinement: Intager):
+updale_boundary_in_boundary_ muu(u String, Boundary, Data) +delete_cell_dataset(id: String) " GOIICONID) (List<intoger, List<iniogers)
+ delele_boundary_datasel(id: cell_dataset(id: Siring, CelllD) + up(CeliD, CelliD): Boolean
ommmmjn omm-ymama ‘String, Boundary) +cel_dalasets as(): + down(CellD, CellD): Boolean
+ boundary_datasets +col_datasats_last_id(): String +IeN{CAlD, CeliD): Booiean
+boundary_datasets_last uu String + 0 + fig(CatID, CelllD): Boolean
+ dropAll() *m_ul_u_w::dlm
(CeliD): (ul: Coordnates,
ur' Coordinates, di: Coordinates, dr: Coordinates, nucious: Coordinates)
+ get_s ¥ (CellD): {ul: Coordinates,
ur: Coordinates, di: Coordinates, inates. - Coordnates)
. o ,m_bwm:nm:u Coordinates,
tuﬂLﬂWﬂerﬁImN llll!w ‘Coordinates). CellD
DGGSShpUtils. ShpDGGSUtils.
+ diggs: HHEALPo +dggs: HEALPix
+shp_file_irom_celis{List<CelliD», oul_shp: Siring, Data) +9el_ools_om_stp_Wefle: g, wh_id: Goolean, refement Intage,uric_ dala: Bocoan) p——
+shp_| iwmmuy( indary, oul_shp: String. Data) _irom_shp_fileffile: String, with_ids: Boolean, refinemen: Iniager, unic_data: Boolean)
+shp_files_from_boundary_dataset(BoundaryDaiaSet, out_shp: String) +p¢mmm nwunpjmm- Siring, with_ unic_ +x Float
+shp_file_trom_boundary_cifboundary_fie: Siring, out_shp: Siring) from_shp. geol, id: String, with, +v: Float
+shp_files_from_boundary_dataset_cii(boundary_datasel_fle: String, out_shp: String) Omymﬂbjﬂhmﬂh_mhi-n rllhmlllmw
+get_boundary_dataset_from ammusmmmnuunnmmlmmummml
DGGSTifUtils THDGGSUts
+dgge: HEALPIx + dggs: HEALPix

+l' fike_trom_cell_dataset(CeliDataSet, out_tif: String)
il_fle_from_cell_dataset_ck(cell_datase!_fle: Siring, out_tf: String)

FIGURA 14 - DIAGRAMA DE CLASES




BoundarylD: representa el identificador Unico de un Boundary formado a partir de los
identificadores de las celdas que lo forman. Tiene un Unico atributo value que es la
cadena del identificador.

o AUID: identificador Unico de un Optimal Boundary formado a partir de los
identificadores de las celdas que lo forman tal y como se define en el AGILE19
paper. Tiene un Unico atributo value que es la cadena del identificador

CellSet: clase que representa un conjunto de celdas. El atributo cells es el conjunto de
identificadores de celdas (CelllD) que forman el CellSet, el atributo boundary_ID es la
cadena con el identificador Unico del conjunto, formada por la concatenacion de los
identificadores de celdas, y el atributo dggs, que hace referencia al dggs utilizado, en
este caso rHEALPix. Los métodos de esta clase permiten obtener informacion del
conjunto como su nivel maximo y minimo de refinamiento, asi como obtener otras
formas de representacién del mismo, como por ejemplo un trie o una Grid Stack. En el
Anexo 1 se detalla cada uno de los métodos de esta clase.

o Boundary: conjunto de Celdas que delimitan un area en un DGGS.
Especializaciéon de la clase CellSet, por lo que hereda todos sus atributos y
operaciones, a los que se afade el atributo optimal, booleano que indica si el
Boundary es éptimo o no, y las operaciones optimize(), que optimiza el
Boundary en cuestién, devolviendo un OptimalBoundary, y la operacidon
get_bbox(), que devuelve las coordenadas geodésicas del bbox (bounding box)
del Boundary (inferior izquierda, inferior derecha, superior derecha, superior
izquierda).

= OptimalBoundary: conjunto dptimo de Celdas que cubre un area en un
DGGS, entendiendo 6ptimo como el conjunto mas pequeiio de celdas
gue cubren exactamente esa area. Especializacién de la clase Boundary,
por lo que hereda todos sus atributos y operaciones, pero en este caso,
el identificador boundary_id es del tipo AUID, ya que debe ser éptimo.
A las operaciones que hereda se afiade la operacion AUID_to_CUIDs(),
que devuelve el identificador como concatenaciéon simple de
identificadores de celda, es decir, como un BoundarylID.

o Grid: una teselacién de una cierta area, por lo que en sus limites cada celda
existe, no hay vacios ni agujeros. Es otra especializacion de la clase CellSet, y, en
este caso, todas las Celdas del conjunto tienen el mismo nivel de refinamiento,
por lo que se aiiade el atributo refinement_level, que es el nivel de refinamiento
del conjunto o Grid.

o GridStack: una serie de Grids que estan ordenadas por su nivel de refinamiento.

BoundaryDataSet: conjunto de Boundaries en el que cada Boundary tiene asociados
unos datos concretos. Cuenta con 3 atributos: id, que define el identificador del
conjunto, lo que permite realizar operaciones sobre un conjunto concreto dado su
identificador; dggs, que hace referencia al dggs utilizado, en este caso rHEALPix; y el
conjunto de Boundaries junto con los datos asociados a cada uno de ellos,
boundary_data_set. Esta clase cuenta con métodos que permiten obtener informacion



del conjunto como su nivel maximo y minimo de refinamiento, asi como la insercion de
Boundaries en el mismo o, por ejemplo, la obtenciéon de un Boundary y sus datos dado
el BoundarylD. En el Anexo 1 se detalla cada uno de estos métodos.

e CellDataSet: conjunto de Celdas en el que cada Celda tiene asociados unos datos
concretos. Cuenta con 3 atributos: id, que define el identificador del conjunto, lo que
permite realizar operaciones sobre un conjunto concreto dado su identificador; dggs,
qgue hace referencia al dggs utilizado, en este caso rHEALPix; y el conjunto de Celdas
junto con los datos asociados a cada una de ellas, cell_data_set. Esta clase cuenta con
métodos que permiten obtener informacién del conjunto como su nivel maximo y
minimo de refinamiento, asi como la insercién de celdas en el mismo o, por ejemplo, la
obtencidn de una celda y sus datos dado el CellID. En el Anexo 1 se detalla cada uno de
estos métodos.

Todas las clases anteriores se localizan en el componente DGGS-rHEALPix. En la siguiente
seccion, Componentes y conectores, se describe dicho componente.

e BoundaryStore: clase que representa el almacén de Boundaries. Cuenta con 2
atributos, el atributo dggs, que hace referencia al dggs utilizado, en este caso rHEALPix,
y el atributo db, que es la base de datos en la que se da persistencia, en este caso, un
cliente de MongoDB. En cuanto a los métodos con los que cuenta esta clase,
implementan las operaciones de insercidn, consulta, modificaciéon y borrado de datos
en el almacén. En el Anexo 1 se detalla cada uno de estos métodos. Esta clase se localiza
en el componente Boundary Store, que expone a través de su interfaz los métodos de
esta para ser utilizados por el servidor. En la siguiente seccion Componentes y
conectores se describe dicho componente.

e CellStore: clase que representa el almacén de Celdas. Cuenta con 2 atributos, el
atributo dggs, que hace referencia al dggs utilizado, en este caso rHEALPix; y el atributo
db, que es la base de datos en la que se da persistencia, en este caso, un cliente de
MongoDB. En cuanto a los métodos con las que cuenta esta clase, implementan las
operaciones de insercion, consulta, modificacién y borrado de datos en el almacén. En
el Anexo 1 se detalla cada uno de estos métodos. Esta clase se localiza en el
componente Cell Store, que expone a través de su interfaz los métodos de esta para
ser utilizados por el servidor. En la siguiente seccién Componentes y conectores se
describe dicho componente.

e DGGSShpUtils: clase que contiene las operaciones para transformar datos asociados a
un Boundary, en datos asociados a entidades de un modelo vectorial contenidos en un
shapefile; asi como, un conjunto datos asociados a Boundaries contenidos en un
Boundary Datase,t en un conjunto de datos asociados a entidades de un modelo
vectorial contenidos en un conjunto de shapefiles. Destaca el atributo dggs, que hace
referencia al dggs utilizado, en este caso rHEALPix. En el Anexo 1 se detalla cada uno de
sus métodos. Esta clase se localiza en el componente DGGS-rHEALPix, que expone a

25



través de su interfaz los métodos de esta para ser utilizados por otros. En la siguiente
seccién Componentes y conectores se describe dicho componente.

ShpDGGSUTtils: clase que contiene las operaciones para transformar datos asociados a
entidades de un modelo vectorial contenidos en un shapefile, en datos asociados a un
Boundary; asi como, un conjunto de datos asociados a entidades de un modelo vectorial
contenidos en un conjunto de shapefiles, en un conjunto de datos asociados a
Boundaries contenidos en un Boundary Dataset. Destaca el atributo dggs, que hace
referencia al dggs utilizado, en este caso rHEALPix. En el Anexo 1 se detalla cada uno de
sus métodos. Esta clase se localiza en el componente DGGS-rHEALPix, que expone a
través de su interfaz los métodos de esta para ser utilizados por otros. En la siguiente
seccion, Componentes y conectores, se describe dicho componente.

DGGSTifUtils: clase que contiene las operaciones para transformar datos asociados a
celdas contenidos en un Cell Dataset, en datos asociados a pixeles de un modelo raster
contenidos en un fichero GeoTIFF. Destaca el atributo dggs, que hace referencia al dggs
utilizado, en este caso rHEALPix. En el Anexo 1 se detalla cada uno de sus métodos. Esta
clase se localiza en el componente DGGS-rHEALPix, que expone a través de su interfaz
los métodos de esta para ser utilizados por otros. En la siguiente seccién, Componentes
y conectores, se describe dicho componente.

TifDGGSUtils: clase que contiene las operaciones para transformar datos asociados a
pixeles de un modelo raster contenidos en un fichero GeoTIFF, en un conjunto datos
asociados a celdas contenidos en un Cell Dataset. Destaca el atributo dggs, que hace
referencia al dggs utilizado, en este caso rHEALPix. En el Anexo 1 se detalla cada uno de
sus métodos. Esta clase se localiza en el componente DGGS-rHEALPix, que expone a
través de su interfaz los métodos de esta para ser utilizados por otros. En la siguiente
seccidn, Componentes y conectores, se describe dicho componente.

26



3.4 Componentes y conectores

En la Figura 15 se presenta un diagrama UML con los componentes principales del sistema y sus
conectores. A continuacién, se describe cada componente, qué permite cada conector, y se
documentan las interfaces mas relevantes del sistema.

REST API

2]

. Grid Server 7

g g ]

—{ Boundary Store Cell Store gy

2]

Proj.4 E I DGGS - rHEALPix —Q GDAL E

: DGGS Utils

2]

. MongoDB ,

FIGURA 15 - DIAGRAMA DE COMPONENTES Y CONECTORES DEL SISTEMA

e Grid Server: servidor desarrollado con el framework Django REST que expone una API,
descrita en el Anexo 3, que permite a un cliente web o mdvil importar, recuperar o
manipular datos basados en el modelo de DGGS implementado. El servidor hace uso de
las operaciones del Boundary y Cell Store incluidos en la biblioteca Python desarrollada.

e Boundary Store: almacén de Boundaries con el que se da persistencia, sobre una base
de datos MongoDB, a Boundary Data Sets, es decir, a conjuntos de Boundaries en los
que cada Boundary tiene asociado unos datos concretos.

Tal y como ya se ha explicado en la seccidn anterior, este componente expone a través
de su interfaz las operaciones de la clase BoundaryStore, de la que hace uso el
componente Grid Server y sobre la que se sustenta la APl que este expone, de ahi el
conector entre estos dos componentes en el diagrama. La descripcidn por tanto de las
operaciones con las que cuenta la interfaz de este componente se detallan en el Anexo
1, en la descripcidn de los métodos de la clase BoundaryStore.

27



A la hora de insertar un BoundaryDataSet, tal y como se explica en el Modelo de datos,
cada Boundary perteneciente al conjunto se inserta junto con su bounding box, de
forma que puedan realizarse operaciones como la de busqueda mediante interseccion
de un poligono. La operacion insert(BoundaryDataSet), descrita en el Anexo 1, calcula
dicho bounding box, antes de insertar el documento de MongoDB en la base de datos.
Para realizar este calculo, este componente utiliza la operaciéon ofrecida por el
componente DGGS-rHEALPix: boundary.get_bbox(). Ademas, a la hora de realizar
busquedas mediante un identificador de un Boundary, dado que en la base de datos se
guarda el AUID de cada uno de ellos, se optimiza el Boundary, si no es un
OptimalBoundary, antes de realizarla. Para ello, este componente hace uso de la
operacion boundary.optimize(), ofrecida también por el componente DGGS-rHEALPix.
El uso de estas operaciones y de los constructores de las clases Boundary,
OptimalBoundary, AUID, Data y BoundaryDatSet para la creacion de objetos de estos
tipos se representa en el diagrama mediante el conector entre Boundary Store y DGGS-
rHEALPix.

El almacén se implementa sobre una base de datos MongoDB, por ello, este
componente utiliza el driver pymongo * para trabajar con dicha base. La comunicacidn
entre el Boundary Store y la base de datos MongoDB a través de dicho driver, se ve
reflejada en el diagrama mediante un conector.

e Cell Store: almacén de Celdas con el que se da persistencia, sobre una base de datos
MongoDB, a Cell Data Sets, es decir, a conjuntos de Celdas en los que se asocian datos
a cada una de las celdas que los forman.

Al igual que el componente anterior, este componente expone a través de su interfaz
las operaciones de la clase CellStore, de la que hace uso el componente Grid Server y
sobre la que se sustenta la APl que este expone, de ahi el conector entre estos dos
componentes en el diagrama. La descripcion por tanto de las operaciones con las que
cuenta la interfaz de este componente se detallan en el Anexo 1, en la descripcion de
los métodos de la clase CellStore.

El uso los constructores de las clases CelllD, Data y CellDatSet para la creacién de objetos
de estos tipos se representa en el diagrama mediante el conector entre Cell Store y
DGGS-rHEALPix.

El almacén se implementa sobre una base de datos MongoDB, por ello, este
componente utiliza el driver pymongo para trabajar con dicha base. La comunicacion
entre el Cell Store y la base de datos MongoDB a través de dicho driver se ve reflejada
en el diagrama mediante un conector.

e DGGS-rHEALPix: implementacién del modelo DGGS disefiado, utilizando rHEALPix como
DGGS por defecto. Permite a los componentes BoundaryStore y CellStore la creacién
de objetos de tipo Boundary, OptimalBoundary, AUID, CelllD, Data, BoundaryDatSet, asi
como el uso de servicios como obtencién del bounding box de un Boundary mediante
la operacién get_bbox() o la optimizacién y obtencion de un OptimalBoundary mediante

4 https://pymongo.readthedocs.io/en/stable/

28


https://pymongo.readthedocs.io/en/stable/

la operacidon optimize(), operaciones de la clase Boundary descrita en la seccidn
anterior.

Ademas, este componente ofrece una interfaz para la realizacion de transformaciones
de datos basados en un DGGS a otros formatos mas habituales, en concreto, Shapefile
y GeoTiff, y viceversa. A través de esta interfaz, tal y como ya se ha explicado en la
seccion anterior, se exponen las operaciones de las clases DGGSShpUtils,
ShpDGGSUtils, DGGSTifUtils y TifDGGSUtils, descritas en el Anexo 1.

Proj.4: biblioteca de proyecciones cartograficas y transformaciones de coordenadas.
Ofrece una interfaz Python utilizada por el componente DGGS-rHEALPix.

GDAL: biblioteca de traductores para formatos de datos geoespaciales raster y
vectoriales. Ofrece una interfaz Python utilizada por el componente DGGS-rHEALPix.

MongoDB: base de datos sobre la que se implementan los dos almacenes descritos
anteriormente. Como ya se ha explicado, se utiliza el driver pymongo para trabajar con
ella. De entre las operaciones que ofrece dicho driver, se han utilizado las siguientes:

o insert_one(): permite insertar un documento Unico (un BoundaryDataSet o un
CellDataSet).

o create_index(): crea un indice en una coleccién.
o find(): permite consultar la base de datos.
o update_many: actualiza uno o mas documentos que coincidan con el filtro.

o delete_many(): elimina uno o mas documentos que coincidan con el filtro.

29



3.4.1 Documentacion de la dinamica del sistema

Como ejemplo interesante de funcionamiento del sistema que involucra la interaccion entre
varios componentes de este, en la Figura 16, se presenta un diagrama que muestra de forma
resumida el proceso de insercion de un BoundaryDataSet en la base de datos.

e E= [=1] [==]

POST Adatasets : §
Fm.,...«m, ; i
BoundaryDataSet(d) i H
- e ;
100P _/ boundary in data] H
bas. data) H i
' [boundary 1s not optimal] H
4 i
boundary optimize() g
RN | . ST :
inseribds) i
b_data_sets.insert_one{boundaryDataSet) i
—|-|
| AEETRPEREYIE SRR TIIEEN | RECRE,. i o s o RN F S S B
| tooe [ooundary in bds]
boundaryget. toox)
ul = got_cell_projocied_coordinatestul_cel)
fa = got_ool_projected_coorcinaies(dr_cel)
bbox bounds = get geodebc coordnates from bbox(bounds)
100p /' (coord in bounds)
profcoord x. coordy. inverse<True):
le......oo0ec coond
| Uw— oo :
boundaries insert_onefboundary) H
le _— ssas . 5 H
201 Created
e

FIGURA 16 - DIAGRAMA DE SECUENCIA. INSERCION DE UN BOUNDARYDATASET

30



El proceso comienza con una peticién POST al Grid server en la que el BoundaryDataSet a
insertar es pasado en el cuerpo de la peticidon en formato JSON. La vista recibe los datos, estos
son serializados y validados. Se construye el objeto BoundaryDataSet, y por cada Boundary del
conjunto, se realiza una llamada a la funcién add() de este objeto, con el Boundary y los datos
asociados a este pasados como pardmetro. Esta funcion comprueba si el Boundary es 6ptimo, si
no lo es, lo optimiza obteniendo el Optimal Boundary correspondiente. Un vez el objeto
BoundaryDataSet tiene todo el conjunto, se pasa como parametro a la funcién insert() del
BoundaryStore.

La funcion insert()del BoundaryStore, en primer lugar, inserta un documento en la coleccién de
Boundary Data Sets con su identificador. En segundo lugar, por cada uno de los Boundaries del
conjunto, calcula su bounding box para incluirlo en el documento a insertar en la coleccion de
Boundaries. Se calculan los vértices superior izquierdo e inferior derecho del bounding box a
partir las celdas superior izquierda e inferior derecha del conjunto. Una vez obtenidos los
vértices, se convierten sus coordenadas, de proyectadas (proyeccion rHEALPix) a geodésicas
(longitud vy latitud sobre el elipsoide WGS84). Se devuelve al BoundaryStore el vértice inferior
izquierdo, inferior derecho, superior derecho y superior izquierdo del bounding box.

Se inserta un documento en la coleccion de Boundaries con su AUID, bbox, datos asociados y el

identificador del BoundaryDataSet al que pertenece. Una vez insertados todos los Boundaries
del BoundaryDataSet, el Grid server devuelve 201 al cliente.

31



3.5 Distribucion

En la Figura 17 se presenta un diagrama UML de despliegue del sistema. En él puede observarse
que la base de datos MongoDB se ha desplegado en un contenedor Docker®. Un contenedor es
una unidad de software estandar que empaqueta el cddigo y todas sus dependencias para que
la aplicacidn se ejecute de manera rapida y fiable de un entorno a otro. Los contenedores son
una abstraccién en la capa de la aplicacion que agrupa el cédigo y las dependencias juntas. Se
pueden ejecutar varios contenedores en la misma maquina y compartir el nucleo del sistema
operativo con otros contenedores, cada uno de los cuales se ejecuta como procesos aislados en
el espacio del usuario.

Para realizar este despliegue mediante Docker, se ha creado un Dockerfile que permite a Docker
construir la imagen de MongoDB de forma automadtica. En él se describe la configuracion del
contenedor de MongoDB, con un puerto externo 27017 que sera usado por el servidor y un
puerto interno 27017 que en este caso no es usado, y sus volimenes montados, en este caso
uno en /data/db, donde se mantiene los datos de configuracion. El servidor se comunica con la
base de datos mediante el driver pymongo, que ofrece un conjunto de herramientas para
interactuar con MongoDB a través de Python.

<<computador=>
ervidor
Django REST
DGGS
’a 27017
<<computador>>
Docker Host
<< contenedor >>
Docker
MongoDB —0
27017

Volume
mongodb_data_container

FIGURA 17 - DIAGRAMA DE DESPLIEGUE

5 https://www.docker.com/

32


https://www.docker.com/

3.6 Implementacion

A continuacién, se van a explicar algunos aspectos interesantes de la implementacién del
sistema como las tecnologias o librerias que se han utilizado.

3.6.1 Python

Para el desarrollo de este trabajo se ha utilizado Python® un lenguaje de programacion
interpretado cuya filosofia hace hincapié en la legibilidad de su cddigo. Se trata de un lenguaje
de programacién multiparadigma, ya que soporta orientacion a objetos, programacién
imperativa y, en menor medida, programacién funcional. Es un lenguaje interpretado, dindmico
y multiplataforma. Es administrado por la Python Software Foundation. Posee una licencia de
cddigo abierto, denominada Python Software Foundation License. Entre las ventajas de utilizar
Python frente a otros lenguajes destacan la gran cantidad de bibliotecas, lo que favorece la
productividad a la hora de programar; la facilidad de uso de las estructuras de datos, Python
ofrece también la opcidon de tipado dindmico de datos de alto nivel que reduce la longitud del
cédigo; es de cédigo abierto, Python se desarrolla bajo una licencia de cddigo abierto aprobada
por OSI, que lo hace libre de usar y distribuir, incluso con fines comerciales; es extensible,
Python se puede extender a otros lenguajes; y es facil de comprender y codificar, debido a que
no es un lenguaje tan detallado, leer Python es muy parecido a leer en inglés, lo que hace
también que se requiera menos codificacién con respecto a otros lenguajes.

3.6.2 MongoDB

Al inicio de este trabajo se estudiaron diferentes alternativas para la persistencia de los datos
(BD) para seleccionar la mas adecuada. Entre estas alternativas destacan las bases de datos
orientadas a documentos, a grafos, clave-valor, orientadas a columnas y a arrays. En cuanto a
las orientadas a grafos, se han hecho pruebas con Neo4J, pero el hecho de que sea un modelo
muy flexible puede hacer que los datasets se expandan demasiado, debido a la facilidad de
afiadir nuevas relaciones. En relacién con las clave-valor, se ha probado Riak, pero el hecho de
gue algunos Boundaries pueden estar ligados a distintos datos en distintos Boundary Datasets
hace mdas complicado una implementacién en este tipo de base de datos con respecto a las
demas. Se contempld la posibilidad de usar Cassandra, como base de datos orientada a
columnas, incluso el uso de una base de datos SQL. En cuanto a las orientadas a arrays, se analizé
TileDB, un motor disefnado en torno a arrays multidimensionales que permite almacenar y
acceder a matrices densas (p. Ej., Imagenes de satélite), matrices dispersas (p. Ej., LiDAR,
gendmica), dataframes (cualquier dato en forma tabular) y valores-clave. Pero al final se decidid
usar MongoDB para dar persistencia al modelo.

MongoDB ’es un sistema de base de datos NoSQL, orientado a documentos y de cddigo abierto.
MongoDB guarda estructuras de datos BSON (una especificacion similar a JSON) con un
esquema dindmico, haciendo que la integracion de los datos en ciertas aplicaciones sea mas facil
y rapida. Entre las razones por las que se ha decidido utilizar este tipo de base de datos destacan

6 https://www.python.org/
7 https://www.mongodb.com/es

33


https://www.python.org/
https://www.mongodb.com/es

la flexibilidad, ya que permite que los datos estructurados, semiestructurados y no
estructurados se puedan almacenar juntos, sin necesidad de una conversidn previa. Ademas,
gue los datos se almacenen en estructuras parecidas a un JSON hace que el flujo de datos dentro
de la aplicacion no tenga mayores cambios en la estructura de datos; la escalabilidad, MongoDB,
al ser una base de datos distribuida puede escalar no solamente de forma vertical (CPU y RAM)
si no que también de forma horizontal (creando mds nodos); buena sintaxis para hacer
consultas, cuenta con multiples operadores que permiten crear consultas con poco cdodigo,
ademads cuenta con las agregaciones que permiten realizar operaciones entre multiples
colecciones; alta disponibilidad, MongoDB permite tener clister distribuidos, lo que mejora la
velocidad de consulta al disminuir la latencia que existe entre el cluster de base de datos y el
servicio que ejecuta la query; y que es de cédigo abierto.

3.6.3 Django REST

Django REST framework 8es un kit de herramientas potente y flexible para crear APl web. Alguna
de las razones por las que se ha seleccionado este framework para el desarrollo de esta son la
opcién de tener una API navegable desde el navegador (Figura 18), lo que facilita mucho la
realizacién de pruebas; la serializacion de datos a partir de fuentes de datos ORM o no ORM,;
muy buena documentacién y amplia comunidad al ser open source; y muy personalizable.

Api Root ' Boundary Dataset:

Boundary Datasets List XD B

POST /bdatasets

HTTP 201 Created

Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

“idn: wid_1v
"boundary_data_set"

“AUID": “RP1$))2$))3$))))"
y": “P1P2P3"

FIGURA 18 - APl NAVEGABLE

3.6.4 Proj.4

La conversion de coordenadas proyectadas (proyeccion rHEALPix) a geodésicas (longitud y
latitud sobre el elipsoide WGS84), y viceversa, es necesaria en numerosas operaciones de la
bilbioteca desarrollada. Para realizar dicha conversion se ha utilizado Proj4°, que es una
biblioteca que proporciona métodos para transformar entre sistemas de referencia de

8 https://www.django-rest-framework.org/

9 https://proj.org

34


https://www.django-rest-framework.org/
https://proj.org/

coordenadas diferentes. Sus caracteristicas principales son que proporciona el punto de
transformacion de un sistema de referencia de coordenadas a otro, que incluye transformacion
entre datums (datos de referencia), y la gran cantidad de clases de proyeccidn compatibles. En
concreto se ha utilizado pyproj'®, una interfaz de Python para PROJ, para ejecutar una
proyeccion rHEALPix en un modelo elipsoidal WGS84 y viceversa.

3.6.5 GDAL

Ala hora de transformar datos asociados a pixeles de un modelo raster contenidos en un fichero
GeoTIFF en un conjunto datos asociados a Celdas contenidos en un Cell Dataset, es necesaria
también una conversidn de coordenadas a rHEALPix. Para ello se ha utilizado GDAL'!, que es una
biblioteca de traduccidon o transformacion para formatos de datos geoespaciales rdster y
vectoriales que la Open Source Geospatial Foundation publica bajo una licencia de cédigo
abierto estilo X / MIT. En concreto se ha utilizado gdalwarp'?, una utilidad de mosaico de
imagenes, reproyeccién y deformacion. El programa puede reproyectar a cualquier proyeccién
soportada.

10 https://pypi.org/project/pyproj/

1 https://gdal.org

12 https://gdal.org/programs/gdalwarp.html

35


https://pypi.org/project/pyproj/
https://gdal.org/
https://gdal.org/programs/gdalwarp.html

3.7 Pruebas

En este trabajo se incluye una coleccién de tests automaticos en los que se realizan pruebas

sobre las operaciones mas criticas del sistema, asi como pruebas con datos reales
proporcionados por GEOT del Dpto. de Geografiay Ord. del Territorio, que han permitido probar

las transformaciones de formatos. A continuacidn, se explican de manera resumida los tests

realizados:

Boundary tests

Conjunto de pruebas realizadas sobre los objetos Boundary. Se incluyen pruebas como
la obtencién de un Boundary a partir de su identificador y a partir de un conjunto de
celdas (test_boundary_from_boundary_ID()y test_boundary_from_cells()), |a correcta
obtencién de un GridStack (test_grid_stack()), y del nivel minimo y maximo de
refinamiento (test_min_refinement(), test_max_refinement()), asi como el correcto
funcionamiento de las operaciones de optimizacidn, obtencién de las coordenadas de
las celdas de un Boundary, u obtencién del bbox (test_optimize_boundary(),
test_boundary_projected_coordinates(), test_boundary_geodetic_coordinates() y
test_bbox()).

BoundaryDataSet tests

Conjunto de pruebas realizadas sobre los objetos BoundaryDataSet. Se incluyen pruebas
como la creacidén de un BoundaryDataSet (test_boundary_dataset()), la inclusion de un
Boundary o una lista de ellos al conjunto (test_boundary_dataset_add() y
test_boundary_dataset_add_list()), 1a obtencién de la lista de Boundaries o lista de
tuplas Boundary-Data del conjunto (test_get_boundaries() y
test_get_boundaries_and_data()), la correcta obtencién del nivel minimo y maximo de
refinamiento (test_min_refinement(), test_max_refinement()), y de los datos a partir
de wun Boundary o lista de Boundaries (test_get_boundary_data() 'y
test_get_boundary_data_list()).

BoundaryStore tests

Conjunto de pruebas realizadas sobre los objetos BoundaryStore. Se incluyen pruebas
de todas las operaciones de insercion, recuperacion, modificacién y borrado en el
almacén.

CellDataSet tests

Conjunto de pruebas realizadas sobre los objetos CellDataSet. Se incluyen pruebas como
la creacion de un CellDataSet (test_cell_dataset()), la inclusién de una Celda o una lista
de ellas al conjunto (test_cell_dataset_add() y test_cell_dataset_add_list()), la
obtencidn de la lista de Celdas o lista de tuplas Celda-Data del conjunto (test_get_cells()
y test_get_cells_and_data()), la correcta obtencién del nivel minimo y maximo de
refinamiento (test_min_refinement(), test_max_refinement()), y de los datos a partir
de una Celda o lista de Celdas (test_get_cell_data() y test_get_cell_data_list()).

36



e CellStore tests

Conjunto de pruebas realizadas sobre los objetos CellStore. Se incluyen pruebas de
todas las operaciones de insercion, recuperacién, modificacién y borrado en el almacén.

e rHEALPix tests

Conjunto de pruebas realizadas sobre las operaciones principales del DGGS rHEALPix.
Se incluyen pruebas como el calculo correcto del ancho de una Celda (test_cell_width()),
la obtencién de la fila y columna de una Celda (test_rowcol()), la comprobacién de si
una Celda estd mds arriba, abajo, mas a la izquierda o a la derecha que otra
(test_up_down() y test_right_left()), la correcta obtencion del vértice superior
izquierdo de un Celda (test_cell_ul_vertex()), de las coordenadas proyectadas y
geodésicas de una Celda (test_cell_projected_coordinates() y
test_cell_geodetic_coordinates()), y |la correcta obtencién de una Celda a partir de las
coordenadas de un punto (test_cell_from_point()).

e Tests de transformaciones

En primer lugar, un conjunto de pruebas para verificar la correcta transformacion de un
Boundary y BoundaryDataSet en un shapefle y viceversa:
(test_shp_file_from_boundary(), test_shp_files_from_boundary_dataset(),
test_get_boundary_from_shp_file() y test_get_boundary_dataset_from_shp_file()).

Por otra parte, un conjunto de pruebas para verificar la correcta transformacién de un
CellDataSet en un fichero GeoTIFF y viceversa: (test_tif_file_from_cell_dataset() y
test_cell_dataset_from_tif_file())

Estos tests se han realizado utilizando el mddulo unittest 3de Python, un marco de pruebas
inspirado originalmente en JUnit y similar a los principales frameworks de pruebas unitarias en
otros lenguajes. Admite la automatizacion de pruebas, cddigos de configuracidn y cierre para
pruebas, la agregacion de pruebas en colecciones y la independencia de las pruebas del marco
de informes.

13 https://docs.python.org/3/library/unittest.html

37


https://docs.python.org/3/library/unittest.html

4. Gestion del proyecto

En esta seccidn se detalla cdmo se ha llevado a cabo el proyecto, teniendo en cuenta aspectos
como la planificacién e historia del proyecto, el control de esfuerzos y la gestion de
configuraciones.

4.1 Planificacion e historia del proyecto

Tal y como se describid en la propuesta del trabajo, se planificaron las siguientes fases:

e Colaborar con los investigadores en el disefio de modelos de datos geograficos DGGS.
e Estudiar alternativas para la persistencia de los datos (BD) y seleccionar una adecuada.

e Disefiar e implementar una biblioteca Python que permita importar, manipular,
recuperar y dar persistencia a datos sobre los modelos disefiados y en la BD elegida.

e Disefiar e implementar una APl web que dé el soporte de back-end al cliente web que
estd siendo desarrollado por los otros investigadores.

e Carga de datos reales. Pruebas del sistema.

e Completar la documentacién y la memoria del TFG.

A continuacion, se detalla la historia del proyecto, que a grandes rasgos coincide con la
planificacién anterior. El desarrollo del proyecto se extiende desde noviembre de 2019 hasta
septiembre de 2020.

Primera fase

Se estableci6 el objetivo general del trabajo, es decir, avanzar hacia una infraestructura de datos
geograficos creados sobre uno o mas DGGS. Soportar el almacenamiento (esquema de datos
adecuado para DGGS), acceso a través de la red, conversion desde y hacia formatos mas
habituales de informacidon geografica, etc.

Como tareas a destacar en esta primera fase se encuentran: familiarizarse con DGGS,
familiarizarse con datos geograficos y estudiar alternativas para la persistencia de los datos (BD),
y seleccionar una adecuada. Se decidié realizar la implementacidon de Boundary en una BD
NoSQL documental, en concreto, MongoDB. Se considerd el modelo de grafos interesante, pero
se vio que era afiadir complejidad extra.

Segunda fase

Como objetivo de esta fase se planted la localizacidn espacial de los Boundaries en la base de
datos. Aprovechar el potencial espacial de la BD para poder responder a la query espacial basica:
équé Boundaries intersectan con este rectangulo?

38



Se decidid que lo mas sencillo era almacenar el bounding box de cada Boundary en la BD, en el
formato de geometria adecuado, indexar esa columna y luego consultar por ella. No tenia
sentido convertir el Boundary en geometria y almacenar esa en la BD, dado que se estaria
almacenando la geometria dos veces. Ademds, supondria la conversion de datos discretos a
continuos perdiendo una de las ventajas de los DGGS.

Todo esto suponia pasar de id de celda rHEALPix a coordenadas lon/lat (EPSG:4326) y viceversa.
Eso es necesario para poder asignar los bounding boxes de los Boundaries en la BD y asi poder
hacer consultas espaciales de los mismos.

Tercera fase

Una vez resuelto el problema de pasar de id de celda rHEALPix a coordenadas lon/lat
(EPSG:4326), se comenzd a implementar el modelo, objetivo de esta tercera fase. Se disefié e
implementd una biblioteca Python para importar, manipular, recuperar y dar persistencia a
datos sobre el modelo disefiado y en la BD elegida. En un principio, todo este trabajo se centré
en los Boundaries y Boundary Datasets, y su respectivo almacén, ya que era lo que iba a ser
utilizado en el proyecto de los investigadores, COLABOTUR.

Se implementaron en Python cada uno de los conceptos del modelo ya presentado, disefiando
y ejecutando a su vez un conjunto de pruebas unitarias para cada uno de ellos.

Cuarta fase

En esta cuarta fase, se continud refinando la implementacién del modelo, centrandose esta vez
en los Cell Datasets. Ademas, se diseiid e implementé la APl web que da el soporte de back-end
al cliente web que estaba siendo desarrollado por los otros investigadores.

Ademds, se recibieron conjuntos de datos reales de los investigadores GEOT del Dpto. de
Geografia y Ord. del Territorio. Esto permitié empezar a hacer pruebas con datos reales.
Almacenarlos y recuperarlos, y descubrir en el proceso problemas o necesidades inesperados
que pudiesen surgir.

Quinta fase

Esta quinta fase se centré en la implementacién de la parte de la biblioteca dedicada a la
transformacion de los datos basados en el modelo DGGS hacia formatos mdas comunes de
informacion geografica como el modelo vectorial o raster, y viceversa. En concreto, los formatos
escogidos fueron Shapefile y GeoTIFF. Se realizaron pruebas con datos reales para comprobar la
correcta transformacion de estos.

Ademas, durante esta fase se colaboré en la redaccion del articulo sobre COLABOTUR enviado
al GEOProcessing 2020. Por otra parte, se comenzo con la redaccién de la memoria del trabajo.

39



Sexta fase

Esta ultima fase, se centrd en la redaccién de la memoria del trabajo, asi como con tareas de
documentacion y de correccién de errores.

4.2 Control de esfuerzos

El tiempo dedicado a cada parte del proyecto se ha registrado desde el inicio de este. Para llevar
un seguimiento de los esfuerzos se ha usado la herramienta Clockify'*. Cada tarea registrada en
dicha herramienta se ha etiquetado segun la fase del desarrollo a la que pertenecia: analisis y
disefo, implementacion, documentacion o pruebas. A continuacion, en la Figura 19, se muestra
la distribucién de horas en funcidén de las fases del desarrollo del proyecto.

= Andlisis y disefio
= Implementacion
= Documentacion

Pruebas

FIGURA 19 - DISTRIBUCION DE HORAS

El tiempo total destinado a la realizacién del proyecto ha sido de 608 horas. La mayor parte del
tiempo se ha invertido en la implementacidn de la biblioteca y APl web, un 38,7%, y en las
pruebas realizadas, un 27% del total. El resto del tiempo se ha invertido en el andlisis y disefio,
un 18,3%, y en la documentacion, un 16%.

4.3 Gestion de configuraciones

Durante el trabajo se ha mantenido un control de versiones tanto del cédigo desarrollado, como
de la documentacion relacionada, para ello se han utilizado las herramientas GitHub y Google
Drive.

El cédigo del sistema se encuentra en un repositorio publico de GitHub®> bajo la licencia
European Union Public License, una licencia de software libre.

14 https://clockify.me
15 https://github.com/IAAA-Lab/grid-server

40


https://clockify.me/
https://github.com/IAAA-Lab/grid-server

5. Conclusiones y trabajo futuro

El objetivo de este trabajo ha sido crear una biblioteca para la importacion, transformacion,
almacenamiento, y recuperaciéon de datos geograficos basados en un DGGS, asi como la
implementaciéon de una APl web que permita la integracién de la funcionalidad principal en
aplicaciones web o mdviles.

En este trabajo se han estudiado alternativas de almacenamiento persistente (BD), se ha
disefiado e implementado una biblioteca Python que permite importar, manipular, recuperary
dar persistencia a datos sobre los modelos disefiados y en la BD elegida. Se ha disefiado e
implementado una APl web, que permite a un cliente importar, recuperar o manipular datos
basados en el modelo implementado.

La colaboraciéon con investigadores, en concreto, con el grupo IAAA del I13A (Instituto
Universitario de Investigacion de Ingenieria de Aragdn) y GEOT del IUCA (Instituto Universitario
de Ciencias Ambientales), es otro aspecto a destacar. Esto ha permitido trabajar con
necesidades, requisitos y datos reales, ya que estan trabajando en un proyecto que persigue
desarrollar aplicaciones para este tipo de sistemas. Estos investigadores han creado un cliente
web para la captura de datos sobre DGGS, que utiliza la APl web y el almacenamiento en BD
disefiados e implementados en este TFG, lo que ha ayudado en su disefio y pruebas. Esta
colaboracidn se ha traducido en la redacciéon de un articulo conjunto enviado al congreso
internacional GEOProcessing 2020 (pendiente de revision).

Tras la realizacion del trabajo, se ha visto que una de las lineas de trabajo futuro mas claras
podria ser realizar una implementacion mas eficiente en relacién con la parte del almacén de
Cell Datasets, “almacenamiento raster" de los DGGS. Almacenarlos como arrays de manera
eficiente (BD orientada a arrays, formatos de fichero tipo HDF5...) pero, a la hora de realizar las
consultas, extraerlos como si cada celda de estos estuviera indexada por su CelllD. Una de las
posibilidades seria utilizar TileDB!>, motor disefiado en torno a arrays multidimensionales,
siendo esta una de las alternativas para la persistencia de los datos analizadas, que, una vez
finalizado este TFG, se ve posiblemente como mas adecuada en este caso.

La biblioteca Python implementada permite la transformacion de datos basados en un DGGS
hacia formatos mds comunes de informacién geografica como el modelo vectorial o raster, y
viceversa, en concreto, Shapefile y GeoTIFF respectivamente. En relacion con esto, otra de las
lineas de trabajo futuro seria incorporar mas formatos hacia los que realizar estas
transformaciones.

Entre otras muchas lineas en las que se podria basar un trabajo futuro, se podria destacar la
integracion de este sistema en workflows de procesamiento de datos geograficos, de manera
que se pudieran aprovechar las virtudes de los DGGS para, por ejemplo, automatizar alguna
toma de decisiones que ahora requiere intervencion humana, como, por ejemplo, a qué sistema

15 https://tiledb.com

41


https://tiledb.com/

de coordenadas transformar datos que estan en sistemas distintos cuando se quieren combinar
en un analisis geografico.

Con la realizacidn de este trabajo se ha obtenido experiencia en el tratamiento de datos
geograficos, en el desarrollo de cédigo Python, asi como en el disefio e implementacidon de
sistemas. Se considera la colaboracidn con investigadores uno de los aspectos mas positivos de
este trabajo, de gran valor para el futuro profesional.

42



Referencias

Gibb, R. G., & Raichev, A. & Speth, M. 2016. The rHEALPix Discrete Global Grid System.
https://raichev.net/files/rhealpix dggs preprint.pdf

Purss, M. (ed.) 2015. DGGS. OGC Abstract Specifications OGC 15-104r5.
http://docs.opengeospatial.org/as/15-104r5/15-104r5.html

Victor Olaya. 2016. Sistemas de Informacion Geografica. Un libro libre de Victor Olaya.
https://volaya.github.io/libro-sig/index.html

Gibb, R. G. 2016. The rHEALPix Discrete Global Grid System. IOP Conference Series:
Earth and Environmental Science. https://iopscience.iop.org/article/10.1088/1755-
1315/34/1/012012/pdf

Rubén Béjar, Miguel A. Latre, Francisco J. Lopez-Pellicer, Javier Nogueras-Iso, F. Javier
Zarazaga-Soria. 2019. AGILE 2019. On the problem of providing unique identifiers for
areas with any shape on Discrete Global Grid Systems. https://agile-
online.org/images/conference 2019/documents/short papers/58 Upload your PDF

file.pdf

43


https://raichev.net/files/rhealpix_dggs_preprint.pdf
http://docs.opengeospatial.org/as/15-104r5/15-104r5.html
https://volaya.github.io/libro-sig/index.html
https://iopscience.iop.org/article/10.1088/1755-1315/34/1/012012/pdf
https://iopscience.iop.org/article/10.1088/1755-1315/34/1/012012/pdf
https://agile-online.org/images/conference_2019/documents/short_papers/58_Upload_your_PDF_file.pdf
https://agile-online.org/images/conference_2019/documents/short_papers/58_Upload_your_PDF_file.pdf
https://agile-online.org/images/conference_2019/documents/short_papers/58_Upload_your_PDF_file.pdf

ANnexos

Anexo 1 — Ejemplos de uso de la biblioteca

Stores

BoundaryStore

La clase BoundaryStore representa el almacén de Boundaries con el que se da persistencia,
sobre una base de datos MongoDB, a Boundary Data Sets, es decir, a conjuntos de Boundaries
en los que cada Boundary tiene asociados unos datos concretos. A continuacién, se presentan
ejemplos de insercién de un Boundary Dataset, la consulta de un Boundary dado su
identificador, el borrado de un Boundary dado su identificador, la consulta de un Boundary
DataSet dado su identificador, y la consulta de un Boundary en un Boundary Dataset concreto
dados sus identificadores.

from dggs.cellset.boundary import Boundary

from dggs.boundary ID import BoundaryID

from dggs.dataset.boundary dataset import BoundaryDataSet
from dggs.store.boundary_store import BoundaryStore

from dggs.dataset.data import Data

store = BoundaryStore()
# BoundaryStore por defecto utiliza la configuracidén de conexién a la base de
datos especificada en el archivo mongodb_config.py .

bds = BoundaryDataSet("id")
boundaries = ['023P12P34S56', 'P10P11P2', 'N@', 'N802PO', '06S0S1S2', 'Q']

for boundary in boundaries:
bds.add(Boundary(boundary_ID=BoundaryID(boundary)), Data("test"))
store.insert(bds)

stored_boundaries =
store.query_by boundary((Boundary(boundary_ID=BoundaryID('023P12P34S56'))))

for boundary in stored_boundaries:
print(boundary[@]. boundary_ID.value)
print(boundary[1].content)

# >> “023P12P34S56”
# >> “test”

deleted_boundaries =
store.delete_boundary((Boundary(boundary_ ID=BoundaryID('023P12P34S56"))))

44



print(deleted_boundaries)

#>> 1

stored_bds = store.query by boundary dataset_id("id")

for bds in stored_bds:
for boundary in bds.get_boundaries():
print(boundary[@]. boundary ID.value)
print(boundary[1].content)
# >> “Pleop11pP2”
# >> “test”

# >> “No”
# >> “test”

# >> “N802PO”
# >> “test”

# >> “06S0S1S2”
# >> “test”

# >> ((Q))
# >> “test”

stored_bds = store.query_ by boundary_ in_boundary_datasets("id",
(Boundary(boundary_ID=BoundaryID(' P10P11P2'))))

for bds in stored_bds:
for boundary in bds.get_boundaries():
print(boundary[@]. boundary_ID.value)
print(boundary[1].content)
# >> “P1op11pP2”
# >> “test”

CellStore

La clase CellStore representa el almacén de celdas con el que se da persistencia, sobre una base
de datos MongoDB, a Cell Data Sets, es decir, a conjuntos de celdas en los que cada una tiene
asociado unos datos concretos. A continuacién, se presentan ejemplos de insercion de un Cell
Dataset, la consulta de una celda dado su identificador, el borrado de una celda dado su
identificador, la consulta de un Cell DataSet dado su identificador y la consulta de una celda en
un Cell Dataset concreto dados sus identificadores.

45



from dggs.cell ID import CellID

from dggs.dataset.cell dataset import CellDataSet
from dggs.store.cell store import CellStore

from dggs.dataset.data import Data

store = CellStore()
# CellStore por defecto utiliza la configuracién de conexidén a la base de
datos especificada en el archivo mongodb_config.py .

# Insercidn
cds = CellDataSet("id")
cells = ['PO', 'P1', 'P2', 'P3', 'P4', 'P5']

for cell in cells:
cds.add(CellID(cell), Data("test"))
store.insert(cds)

# Consulta por CellID
stored_cells = store.query by cell(CellID('P0'))
for cell in stored_cells:
print(cell[@].value) # CellID
print(cell[1].content) # Data

# >> “Po”
# >> “test”

# Borrado por CellID
deleted cells = store.delete cell(CellID('PO'))
print(deleted_cells)

#>>1

# Consulta por Cell Dataset ID
stored_cds = store.query_ by cell dataset_id("id")

for cds in stored_cds:
for cell in cds.get_cells():
print(cell[@].value) # CellID
print(cell[1].content) # Data
# >> “P1”
# >> “test”

# >> “P2”
# >> “test”

# >> “P3”
# >> “test”

# >> “P4”
# >> “test”



# >> “P5”
# >> “test”

# Consulta por CellID en Cell Dataset concreto
stored_cds = store.query by cell in cell datasets("id", CellID('P1'))

for cds in stored_cds:
for cell in cds.get_cells():
print(cell[@].value) # CellID
print(cell[1].content) # Data
# >> “P1”
# >> “test”

47



Transformaciones
Shapefile

A continuacion, se presentan ejemplos de transformacion de datos basados en un DGGS hacia
un formato vectorial, en concreto, Shapefile, y viceversa. En primer lugar, se muestra
directamente el uso de las operaciones de la clase que permiten estas transformaciones. Por
otro lado, se muestra cémo se pueden realizar estas transformaciones utilizando la interfaz de
linea de comandos (CLI).

from dggs.cellset.boundary import Boundary

from dggs.dataset.boundary dataset import BoundaryDataSet
from dggs.cell ID import CellID

from dggs.dataset.data import Data

from dggs.dggs utils.dggs to_shp_utils import DGGSShpUtils
from dggs.dggs utils.shp to dggs utils import ShpDGGSUtils

shp_utils = ShpDGGSUtils()
dggs_utils = DGGSShpUtils()

cells = [CellID('P22220720648"'), CellID('P22220720656'),
CellID('P22220720657"'),CellID('P22220720672"'), CellID('P22220720680"),
CellID('P22220720681")]

boundary = Boundary(cells=cells)
data = Data("data_test")

b_dataset = BoundaryDataSet('test_id")
b_dataset.add(boundary, data)

input_file = 'input.shp'
output_file = 'output.shp'

# Shapefile a partir de un Boundary
dggs_utils.shp file_from_boundary(boundary, output_file)

# Boundary a partir de un Shapefile
boundary, data = shp utils.get boundary from _shp file(input_ file, with_ids
=True)

# Shapefiles a partir de un Boundary dataset
dggs_utils.shp files_from boundary dataset(b_dataset, output file)

# Boundary dataset a partir de Shapefiles

bds = shp_utils.get_boundary_dataset_from_shp file('./', 'test_id', with_ids
=True, unic_data=True)

48



HHHAHAHHAH
## CLI ##
SRR

# Help DGGS to shp
>> python dggs_to_shp _utils.py -h

#>> -i | --input= -> input json file (defining a boundary or a boundary
dataset)

#>> -t | --type= -> 0 if file defines a boundary or 1 if defines a boundary
dataset

#>> -0 | --output= -> output shapefile (.shp)

# Shapefile a partir de un Boundary
>> python dggs _to shp utils.py --input=input.json --type=0 --
output=output.shp

# Shapefiles a partir de un Boundary dataset
>> python dggs to shp utils.py --input=input.json --type=1 --
output=output.shp

# Help shp to DGGS
>> python shp to _dggs utils.py -h

#>> -f | --file= -> input shapefile (if you want to get a boundary)
#>> -d | --dir= -> directory with shapefiles (if you want to get a boundary
dataset)

#>> --id -> Boundary Dataset identifier

#>> --with_ids -> if in the shapefile there is an id property that indicates
the identifier of the cells

#>> -s | --save= -> if you want to save in a file, the output file (.json)
#>> -0 | --optimal= -> include AUID (Optimal Boundary)

# Boundary a partir de un Shapefile
>> python shp_to_dggs utils.py --file=input.shp --with_ids --save=output.json
--optimal

# Boundary Dataset a partir de Shapefiles

>> python shp_to_dggs utils.py --dir=input_dir --with_ids --save=output.json
--optimal --id=tests

49



GeoTiff

A continuacidn, se presentan ejemplos de transformacién de datos basados en un DGGS hacia
un formato réster, en concreto, GeoTiff, y viceversa. En primer lugar, se muestra directamente
el uso de las operaciones de la clase que permiten estas transformaciones. Por otro lado, se
muestra como se pueden realizar estas transformaciones utilizando la interfaz de linea de
comandos (CLI).

from dggs.dggs utils.dggs to_tif utils import DGGSTifUtils
from dggs.dggs utils.tif to dggs utils import TifDGGSUtils

tif utils = TifDGGSUtils()
dggs_utils = DGGSTifUtils()

input_file = ‘'input.tif’
output_file = 'output.tif'

cells = [CellID('N@1'), CellID('N@2'), CellID('Ne3')]
data = Data('test')

c_dataset = CellDataSet('test_id')
c_dataset.add(cells[@], data)
c_dataset.add(cells[1], data)
c_dataset.add(cells[2], data)

# GeoTiff a partir de un Cell dataset
dggs_utils.tif file from_cell dataset(c_dataset, self.output_file)

# Cell dataset a partir de un GeoTiff
c_dataset = tif_utils.get_cell dataset_from_tif file(input_file, 'test_id")

SR
## CLI ##
HEHHFHAHHE

# Help DGGS to tif
>> python dggs to_tif utils.py -h

#>> -i | --input= -> input json file (defining a cell dataset)
#>> -0 | --output= -> output GeoTiff (.tif)

# GeoTiff a partir de un Cell Dataset

>> python dggs_to_ tif _utils.py --input=input.json --output=output.tif

# Help tif to DGGS

50



>> python tif to_dggs utils.py -h

#>> -i | --input= -> input GeoTiff
#>> -0 | --output= -> if you want to save in a file, the output file (.json)
#>> --id -> Cell Dataset identifier

# Cell Dataset a partir de un GeoTiff

>> python tif to_dggs utils.py --file=input.tif --output=output.json
--id=test

51



Anexo 2 — Métodos de las clases en detalle

rHEALPIX

cell_width(Integer): devuelve el ancho de una celda cuyo nivel de refinamiento es el
pasado como parametro.

rowcol(CelllD): devuelve la fila y la columna de la celda pasada como parametro.

up(CelllD, CelllD), down(CellID, CellID), left(CelliD, CelllD) y right(CelllD, CelllD):
devuelve True si la primera Celda pasada como parametro esta mas arriba/abajo/a la
izquierda/derecha, que la segunda Celda.

get_cell_ul_vertex (CelllD): devuelve las coordenadas proyectadas (proyeccion
rHEALPix) del vértice superior izquierdo de la Celda pasada como parametro.
get_cell_projected_coordinates(CelllD): devuelve las coordenadas proyectadas
(proyeccion rHEALPix) de los vértices y nucleo de la Celda pasada como parametro.
get_cell_geodetic_coordinates(CelllD): devuelve las coordenadas geodésicas
(WGS84) de los vértices y nucleo de la Celda pasada como parametro.
get_geodetic_coordinates_from_bbox(bounds): devuelve las coordenadas geodésicas
(WGS84) de los vértices del bbox pasado como parametro.
get_cell_from_point(Integer, point: (Float, Float)): devuelve la Celda (CelllD) que
contiene el punto pasado como parametro para el nivel de refinamiento especificado.

CellSet

get_as_tree(), que devuelve un trie o prefix trie que representa el conjunto con los
identificadores de las celdas como claves de este.

get_as_grid_stack(), que devuelve el conjunto de celdas como una serie de Grids
ordenadas por su nivel de refinamiento, es decir, un GridStack.

get_min_refinement(), devuelve un entero que representa el minimo refinamiento del
conjunto, es decir, de las Celdas que lo componen, el refinamiento de la Celda con el
menor refinamiento.

get_max_refinement(), que devuelve un entero que representa el maximo
refinamiento del conjunto, es decir, de las Celdas que lo componen, el refinamiento de
la Celda con el mayor refinamiento.

52



BoundaryDataSet

add(Boundary, Data): Inserta el par Boundary-Data pasado como parametro si en el
conjunto no existen datos asociados a dicho Boundary.

addList(List<(Boundary, Data)>): Inserta la lista de pares Boundary-Data pasada como
pardmetro. Si en el conjunto existen datos asociados a un Boundary de la lista, no se
inserta.

get_boundaries(): Set<OptimalBounday>: devuelve el conjunto de
OptimalBoundaries que forman el BoundaryDataSet.

get_boundaries_and_data(): Set<(OptimalBounday, Data)>: devuelve el conjunto de
pares OptimalBoundary-Data que forman el BoundaryDataSet.

get_min_refinement(): devuelve un entero que representa el minimo refinamiento del
conjunto.

get_max_refinement(): devuelve un entero que representa el maximo refinamiento
del conjunto.

get_boundary_data(BoundaryID): dado un identificador de un Boundary
(BoundaryID), devuelve, si existe dicho Boundary en el conjunto, los datos asociados a
este.

get_boundary_data_list(List<BoundarylD>): dada una lista de identificadores de
Boundaries (BoundaryID), devuelve, si existen dichos Boundaries en el conjunto, los
datos asociados a estos.

CellDataSet

add(CelllD, Data): Inserta el par CelllID-Data pasado como pardmetro si en el conjunto
no existen datos asociados a dicha Celda.

addList(List<(CelllD, Data)>): Inserta la lista de pares CelllD-Data pasada como
parametro. Si en el conjunto existen datos asociados a una Celda de la lista, no se
inserta.

get_cells(): Set<CellID>: devuelve el conjunto de Celdas que forman el CellDataSet.
get_cells_and_data(): Set<(CelllD, Data)>: devuelve el conjunto de pares CelllD-Data
que forman el CellDataSet.

get_min_refinement(): devuelve un entero que representa el minimo refinamiento del
conjunto.

get_max_refinement(): devuelve un entero que representa el maximo refinamiento del
conjunto.

get_cell_data(CelllD): dado un identificador de una Celda (CelllD), devuelve, si existe
dicha Celda en el conjunto, los datos asociados a esta.

get_cell_data_list(List<CelllD>): dada una lista de identificadores de Celdas (CelllD),
devuelve, si existen dichas Celdas en el conjunto, los datos asociados a estas.

53



BoundaryStore

insert(BoundaryDataSet): operacion de insercion de un BoundaryDataSet en el
almacén. Tiene como parametro el BoundaryDataSet a insertar.

all_boundaries(): operacion que devuelve una lista de tuplas (OptimalBoundary, Data)
con todos los Boundaries almacenados y sus datos asociados.

query_by_boundary(Boundary): devuelve una lista de tuplas (OptimalBoundary, Data)
con los Boundaries almacenados con identificador igual al del Boundary pasado como
parametro y sus datos asociados.

query_by_polygon(Polygon): devuelve una lista de tuplas (OptimalBoundary, Data)
con los Boundaries almacenados cuyo bbox intersecta con el poligono pasado como
parametro y sus datos asociados. El poligono pasado como parametro es una lista de
vértices tal y como especifica el tipo Polygon de MongoDB.

delete_boundary(Boundary): elimina todos los Boundaries almacenados con
identificador igual al del Boundary pasado como parametro y sus datos asociados.

all_boundary_datasets(): devuelve una lista de BoundayDataSets con todos los
conjuntos de Boundaries almacenados y sus datos.

query_by boundary_to_boundary_datasets(Boundary): devuelve una lista de
BoundayDataSets con todos los conjuntos de Boundaries almacenados en los que
existe un Boundary con identificador igual al del Boundary pasado como parametro.

query_by_boundary_dataset_id(id: String): devuelve, si existe, el BoundayDataSet
almacenado cuyo identificador es igual al pasado como parametro.

query_by_boundary_in_boundary_datasets(id: String, Boundary): devuelve, si existe,
el Boundary y sus datos asociados con identificador igual al del Boundary pasado como
parametro, en el BoundayDataSet almacenado cuyo identificador es igual al pasado
como parametro.

update_boundary_dataset(BoundaryDataSet): reemplaza, si existe, el
BoundaryDataSet almacenado cuyo identificador es igual al del BoundaryDataSet
pasado como parametro, por el BoundaryDataSet pasado como parametro.

update_boundary_in_boundary_dataset(id: String, Boundary, Data): actualiza, si
existen, los datos asociados al Boundary con identificador igual al del Boundary
pasado como parametro, en el BoundayDataSet almacenado cuyo identificador es
igual al pasado como parametro.

delete_boundary_dataset(id: String): elimina, si existe, el BoundayDataSet
almacenado cuyo identificador es igual al pasado como parametro.

delete_boundary_in_boundary_dataset(id: String, Boundary): elimina, si existen, los
datos y el Boundary con identificador igual al del Boundary pasado como parametro,

54



en el BoundayDataSet almacenado cuyo identificador es igual al pasado como
parametro.

e boundary_datasets_ids(): devuelve la lista de identificadores de todos los
BoundayDataSets almacenados.

e boundary_datasets_last_id(): devuelve el identificador del Gltimo BoundayDataSet
almacenado.

e dropAll(): elimina todos BoundayDataSets almacenados.

CellStore

e insert(CellDataSet): operacion de insercién de un CellDataSet en el almacén. Tiene
como parametro el CellDataSet a insertar.

o all_cells(): operacion que devuelve una lista de tuplas (CelllD, Data) con todas las Celdas
almacenados y sus datos asociados.

e query_by_cell(CelliD): devuelve una lista de tuplas (CelllD, Data) con las Celdas
almacenados con identificador al pasado como pardmetro y sus datos asociados.

o delete_cell(CelllD): elimina todas las Celdas almacenadas con identificador igual al
pasado como pardmetro y sus datos asociados.

e all_cell_datasets(): devuelve una lista de CellDataSets con todos los conjuntos de Celdas
almacenados y sus datos.

e query_by_cell_to_cell_datasets(CelllD): devuelve una lista de CellDataSets con todos
los conjuntos de Celdas almacenados en los que existe una Celda con identificador igual
al pasado como parametro.

e query_by_cell_dataset_id(id: String): devuelve, si existe, el CellDataSet almacenado
cuyo identificador es igual al pasado como parametro.

e query_by_cell_in_cell_datasets(id: String, CelllD): devuelve, si existe, la Celda y sus
datos asociados con identificador igual al pasado como parametro, en el CellDataSet
almacenado cuyo identificador es igual al pasado como parametro.

e update_cell_dataset(CellDataSet): reemplaza, si existe, el CellDataSet almacenado
cuyo identificador es igual al del CellDataSet pasado como parametro, por el CellDataSet
pasado como parametro.

e update_cell_in_cell_dataset(id: String, CelllD, Data): actualiza, si existen, los datos
asociados a la Celda con identificador igual al pasado como parametro, en el CellDataSet
almacenado cuyo identificador es igual al pasado como parametro.

o delete_cell_dataset(id: String): elimina, si existe, el CellDataSet almacenado cuyo
identificador es igual al pasado como parametro.

e delete_cell_in_cell_dataset(id: String, CelllD): elimina, si existen, los datos y la Celda
con identificador igual al pasado como parametro, en el CellDataSet almacenado cuyo
identificador es igual al pasado como parametro.

55



e cell_datasets_ids(): devuelve la lista de identificadores de todos los CellDataSets
almacenados.

o cell_datasets_last_id(): devuelve el identificador del ultimo CellDataSet almacenado.

e dropAll(): elimina todos CellDataSets almacenados.

DGGSShpUtils

e shp_file_from_cells(List<CellID>, out_shp: String, Data): genera un shapefile con
nombre out_shp con una entidad formada por las celdas pasadas como parametro a la
operacion. Si el parametro de tipo Data es distinto a None, la entidad formada por el
conjunto de celdas tendra asociados dichos datos.

e shp_file_from_boundary(Boundary, out_shp: String, Data): genera un shapefile con
nombre out_shp con una entidad formada por el Boundary pasado como parametro a
la operaciodn. Si el parametro de tipo Data es distinto a None, la entidad formada por el
Boundary tendra asociados dichos datos.

o shp_files_from_boundary_dataset(BoundaryDataSet, out_shp: String): genera un
shapefile por cada Boundary perteneciente al BoundaryDataSet pasado como
pardmetro con una entidad formada por dicho Boundary y sus datos asociados.

o shp_file_from_boundary_cli(boundary_file: String, out_shp: String): genera un
shapefile con nombre out_shp con una entidad formada por el Boundary descrito en
formato JSON en el fichero pasado como parametro. Esta operacion se utiliza para
realizar estas transformaciones a través de una interfaz de linea de comandos (CLI).

e shp_files_from_boundary_dataset_cli(boundary_dataset_file: String, out_shp:
String): genera un shapefile por cada Boundary perteneciente al BoundaryDataSet
(descrito en formato JSON en el fichero pasado como pardmetro pasado como
parametro) con una entidad formada por dicho Boundary y sus datos asociados. Esta
operacion se utiliza para realizar estas transformaciones a través de una interfaz de linea
de comandos (CLI).

ShpDGGSUTtils

e get_cells_from_shp_file(file: String, with_ids: Boolean, unic_data: Boolean): devuelve
un conjunto de Celdas a partir de los poligonos (que definen Celdas) que forman la
entidad definida en el shapefile pasado como parametro. El parametro with_ids es un
booleano que indica si cada poligono (Celda) definido en el shapefile contiene el
identificador de dicha Celda o no, y en caso de que no lo tengan, son calculados. El
parametro unic_data es un booleano que indica si todos los poligonos/celdas que
forman la entidad en el shapefile tiene asociados los mismos datos o cada celda tiene
unos distintos.

56



e get_boundary_from_shp_file(file: String, with_ids: Boolean, unic_data: Boolean):
devuelve un Boundary formado por las Celdas a partir de los poligonos (que definen
Celdas) que forman la entidad definida en el shapefile pasado como parametro. El
significado de los parametros with_ids y unic_data es el explicado anteriormente.

e get_optimal_boundary_from_shp_file(file: String, with_ids: Boolean, unic_data:
Boolean): devuelve un OptimalBoundary formado por las Celdas a partir de los
poligonos (que definen Celdas) que forman la entidad definida en el shapefile pasado
como parametro. El significado de los pardmetros with_ids y unic_data es el explicado
anteriormente.

e get_boundary_dataset_from_shp_file(dir: String, id: String, with_ids: Boolean,
unic_data: Boolean): devuelve un BoundaryDataSet formado por los Boundaries y datos
obtenidos a partir de los shapefiles contenidos en el directorio pasado como parametro.
El significado de los parametros with_ids y unic_data es el explicado anteriormente. El
parametro id indica el identificador del BoundaryDataSet.

e get_boundary_from_shp_file_cli(file: String, with_ids: Boolean, output_file: String,
optimal: Boolean): genera un fichero en formato JSON con nombre output_file o
imprime por pantalla si dicho pardametro es None, con un Boundary en formato JSON
formado por las Celdas a partir de los poligonos (que definen Celdas) que forman la
entidad definida en el shapefile pasado como parametro. El pardmetro optimal es un
booleano que indica si en el JSON de salida se debe incluir el AUID del Boundary creado.
Esta operacion se utiliza para realizar estas transformaciones a través de una interfaz de
linea de comandos (CLI).

e get_boundary_dataset_from_shp_file_cli(dir: String, id: String, with_ids: Boolean,
output_file: String, optimal: Boolean): genera un fichero en formato JSON con nombre
output_file o imprime por pantalla si dicho pardmetro es None, con un BoundaryDataSet
en formato JSON formado por formado por los Boundaries y datos obtenidos a partir de
los shapefiles contenidos en el directorio pasado como pardmetro. El pardmetro
optimal es un booleano que indica si en el JSON de salida, cada Boundary debe incluir
su AUID. El parametro id indica el identificador del BoundaryDataSet. Esta operacion se
utiliza para realizar estas transformaciones a través de una interfaz de linea de
comandos (CLI).

DGGSTifUtils

o tif_file_from_cell_dataset(CellDataSet, out_tif: String): genera un GeoTiff con nombre
out_tif con un pixel por cada celda del CellDataSet pasado como pardmetro y con sus
datos asociados.

o tif_file_from_cell_dataset_cli(cell_dataset_file: String, out_tif: String): genera un
GeoTiff con nombre out_tif con un pixel por cada celda del CellDataSet descrito en
formato JSON en el fichero pasado como pardmetro y con sus datos asociados.

57



TifDGGSUtils

get_cell_dataset_from_tif_file(file: String, id: String): devuelve un CellDataSet
formado por las Celdas generadas a partir de cada uno de los pixeles del fichero GeoTiff
pasado como parametro y datos asociados a cada una de ellas. El pardmetro id indica el
identificador del CellDataSet.

get_cell_dataset_from_tif_file_cli(file: String, id: String, output_file: String): genera un
fichero en formato JSON con nombre output file o imprime por pantalla si dicho
parametro es None, con un CellDataSet en formato JSON formado por las Celdas
generadas a partir de cada uno de los pixeles del fichero GeoTiff pasado como
pardmetro y datos asociados a cada una de ellas. El pardmetro id indica el identificador
del CellDataSet.

58



Anexo 3 — APl Web (REST) del componente Grid
Server (ver Figura 15)

APl Resources (Boundary Dataset)
GET /bdatasets

Returns all BoundaryDatasets stored
Example: GET http://example.com/bdatasets
Response body:

[

"id": "id_ln,

"boundary_data_set": [

{
"AUID": "R023$))))P12$)))34$))))S56%$)))))",
"boundary": "023P12P34S56",
"data": "test"

}s

{
"AUID": "RP10$))1%$)))2$))))",
"boundary": "P1@P11P2",
"data": "test"

}s

{
"AUID": "RR1$))2$))))",
"boundary": "R1R2",
"data": "test"

}

59


http://example.com/bdatasets

}s
{
"id": "id_2",
"boundary_data_set": [
{
"AUID": "RQ1$))2$))))",
"boundary": "Q1Q2",
"data": "test"
}s
{
"AUID": "RQ3$))4%))))",
"boundary": "Q3Q4",
"data": "test"
}
]
}
]
POST /bdatasets

Insert a BoundaryDataset
Example: POST http://example.com/bdatasets

Request body:

llidll: "id_ln,

"boundary_data_set": [

60


http://example.com/bdatasets

"boundary": "P1P2P3",

"data": "test"

¥

{
"boundary": "Q14Q15",
"data": "test"

}s

{
"boundary": "022023",
"data": "test"

}

GET /bdatasets/[bdatasets_id]

Returns the BoundaryDataset with that id.

Parameters
P -
Parameter arameter Description
Type
bdatasets id Path BoquaryDataset
- identifier

Example: GET http://example.com/bdatasets/id_1

Response body:

61


http://example.com/bdatasets/id_1

"id": "id_1",

"boundary_data_set": [

{
"AUID": "R023%$))))P12$)))34$))))S56%)))))",
"boundary": "023P12P34S56",
"data": "test"

1

{
"AUID": "RP10$))1$)))2%$))))",
"boundary": "P10P11P12",
"data": "test"

1

{
"AUID": "RR1$))2$))))",
"boundary": "R1R2",
"data": "test"

}

GET /bdatasets/[bdatasets_id]/[boundary id]

Returns the Boundary with that id along with the Data associated to it, in the BoundaryDataset

with that id.

Parameters

62



Parameter N
Parameter Description
Type

bdatasets_id Path BoundaryDataset identifier

Boundary identifier (Cell

boundary_id Path identifier sequence)

Example: GET http://example.com/bdatasets/id_1/P10P11P2

Response body:

[
{
"id": "id_1",
"boundary_data_set": [
{
"AUID": "RP10$))1$)))2%))))",
"boundary": "P1OP11P2",
"data": "test"
¥
]
}

PUT /bdatasets/[bdatasets_id]

Update the BoundaryDataset with that id.

Parameters
Parameter L.
Parameter aramete Description
Type
bdatasets id Path BoquaryDataset
- identifier

63


http://example.com/bdatasets/id_1/P10P11P2

Example: PUT http://example.com/bdatasets/id_1

Request body:

{
"boundary_data_set": [
{
"boundary": "P1P2P3",
"data": "test"
¥
{
"boundary": "Q14Q15",
"data": "test"
}s
{
"boundary": "022023",
"data": "test"
}
]
}

PUT /bdatasets/[bdatasets_id]/[boundary_id]

Update the Boundary with that id, in the BoundaryDataset with that id.

Parameters
P .
Parameter arameter Description
Type
bdatasets_id Path BoundaryDataset identifier

64


http://example.com/bdatasets/id_1

Parameter N
Parameter Description

Type

Boundary identifier (Cell

boundary_id Path identifier sequence)

Example: PUT http://example.com/bdatasets/id_1/P10P11P2

Request body:

{

"data": "test2"

DELETE /bdatasets/[bdatasets_id]

Deletes the BoundaryDataset with that id.

Parameters
Parameter Parameter Description
Type
bdatasets_id  Path BoundaryDataset
identifier

Example: DELETE http://example.com/bdatasets/id_1

DELETE /bdatasets/[bdatasets_id]/[boundary_id]

Deletes the Boundary with that id along with the Data associated to it, in the BoundaryDataset
with that id.

Parameters
P N
Parameter arameter Description
Type
bdatasets _id Path BoundaryDataset identifier

Boundary identifier (Cell

boundary_id Path identifier sequence)

65


http://example.com/bdatasets/id_1/P10P11P2
http://example.com/bdatasets/id_1

Example: DELETE http://example.com/bdatasets/id_1/P10P11P2

GET /boundaries

Returns all Boundaries along with the Data associated to them.

Possible parameters

Parameters referring to the vertices of a polygon can be added to filter out those
Boundaries that intersect it.

Parameter s
Parameter Description
Type

x coordinate of lower left
dix QueryParam vertex of the polygon to

intersect

y coordinate of lower left
dly QueryParam vertex of the polygon to

intersect

x coordinate of upper right
urx QueryParam vertex of the polygon to

intersect

y coordinate of upper right
ury QueryParam vertex of the polygon to

intersect

Parameter .
Parameter Description
Type

x coordinate of lower left
dix QueryParam vertex of the polygon to

intersect

y coordinate of lower left
dly QueryParam vertex of the polygon to

intersect

x coordinate of lower right
drx QueryParam vertex of the polygon to

intersect

y coordinate of lower right
dry QueryParam vertex of the polygon to
intersect


http://example.com/bdatasets/id_1/P10P11P2

Parameter

Parameter Description
Type
x coordinate of upper right
urx QueryParam vertex of the polygon to
intersect

y coordinate of upper right
ury QueryParam vertex of the polygon to
intersect

x coordinate of upper left
ulx QueryParam vertex of the polygon to
intersect

y coordinate of upper left
uly QueryParam vertex of the polygon to
intersect

Example: GET http://example.com/boundaries

Response body:

[

{
"AUID": "R023$))))P12$)))34$))))S56%)))))",
"boundary": "023P12P34S56",
"data": "test"

}s

{
"AUID": "RP10$))1$)))2$))))",
"boundary": "P10P11P2",
"data": "test"

}s

{

"AUID": "RR1$))2%$))))",

67


http://example.com/boundaries

"boundary": "R1R2",

"data": "test"

}s

{
"AUID": "RQ1$))2$))))",
"boundary": "Q1Q2",
"data": "test"

}s

{
"AUID": "RQ3$))4%$))))",
"boundary": "Q3Q4",
"data": "test"

}

Example: GET http://example.com/boundaries/?dIx=-
179.9999997096064&dly=12.895313217732834&urx=-
90.00000014160271&ury=41.93785365811587

Response body:

[
{
"AUID": "R022$))3%$)))))",
"boundary": "022023",
"data": "test"
}


http://example.com/boundaries/?dlx=-179.9999997096064&dly=12.895313217732834&urx=-90.00000014160271&ury=41.93785365811587
http://example.com/boundaries/?dlx=-179.9999997096064&dly=12.895313217732834&urx=-90.00000014160271&ury=41.93785365811587
http://example.com/boundaries/?dlx=-179.9999997096064&dly=12.895313217732834&urx=-90.00000014160271&ury=41.93785365811587

GET /boundaries/[boundary_id]

Returns the Boundary (or Boundaries if it exists in different BoundaryDatasets) with that id along
with the Data associated to it.

Parameters

Parameter -
Parameter Description
Type

Boundary identifier (Cell

boundary_id Path identifier sequence)

Example: GET http://example.com/boundaries/P1P2P3

Response body:

[
{
"AUID": "RP1$))2%$))3%))))",
"boundary": "P1P2P3",
"data": "test"
}s
]

DELETE /boundaries/[boundary_id]

Deletes the Boundary (or Boundaries if it exists in different BoundaryDatasets) with that id along
with the Data associated to it.

Parameters

Parameter s
Parameter Description

Type

Boundary identifier (Cell

boundary_id Path identifier sequence)

69


http://example.com/boundaries/P1P2P3

Example: DELETE http://example.com/boundaries/P1P2P3

GET /idsbdatasets

Returns all BoundaryDatasets identifiers
Example: GET http://example.com/idsbdatasets

Response body:

[
{
"id": "test1",
}s
{
"id": "test2",
}s
{
"id": "test3",
}s
]
GET /idsbdatasets/last

Returns the identifier of the last BoundaryDataset stored

Example: GET http://example.com/idsbdatasets/last

Response body:

"id": "test3",

70


http://example.com/boundaries/P1P2P3
http://example.com/idsbdatasets
http://example.com/idsbdatasets/last

APl Resources (Cell Dataset)
GET /cdatasets

Returns all CellDatasets stored
Example: GET http://example.com/cdatasets

Response body:

"id": "id_1",

"cell data_set": [

{
"cellID": "PO",
"data": "test"
¥
{
"celllD": "P1",
"data": "test"
¥
{

"cellID": "P2",

"data": "test"


http://example.com/cdatasets

]
}s
{
"id": "id_2",
"cell data_set": [
{
"cellID": "So",
"data": "test"
}s
{
"cellID": "S1",
"data": "test"
¥
]
}s
]
POST /cdatasets

Insert a CellDataset
Example: POST http://example.com/cdatasets

Request body:

“id": "id_].",

"cell data_set": [

72


http://example.com/cdatasets

"celliD": "PO",

"data": "test"

¥
{
"celllD": "P1",
"data": "test"
¥
{
"cellID": "P2",
"data": "test"
}

}s

GET /cdatasets/[cdatasets_id]

Returns the cellDataset with that id.

Parameters
Parameter Parameter Type Description
cdatasets_id Path CellDataset identifier

Example: GET http://example.com/cdatasets/id_1

Response body:

"id": "id_].",

"cell data_set": [


http://example.com/cdatasets/id_1

"cellID": "PO",

"data": "test"
¥
{
"cellID": "P1",
"data": "test"
¥
{
"cellID": "P2",
"data": "test"
}

GET /cdatasets/[cdatasets_id]/[cell_id]

Returns the cell with that id along with the Data associated to it, in the cellDataset with that id.

Parameters
Param o
Parameter arameter Description
Type
cdatasets_id Path CellDataset identifier
cell id Path cell identifier (Cell identifier

sequence)

Example: GET http://example.com/cdatasets/id_1/P0

74


http://example.com/cdatasets/id_1/P0

Response body:

[
{
"id": "id_1",
"cell data_set": [
{
"cellID": "PO",
"data": "test"
}
]
}s
]

PUT /cdatasets/[cdatasets_id]

Update the cellDataset with that id.

Parameters
Parameter Parameter Type Description
cdatasets_id Path CellDataset identifier

Example: PUT http://example.com/cdatasets/id_1

Request body:

"cell data_set": [

{

"cellID": "Q@",

75


http://example.com/cdatasets/id_1

"data": "test"

¥
{
"cellID": "Q1",
"data": "test"
¥
{
"cellID": "Q2",
"data": "test"
}

PUT /cdatasets/[cdatasets_id]/[cell_id]

Update the cell with that id, in the CellDataset with that id.

Parameters
P .
Parameter arameter Description
Type
cdatasets_id Path CellDataset identifier
cell_id Path Cell identifier (Cell identifier

sequence)

Example: PUT http://example.com/cdatasets/id_1/P0

Request body:

76


http://example.com/cdatasets/id_1/P0

"data": "test2"

DELETE /cdatasets/[cdatasets_id]

Deletes the CellDataset with that id.

Parameters
Parameter Parameter Type Description
cdatasets id Path cellDataset identifier

Example: DELETE http://example.com/cdatasets/id_1

DELETE /cdatasets/[cdatasets_id]/[cell id]

Deletes the cell with that id along with the Data associated to it, in the CellDataset with that id.

Parameters
Parameter Parameter Description
Type
cdatasets id Path CellDataset identifier
cell_id Path cell identifier (Cell identifier

sequence)

Example: DELETE http://example.com/cdatasets/id_1/PO

GET /cells

77


http://example.com/cdatasets/id_1
http://example.com/cdatasets/id_1/P0

Returns all cells along with the Data associated to them.

Example: GET http://example.com/cells

Response body:

[
{
"cellID": "PO",
"data": "test"
}s
{
"cellID": "P1",
"data": "test"
¥
{
"cellID": "P2",
"data": "test"
}s
{
"cellID": "Sse",
"data": "test"
3
{
"cellID": "sS1",
"data": "test"
¥

78


http://example.com/cells

GET /cells/[cell _id]

Returns the cell (or cells if it exists in different CellDatasets) with that id along with the Data

associated to it.

Parameters
Parameter o
Parameter Description
Type
cell_id Path cell identifier (Cell identifier

sequence)

Example: GET http://example.com/cells/PO

Response body:

"cellID": "PO",

"data": "test"

}s

DELETE /cells/[cell_id]

Deletes the cell (or cells if it exists in different CellDatasets) with that id along with the Data

associated to it.

Parameters

79


http://example.com/cells/P0

Parameter .
Parameter Description

Type

cell identifier (Cell identifier

cell_id Path
- sequence)

Example: DELETE http://example.com/cells/PO

GET /idscdatasets

Returns all CellDatasets identifiers
Example: GET http://example.com/idscdatasets

Response body:

[
{
"id": "testl",
}s
{
"id": "test2",
}s
{
"id": "test3",
}s
]

80


http://example.com/cells/P0
http://example.com/idscdatasets

GET /idscdatasets/last

Returns the identifier of the last CellDataset stored
Example: GET http://example.com/idscdatasets/last

Response body:

"id": "test3",

81


http://example.com/idscdatasets/last

Indice de figuras

FIGURA 1 — POLIEDROS UTILIZADOS EN UN DIGGS ...ttt eee e e eeee e e e s e s ere s eneeeeneseenesneneseeessnensene 5
FIGURA 2 - EJEMPLOS DE DGGS BASADOS EN EL MAPEO DE LAS CARAS DE LOS SOLIDOS PLATONICOS.....evevvereereerereeennens 6
FIGURA 3 - COMPARACION ENTRE LOS ESQUEMAS DEL MODELO DE REPRESENTACION VECTORIAL (A) Y RASTER (B) ...veeeee. 7
FIGURA 4 — LA PROYECCION (1,3) -RHEALPIX DEL ELIPSOIDE WGS84.......ocveeeviererierereereteereneereneeteeesessesesseseesessssensens 8

FIGURA 5 - MODELO CONCEPTUAL
FIGURA 6 — LAS DOS PRIMERAS CUADRICULAS PLANAS Y ELIPSOIDALES PARA LA PROYECCION DEL MAPA (0O, 0) -RHEALPIX.. 10

FIGURA 7 - PROCESO DE OPTIMIZACION DE UN BOUNDARY ..eeccuvviieeeeesutreeeessstrrreessssnnseesssssnsaesssssssssseessssssseesesnns 11
FIGURA 8 - ARQUITECTURA DELSISTEMA ..tttttetereteereeseresasasssununsssssssreseseessesereseessssesssesssssssssnssssssssesesseseeseseseseesessns 14
FIGURA 9 — MODELO DE ENTIDADES Y RELACIONES — BOUNDARY STORE ..cvtttteteieieiieeieieressssinnsnsnssnrsssrereeeeeseeesessesenses 16
FIGURA 10 — MODELO DE ENTIDADES Y RELACIONES — CELL STORE ..vvvvvvrereeeeererereeseeessesesssssssssnssssnssrsnereseeseesesssessessns 17
FIGURA 11 — MODELO DE IMPLEMENTACION — DOCUMENTOS DE BOUNDARY STORE .. .18
FIGURA 12 — MODELO DE IMPLEMENTACION — DOCUMENTOS DE CELLSTORE ....vvvveeeeeerrreeeeeeinrnreeesseureneeseesssseesesanns 19
FIGURA 13 — DIAGRAMA DE PAQUETES DEL SISTEIMA . .eieeeeuuuuuuuerreerrereeeeeeesesesesassessesssesssssnsssssssssssmesessesseeesassssesses 20
FIGURA 14 - DIAGRAMA DE CLASES ..vtvttrtttteieteteeeesesiesesesasassosnsssssssseseseeseesesasssssssssesessssssssssssssssssssesessseeeeessssssessns 23
FIGURA 15 - DIAGRAMA DE COMPONENTES Y CONECTORES DEL SISTEMA ...eeeeeieutireeeeeeurreeeeeesinsneeeessessssseeseessssseesesans 27
FIGURA 16 - DIAGRAMA DE SECUENCIA. INSERCION DE UN BOUNDARYDATASET ... .30
FIGURA 17 - DIAGRAMA DE DESPLIEGUE ..vuuuuuueieetetettttuusuunesaeeeeereensssssnneasseseesssesssssssnsssesessesssssssssnssnessesessssnssssnnnns 32
FIGURA 18 = API NAVEGABLE ... .uuvututtttrereeeteteteeeeeeesesesasasaasnsssssssssseseseeeseeeeesesasesssesesamassasssssssssssssesessseeeseeeseeseeanns 34
FIGURA 19 - DISTRIBUCION DE HORAS ...veveteterereeeeeeeeeseiesassnnnnnsssssssssesesesesesesesssesesesesasasassssssssssssssessesssseeeeeseeseesens 40

82


/Users/javiermartinezfernandez/Documents/UNIVERSIDAD/TFG/Memoria%20TFG%20Javier%20Martínez%20v4.docx#_Toc51614964
/Users/javiermartinezfernandez/Documents/UNIVERSIDAD/TFG/Memoria%20TFG%20Javier%20Martínez%20v4.docx#_Toc51614965
/Users/javiermartinezfernandez/Documents/UNIVERSIDAD/TFG/Memoria%20TFG%20Javier%20Martínez%20v4.docx#_Toc51614968
/Users/javiermartinezfernandez/Documents/UNIVERSIDAD/TFG/Memoria%20TFG%20Javier%20Martínez%20v4.docx#_Toc51614977
/Users/javiermartinezfernandez/Documents/UNIVERSIDAD/TFG/Memoria%20TFG%20Javier%20Martínez%20v4.docx#_Toc51614979

	Resumen
	1. Introducción
	1.1 Contexto

	2. Análisis del problema
	2.1 Requisitos
	2.1.1 Biblioteca
	No funcionales
	Funcionales

	2.1.2 API Web
	Funcionales



	3. Diseño de la solución
	3.1 Arquitectura
	3.2 Modelo de datos
	3.2.1 Modelo de entidades y relaciones
	3.2.2 Modelo de implementación

	3.3 Paquetes y clases
	Paquete dggs
	Paquete api_dggs
	3.3.1 Diagrama de clases

	3.4 Componentes y conectores
	3.4.1 Documentación de la dinámica del sistema

	3.5 Distribución
	3.6 Implementación
	3.6.1 Python
	3.6.2 MongoDB
	3.6.3 Django REST
	3.6.4 Proj.4
	3.6.5 GDAL

	3.7 Pruebas

	4. Gestión del proyecto
	4.1 Planificación e historia del proyecto
	Primera fase
	Segunda fase
	Tercera fase
	Cuarta fase
	Quinta fase
	Sexta fase

	4.2 Control de esfuerzos
	4.3 Gestión de configuraciones

	5. Conclusiones y trabajo futuro
	Referencias
	Anexos
	Anexo 1 – Ejemplos de uso de la biblioteca
	Stores
	Transformaciones

	Anexo 2 – Métodos de las clases en detalle
	rHEALPix
	CellSet
	BoundaryDataSet
	CellDataSet
	BoundaryStore
	CellStore
	DGGSShpUtils
	ShpDGGSUtils
	DGGSTifUtils
	TifDGGSUtils

	Anexo 3 – API Web (REST) del componente Grid Server (ver Figura 15)
	API Resources (Boundary Dataset)
	GET /bdatasets
	POST /bdatasets
	GET /bdatasets/[bdatasets_id]
	Parameters

	GET /bdatasets/[bdatasets_id]/[boundary_id]
	Parameters

	PUT /bdatasets/[bdatasets_id]
	Parameters

	PUT /bdatasets/[bdatasets_id]/[boundary_id]
	Parameters

	DELETE /bdatasets/[bdatasets_id]
	Parameters

	DELETE /bdatasets/[bdatasets_id]/[boundary_id]
	Parameters

	GET /boundaries
	Possible parameters

	GET /boundaries/[boundary_id]
	Parameters

	DELETE /boundaries/[boundary_id]
	Parameters

	GET /idsbdatasets
	GET /idsbdatasets/last

	API Resources (Cell Dataset)
	GET /cdatasets
	POST /cdatasets
	GET /cdatasets/[cdatasets_id]
	Parameters

	GET /cdatasets/[cdatasets_id]/[cell_id]
	Parameters

	PUT /cdatasets/[cdatasets_id]
	Parameters

	PUT /cdatasets/[cdatasets_id]/[cell_id]
	Parameters

	DELETE /cdatasets/[cdatasets_id]
	Parameters

	DELETE /cdatasets/[cdatasets_id]/[cell_id]
	Parameters

	GET /cells
	GET /cells/[cell_id]
	Parameters

	DELETE /cells/[cell_id]
	Parameters

	GET /idscdatasets
	GET /idscdatasets/last



	Índice de figuras

