
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Harmonic Change Detection from
Musical Audio

Pedro Ramoneda Franco

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Gilberto Bernardes

July 28, 2020

Harmonic Change Detection from Musical Audio

Pedro Ramoneda Franco

Mestrado Integrado em Engenharia Informática e Computação

July 28, 2020

Abstract

In this dissertation, we advance an enhanced method for computing Harte et al.’s [31] Harmonic
Change Detection Function (HCDF). HCDF aims to detect harmonic transitions in musical audio
signals. HCDF is crucial both for the chord recognition in Music Information Retrieval (MIR)
and a wide range of creative applications. In light of recent advances in harmonic description
and transformation, we depart from the original architecture of Harte et al.’s HCDF, to revisit
each one of its component blocks, which are evaluated using an exhaustive grid search aimed to
identify optimal parameters across four large style-specific musical datasets. Our results show
that the newly proposed methods and parameter optimization improve the detection of harmonic
changes, by 5.57% (f-score) with respect to previous methods. Furthermore, while guaranteeing
recall values at > 99%, our method improves precision by 6.28%. Aiming to leverage novel
strategies for real-time harmonic-content audio processing, the optimized HCDF is made available
for Javascript and the MAX and Pure Data multimedia programming environments. Moreover, all
the data as well as the Python code used to generate them, are made available.

Keywords: Harmonic changes, Musical audio segmentation, Harmonic-content description, Mu-
sic information retrieval

i

ii

Resumo

Nesta dissertação, avançamos um método melhorado para computar Harte et al.’s [31] Harmonic
Change Detection Function (HCDF). O HCDF visa detectar transições harmónicas em sinais áudio
musicais, fundamentais para a tarefa de estimativa automática de acordes dentro da Recuperação
de Informação Musical (MIR) para um vasto âmbito de aplicações criativas que vão desde a har-
monização a transformações harmónicas. À luz dos recentes avanços na descrição harmónica e
transformação do audio musical, partimos da arquitectura original do HCDF de Harte et al. para
revisitar cada um dos seus componentes, que são avaliados utilizando uma pesquisa exaustiva em
grelha para identificar parâmetros óptimos em quatro grandes conjuntos de dados musicais especí-
ficos de estilos. Os nossos resultados mostram que os novos métodos propostos e a optimização
de parâmetros melhoram a detecção de alterações harmónicas. Por 5,57% (f-score) em relação
aos métodos anteriores. Além disso, embora garantindo valores de recordação a > 99%, o nosso
outro método melhora a precisão em 6,28%. Com o objectivo de aproveitar novas estratégias
para o processamento de áudio com conteúdo harmónico em tempo real, o HCDF optimizado é
disponibilizado para Javascript e os ambientes de programação multimédia MAX e Pure Data.
Além disso, estão disponíveis todos os resultados e o código python para gerar todos eles.

Keywords: Harmonic changes, Musical audio segmentation, Harmonic-content description, Mu-
sic information retrieval

iii

iv

Acknowledgements

First of all, I want to thank my mum, my main music educator, for all my life. How can you teach
an instrument to a child as a game, without the child regarding? I find it incredible. When the
child understood it, it was too late. Thank you and dad for supporting me in every single moment
of my life. I don’t know what I’d do without you.

Many people would say I shouldn’t put this here, because in the future this dedication may
be blown away. However, it will be a reminder of everything we have lived. Thanks to Maria
Valentina for supporting and inspiring me while I was doing all this work. Especially during
the quarantine, I know that sometimes I am unbearable. I hope that you never get tired of my
unbearably because I don’t think I will get tired. And thank you also for all the help you gave me
in making the graphics for this dissertation and the paper.

I especially want to thank Gilberto Bernardes. You suddenly received an Erasmus student from
another university who spoke english badly and about which you had no obligation. And you gave
him a very cool project, you helped him in everything you could and more, and you gave him all
the opportunities he needed. Hats off, I’ve learned more from you than most of my professors. If
I’m ever a teacher, I want to be like you. Even if we’re not together next year, I know I have a
mentor and a friend in Porto.

Thank you to my family in special to my grandma and Valentina to stay always there with me.
To my other family, to all my childhood friends who are my friends now, thanks to God. For all,
these years, for supporting me in every moment. For tolerating me, for studying two degrees at the
same time, for your jokes and for your stickers. Thanks in particular to Alberto, Edu, Andrés and
Carlos for helping me with my bad English in this dissertation. Also to all the friends I’ve made
this year, Koreans, Laura and Pollo, my little kid, because our story doesn’t end here. This year
has been a great year.

Last but not least, Thank you to all the teachers who have taught me throughout my life. To
those at the professional conservatory and the school. A lot of engineering teachers and very few
from the superior conservatory. For all those who have learned and made me who I am, as a
musician and an engineer. Thanks to the European Union for believing that the Erasmus do serve
a purpose. And thanks to music and art, for making me enjoy myself and being the engine that
moves the world.

Pedro Ramoneda

v

vi

“Music, I feel, must be emotional first and intellectual second.”

Maurice Ravel

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Approach . 2
1.4 Structure of the dissertation . 3

2 State of the Art 5
2.1 State of the Field . 5

2.1.1 Music Information Retrieval . 6
2.2 Fundamentals of Harmony: A Music Theory Perspective 6
2.3 Audio Content-Based Processing . 14
2.4 Harmonic Description of Musical Audio . 17

2.4.1 Spectrogram . 18
2.4.2 Chromagram . 18
2.4.3 Tonal Spaces . 21

2.5 Harmonic Change Detection . 26
2.5.1 Harmonic Change Detection Function in Musical Audio 27
2.5.2 Detecting harmonic change in musical audio 28
2.5.3 Harmonic Change Detection for Musical Chords Segmentation 29

3 Revisiting Harmonic Change Detection 31
3.1 Preprocessing . 32
3.2 Chromagram . 34
3.3 Tonal Space . 37
3.4 Smoothing . 38
3.5 Distance calculation . 38
3.6 Adaptive Thresholding . 38

4 Evaluation 39
4.1 Datasets . 41
4.2 Technical Architecture: Implementing an Efficient Grid-Search Method 41
4.3 Results . 46
4.4 Visualizing Harmonic Change Detection Function 51

4.4.1 Visualizing f-score results . 51
4.4.2 Visualizing recall results . 54

ix

x CONTENTS

5 Applications of HCDF 59
5.1 Automatic Chord Recognition . 59
5.2 Creative applications . 60

5.2.1 Audio Visualizations . 60
5.2.2 Musical Audio Harmonization: D’accord 61

6 Conclusions 63
6.1 Original Contributions and Model Implementations 63
6.2 Further work . 64

A Anexo 67
A.1 Python library . 67

A.1.1 README . 67
A.1.2 CODE . 68

A.2 Javascript library . 87
A.2.1 README . 87
A.2.2 CODE . 87

References 99

List of Figures

2.1 Chromatic scale with intervals from Do (C). 9
2.2 Illustrative example of how to build chords adding thirds. 9
2.3 Different types of chords. 11
2.4 Different notations comparison. 12
2.5 Traditional circle of fifths diagram. 13
2.6 Example of typical spectrogram. Computed with librosa [47]. 18
2.7 Chomagram. A 12-pitch-class circular array for modelling chords and harmony. 19
2.8 Different chromagrams for an A major chord. 20
2.9 Traditional Tonnetz representation. 21
2.10 Shepard Helix representation. 22
2.11 Spiral Array. A mathematical model for modelling harmony. 22
2.12 Different intervals that can be measured in Elaine Chew Spiral Array. 23
2.13 Generalized Tonnetz Plane. 23
2.14 Generalzied Tonnetz modelled as a toroid . 24
2.15 Symbolic C major chord in all DFT components of TIV. Image edited from Gilberto

Bernardes website. 25
2.16 Incrementing one semitone of Symbolic C major chord. Visualization of all DFT

components of TIV. Image edited from Gilberto Bernardes website. 26
2.17 Illustrative example of an “ideal” HCDF. 27
2.18 Processing blocks of the HCDF. 28

3.1 HCDF diagram. 31
3.2 Preprocessing block diagram. 32
3.3 FFT (left) spectrogram and Constant-Q transform (right) spectrogram. Computed

from librosa [47] trumpet audio example. 33
3.4 Short Fourier Transform chromagram CSTFT pipeline diagram. 35
3.5 Constant-Q Transform chromagram CCQT pipeline diagram. 35
3.6 Harmonic Pitch Class Profile chromagram CHPCP pipeline diagram. 36
3.7 Non-Negative Least-Squares chromagram CNNLS pipeline diagram. 36

4.1 Rate of harmonic changes per dataset. Standard deviation of the rate of harmonic
changes is reported in the error bars. 40

4.2 Diagram of distributed architecture. 42
4.3 Diagram of layers about each node. 43
4.4 Database entity/relationship model. 44
4.5 Final database diagram. 44
4.6 Typical false positives caused by bass and percussive sounds. 47

xi

xii LIST OF FIGURES

4.7 Subjectivity in annotations. Beginning of The Beatles’ song Please Please Me.
Score and HCDF diagram over spectrogram. From 2 to 11 every boundary is a
false positive. The numbers are in the same temporal position on the score as on
the spectrogram. 50

4.8 HCDF diagram. First 60 seconds of Please Please Me. Best f-score result of grid
search HCDF . 51

4.9 HCDF diagram. First 60 seconds of Please Please Me. Best f-score result of grid
search HCDF without HPSS method in preprocessing block 52

4.10 HCDF diagram. First 60 seconds of Please Please Me . Best f-score result of grid
search HCDF without tonal model. 52

4.11 HCDF diagram. First 60 seconds of Please Please Me. Best f-score result of grid
search HCDF with W (h) as a tonal model. 53

4.12 HCDF diagram. First 60 seconds of Please Please Me. HCDF with parameteri-
zation adopted from best recall result of grid search. 54

4.13 HCDF diagram. First 60 seconds of Please Please Me. Best recall result of grid
search HCDF without HPSS preprocessing block. 54

4.14 HCDF diagram. First 60 seconds of Please Please Me. Best recall ranked HCDF
parametrization without Tonal Space. 55

4.15 HCDF diagram. First 60 seconds of Please Please Me. Best recall result of grid
search HCDF with W (h) as a tonal model. 56

4.16 HCDF diagram. First 60 seconds of Please Please Me. Best recall ranked on grid
search HCDF with Cosine ξ cos

n } as a centroid distance. 56

5.1 Some music industry visualization systems. 61
5.2 D’accord desktop interface. Diagram extracted from Gilberto personal site. . . . 62

6.1 Evolution of the chromagrams depending on the rate of harmonic change. 65

List of Tables

2.1 Number of semitones and corresponding interval name. 8

4.1 Algorithms and parameters evaluated in the grid search method 39
4.2 HCDF evaluation indicators for the best f-score and recall methods across the four

datasets understudy, to which we compare with previous methods. The average is
computed over all pieces. 48

4.3 Experimental results for HCDF peaks compared with hand labelled chord changes
for 16 Beatles Songs (songs arranged in chronological order of release date).
Please Please Me (1), Do You Want To Know A Secret (2), All My Loving (3), Till
There Was You (4), A Hard Day’sDay’s Night (5), If I Fell (6), Eight Days A Week
(7), Every Little Thing (8), Help! (9), Yesterday (10), Drive My Car (11), Michelle
(12), Eleanor Rigby (13), Here There And Everywhere (14), Lucy In The Sky With
Diamonds (15), Being For The Benefit Of Mr Kite (16). 49

xiii

xiv LIST OF TABLES

Abbreviations

HCDF Harmonic Change Detection Function
SMC Sound and Music Computing
MIR Music Information Retrieval
ACR Automatic Chord Recognition
HPSS harmonic percussive source separation

xv

Chapter 1

Introduction

The search for a mathematical basis in musical harmony has been a constant quest for thousands

of years [23, 67, 68, 69, 44]. Ancient Greeks [26] believed music could be used as a tool to under-

stand the natural world, an approach that has been sustained ever since1. Over the last two decades,

information technologies have had a substantial impact on the newest findings. The computational

processing of harmony has become a standard methodology across many disciplines, from mu-

sicology to audio signal processing. The topic under discussion in this dissertation, harmonic

changes when chords change in time are understood from a Western perspective although this in-

formation is simpler in symbolic manifestations of music, such as a musical score, the retrieval of

such information from audio poses significant challenges [35].

1.1 Motivation

In my longstanding classical piano studies, polyphony, and in particular harmony, has been instru-

mental in my formal education. Harmony can be regarded as a foundation part of music theory,

composition, formal analysis, ear training, and choir, to cite a few.

On a broader scope, harmony is a central concept in Western music. It is distinctive to the

composers’ and artists’ style, and as such, its importance while performing, improvising, and

composing must be recognized. In the current view of computational creative tasks, where the

computer is assuming a somewhat active role, harmonic change detection or, in other words, audio

signal segmentation at the change of a chord, is the first phase for addressing a computational

understanding of harmony.

Harmonic change detection has been addressed in the literature for the past two decades, in

Sound and Music Computing (SMC) and Music Information Retrieval (MIR). Hainsworth et al.

[28] and Harte et al. [31] are the main contributions to this problem. This work continues a line of

1Project Cosmos tries to model musical structures embedded in cardiac arrhythmias http://cosmos.ircam.fr

1

http://cosmos.ircam.fr

2 Introduction

research of the Sound and Music Computing Lab at FEUP/INESC TEC on harmonic modelling,

namely on the perceptually-inspired harmonic representation Tonal Interval Space [4, 6, 7, 61].

In Music Information Retrieval (MIR), the field of scientific research in which this dissertation

can be framed, Harmonic Change Detection is a fundamental block in much Automatic Change

Detection Recognition (ACR) algorithms. Hence, it is crucial to many tasks such as Cover Song

Identification, Structural Segmentation, Genre Classification or Music Generation. Moreover, it is

likely to provide many future applications, ranging from technical to creative tasks.

1.2 Objectives

The main objective of this dissertation is to revisit harmonic change detection from musical audio,

a fundamental phase in the classical MIR task, automatic chord recognition. Furthermore, it can

support various creative-related tasks associated with harmonisation, and other harmonic-related

audio transformations, where a chord segmentation is needed. Aiming to improve current state-

of-the-art methods for harmonic change detection, we will follow three specific goals:

1. To investigate the use of the Tonal Interval Space as a perceptually-enhanced representation

for chord distances.

2. To perform a critical quantitative assessment of the state-of-the-art methods for the multiple

component modules of the HCDF by Harte et al. [31], namely inspecting methods than have

been recently proposed in the literature, such as novel chromagram representations and the

adoption of harmonic percussive source separation.

3. Focusing on particularly challenging musical examples and genres and trying to avoid over-

fitting problems. In the previous researches [31, 21], only the 16 songs presented in the first

article [21] were taken into account. The use of small datasets can lead to significant biases,

making it impossible to generalise the model to any musical audio, even to generalise the

model to musical audio with the same genre as the 16 songs.

4. To explore visualisations and mining techniques which can promote better computational

musicology and retrieval tasks in large audio datasets.

1.3 Approach

To meet the objective defined in Section 1.2, we established a methodological path which covers

the following phases. To address the purpose, first of all, we will revisit the HCDF proposed by

Harte et al. [31]. Specifically, we consider multiple parameterisations in its component modules,

and we examine the implication of different tonal spaces. In particular, the recently proposed Tonal

Interval Space by Bernardes et al. [4] in improving a perceptual spatial representation of tonal

pitch. Several elements of Harte et al.’s original pipeline have been improved during the last 15

years, and in this dissertation, we test them, as well as we try to bring possible new improvements.

1.4 Structure of the dissertation 3

Moreover, Examining HCDF on different genres and with various settings could produce new

research outputs and allow us to understand better the method. Datasets of different genres were

proposed by Harte et al. 15 years ago. Given that it is possible to understand how HCDF works

across various genres, we believe it is possible to develop a robust generalized HCDF method.

Another objective is comparing different tonal spaces and their performance in different sce-

narios and analysing how the different blocks of the pipeline and parameterizations relate to each

other. As it is stated in objective 3, it is important to make a critical analysis from a more mu-

sical perspective of how the algorithm works. We use a musicological approach with the aim to

understand concepts already existing in western music.

To sum up, in general, the conducted research seeks to ascertain whether the Tonal Interval

Space, a novel mathematical framework which captures perceptual affinity in tonal pitch as dis-

tances, outperforms the current state of the art in harmonic change segmentation and function

analysis.

1.4 Structure of the dissertation

The following paragraphs try to give an overview of how this dissertation will be organised. In this

first chapter 1, we have made a small approximation of why and how we are going to approach to

harmonic change detection.

In Chapter 2, we will deal with everything that has been done in the field of the study of

harmonic change, starting with the approaches from the Music Technology field. And all the

background on which it is based, that is, technological, musicological or cognitive. The previous

proposals and structures will also be dealt with to try to analyse harmony automatically.

In Chapter 3, we will analyse all the new possibilities that we propose to extend the pipeline

proposed by Harte et al [31].

In Chapter 4 shows how the problem has been solved from a more technical perspective. After

this, we will analyse the results obtained from a data mining and musicology perspective.

In Chapter 5, we propose application scenarios for harmonic change detection. Finally, in

Chapter 6, we review everything that has been done in this dissertation, and we propose what is

going to be done in the future.

4 Introduction

Chapter 2

State of the Art

The computational processing of musical harmony has been a topic of interest since the early days

of computer music [87, 43, 81]. Over the last 20 years, we have witnessed the creation of many

associations and communities at the intersection of computing and music, such as as the Sound

and Music Computing Network and the Society for Musical Information Retrieval. Not only these

societies have vastly incremented the visibility of this area, but also have promoted international

venues for the dissemination and discussion of research outputs. Like many other areas, the growth

of music technology is due mainly to the evolution of computing, information technologies, signal

processing, artificial intelligence, machine learning and, in recent years, deep learning. On the

other hand, the longstanding musicological tradition has equally responded with different methods

and approaches with access to computational advances. Computational musicology is a branch of

the early musicological area that exists at the intersection between music and technology [20, 48,

17].

2.1 State of the Field

In the early 1950s, a dedicated group of composers, engineers and scientists began to explore

the use of new digital technologies to create new types of music. Music and technology have

had a fruitful history ever since. Many terms, such as computer music and music technology,

have been used for what today is commonly referred to as sound and music computing [74].

In 1974, it was established the International Computer Music Association and the International

Computer Music Conference. In 1977, the Computer Music Journal was founded. The Center

for Computer Research in Music and Acoustics (CCRMA) at Stanford was created in the mid

1970s, and the Institute for Research and Coordination Acoustic/Music (IRCAM) in Paris was

established shortly after, as the principal department of the Pompidou Center. These two centres,

together with the nowadays inactive composition department of Princeton University, lead research

in music technology throughout the 20th century. Over the past 25 years, many other centres have

5

6 State of the Art

emerged throughout the world, with different proposals and objectives, trying to bring together

music and technology. Such is the case of our laboratory, the Sound and Music Computing group,

at the Faculty of Engineering of the University of Porto (FEUP) and INESC TEC.

2.1.1 Music Information Retrieval

Music Information Retrieval (MIR) is the interdisciplinary application of information retrieval

to music. MIR is part of the Sound and Music Computing (SMC) field, that encompasses all-

new technologies applied to music. It is one of the most fruitful fields within SMC over the last 20

years. MIR is a small but growing field of research with many real-world applications ranging from

multimedia apps to recommendation systems in big streaming companies. The MIR community

includes experts in musicology, psychology, cognitive sciences, music, data science, digital signal

processing, machine learning, theoretical computing, and some combination of these, making it

a very interdisciplinary field. It covers a lot of topics, such as audio beat tracking, automatic

chord recognition, audio classification tasks (e.g., genre, year, composer, and mood), cover song

identification.

MIR tasks which aim to extract information from audio signals, such as the topic under re-

search in this dissertation, have captured a lot of attention from the community. The challenge to

abstract higher-level information from audio signals is due to the low-level representation of audio

signals.

On the specific domain of harmony, extracting relevant information from audio promotes im-

portant lines of research within MIR such as structural segmentation, score following, audio cover

song identification, audio chord estimation, audio melody extraction, automatic multiple funda-

mental, and automatic chord recognition.

SMC uses multi-disciplinary methodologies across the technological, scientific and artistic

domains. Furthermore, SMC shares common objectives with many other fields of knowledge,

such as the relationship between perception and action and the integration of different human

senses in the way of relating to machines, both individually and collectively [62, 86, 8].

The scientific and technological outputs aim at modelling, measuring, analysing and creating

music technology tools. Artistic methodologies focus on exploring human experience, aesthetics

and expression. Art and technology can enhance each other [75].

2.2 Fundamentals of Harmony: A Music Theory Perspective

In this section, we review concepts and terminology deeply rooted in Western music harmony as

backgroud for the remainder of the dissertation.

In music, the study of harmony involves chords and their construction, as well as chord pro-

gressions and the connecting principles that carry them out. Harmony is the combination of notes

simultaneously to produce chords and successively, to produce chord progressions. The term is

used descriptively to denote combination of chords and notes, and prescriptively to denote a system

2.2 Fundamentals of Harmony: A Music Theory Perspective 7

of structural principles governing their combination. In the latter sense, harmony has its own body

of theoretical literature, as is defined in the New Grove Dictionary of Music [50]. In Riemann’s

theory of harmonic function, harmony is the essence of all chords having a likehood function, and

thus exists at a much more abstract level than chords with their inversions and notes ‘foreign to

the harmony’. This last definition fits with the computational approach made in this dissertation.

It should be noted that the concept of harmony refers to the structure of the intervals and their

combinations or chords and their relationships, not so much to the structure of the piece itself as

explained below.

Harmony: Other points of view
Apart from the purely musical perspective discussed in the previous section, the topic of har-

mony has been analyzed from other points of view. This section covers them other points of view.

McDermott and Oxenham [45] present a study about music and pitch from a perceptual per-

spective; they propose the need of a new way to represent chords from a neurological perspective.

In their research, they argue that in some pitches cases listeners perceive the different pitches in-

dividually, whereas in other cases they perceive pitches as a composited sound. McDermott and

Oxenham proposed that chords with more than 3 notes are perceived as a composited sound by

most listeners.

In [45] they explore consonance from a neurological perspective as well. Consonance is an-

other widely studied property of chords. From a Western perspective, there is consonance when it

is pleasant for the listener, and dissonance (non-consonance) when there is no pleasure for the lis-

tener. From Helmholtz dissonance theory, the dissonance is very related to beating or fluctuation

of the amplitude of superposition of two tone’s partials with adjacent frequencies. This theory is

very extended among string musicians, and it is a popular way to tune.

For harmonic sounds, the pitch is a perceptual correlate of tonotopic representations that are

observed from the cochlea to the auditory cortex. This part of the brain allows us to understand

quickly the fundamental partial (F0) discriminating the remaining partials. This phenomenon

enables humans to sense music as we do. Humans have an inherent pitch relative ear skills from a

young age, but these skills are not too much studied, it is said in [45].

In the context of MIR, harmony is a fundamental search, in many domain areas as Audio

Chord Estimation (ACE), Audio Cover Song Identification, Audio Key Detection, Discovery of

Repeated Themes and Sections or Structural Segmentation. ACE software systems process audio

recordings and predict chord labels for time segments. One of the current objectives is to incor-

porate the knowledge of music and neurology into the existing methods of machine learning and

deep learning applied to music.

Notes
A note is the symbol used to represent the duration of a sound and, when it is on a music

pentagram, to indicate the pitch of the sound. Notes are the basic musical unit defined by a height,

a duration, an intensity and an instrumental timbre. The note concept helps us to understand music

in terms of harmony, rhythm, melody, etc. However, the sound reality is more complex than the

parameters expressed in the notes; tensions, artist performance, even partials and other parameters

8 State of the Art

presented in a musical sound are very important too. From this section’s perspective, we are

focusing on the symbolic way. Discrete symbolic information of western music representation

allows people to understand a complex phenomenon such as music or harmony.

Interval

Interval is the difference in pitch between two sounds [63]. However, the term used in this dis-

sertation is contemplated from a western tempered music system and with a symbolic perspective.

In this system, intervals are noted with two names. The first name is the distance in absolute notes

(with no count of sharps and flats) taking in count in which key is contained this interval. The

second name is a traditional notation in classical music for representing the number of semitones,

as is shown in Figure 2.1. As it can be seen in Figure 2.1 each number of semitones have two

possible nomenclatures. That is because the same interval can be represented in different ways on

the score being different names first.

Number of semitones Name of interval
0 Unison
1 Minor second, Augmented unison
2 Major second, Diminished third
3 Minor third,Augmented second
4 Major third,Diminished fourth
5 Perfect fourth, Augmented third
6 Tritone|Diminished fifth, Tritone|Augmented fourth
7 Perfect fifth, Diminished sixth
8 Minor sixth, Augmented fifth
9 Major sixth, Diminished seventh
10 Minor seventh, Augmented sixth
11 Major seventh, Diminished octave
12 Octave|Perfect octave, Augmented seventh

Table 2.1: Number of semitones and corresponding interval name.

We name root the first note from which the interval is counted. An interval is said to be an in-

version of another interval if it is obtained from it by subsequently moving notes one octave above

or below. There is a set of rules to compute the name of the inverted interval from the name of the

original one. For example, if the first name of the interval changes after the inversion procedure,

the second name changes according to the rule: major and minor are exchanged, augmented and

diminished are exchanged, and perfect keeps.

Moreover, major and perfect intervals are the intervals presented between the tonic note and

any note of the scale, as is shown in Figure 2.1 with C major as an example.

2.2 Fundamentals of Harmony: A Music Theory Perspective 9

Figure 2.1: Chromatic scale with intervals from Do (C).

Chords
A chord is the simultaneous sounding of two or more notes. In other words, a set of three or

more notes that form structure by overlapping their sounds directly, indirectly (as an arpeggio) or

a mixture between these two methods. Whereas melody implies the horizontal aspect of music,

harmony refers to the vertical dimension of music

A chord is a fundamental structure to perceive more high-level music structures. It tries to

explain the behaviour and relationships of various sounds at the same types. Throughout history,

several chord notations have been developed, and different types of compound sounds and their

relationship have been theorized between different chords (chord progressions). All of these topics

will be discussed below.

Chord Types
There is a very large number of chords. Any superposition of sounds is a chord, even a cluster

(three adjacent notes). That is why in this section, we are going to discuss chords from a Western

musical theory in general terms. Later, this chapter will focus on chord types, which are were

related to MIR is centred [59]. All the chords are going to be named with their English/American

notation, explained in the next section.

Figure 2.2: Illustrative example of how to build chords adding thirds.

Tonal chords are formed from a note called the fundamental note or root note, usually the

lowest. The rest of the chord is compounded usually adding consecutive thirds from the root note,

as is shown in Figure 2.2. In the tonal system, chords are formed by superimposing third notes.

In the context of a given tonality or mode, a chord is named with a Roman numeral and called a

10 State of the Art

degree. This is a functional notation that forgets the particular notes of the chord and only recalls

its function on the tonality. It is not necessary for all the notes to be present in order to understand

the chord. The third or fifth, for example, can be implied. Under certain conditions (dominant

chords), the chord can be understood even if its fundamental is not present.

The type of chord depends on the intervals between the notes of the chord. Another name for

this is the quality of the chord. The major is a type of chord quality, as for example minor.

Now, let is discuss the most common types of chords, how to build them and where to find

them. The following chords are Major, Diminished, Major Seventh, Minor Seventh, Dominant

Seventh, Suspended, Augmented and Extended.

• A major chord is structured by a root note (1st), a major third (+4 semitones), and a perfect

5th (+7 semitones). An example with root note C can be found in Figure 2.3 1 chord.

• A minor chord is structured by a root note (1st), a minor third (+3 semitones), and a perfect

5th(+7 semitones). An example with root note C can be found in Figure 2.3 2 chord.

• A diminished chord is structured by a root note (1st), a minor third (+3 semitones), and a

diminished/flat fifth (+6 semitones). An example with root note C can be found in Figure 2.3

3 chord.

• A major seventh chord is structured by a root note (1st), a major third (+4 semitones), a

perfect 5th (+7 semitones), and a major 7th (+11 semitones). They can be understood as

major triads (i.e. major chord) with a major 7th on top. An example with root note C can be

found in Figure 2.3 4 chord.

• A minor seventh chord is structured by a root note (1st), a minor third (+3 semitones),

a perfect 5th (+7 semitones), and a minor 5th (+10 semitones). They can be understood as

minor triads with a minor 7th on top. An example with root note C can be found in Figure 2.3

5 chord.

• A dominant seventh chord is structured by a root note (1st), a major third (+4 semitones),

a perfect 5th (+7 semitones), and a minor 7th (+10 semitones). They can be understood as

major seventh chords with the top note lowered by one semitone. An example with root

note C can be found in Figure 2.3 6 chord.

• A sus4 chord is structured by a root note (1st), a major fourth (+5 semitones), and a perfect

fifth (+7 semitones). They can be understood as major chords with a perfect fourth instead

of a major third. An example with root note C can be found in Figure 2.3 7 chord.

• An augmented chord consists of a root note (1st), a major third (+4 semitones), and an

augmented 5th (+8 semitones). They can be understood as major chords with the top note

with going down one semitone.

• An extended sound is structured by major or minor chord with additional triads. With 7th,

9th, 11th and 13th. An example with root note C can be found in Figure ?? 8 chord.

2.2 Fundamentals of Harmony: A Music Theory Perspective 11

Figure 2.3: Different types of chords.

Chord Notation

Chords can be represented in various ways. The most common notation systems are described

by Benward and Saker [3].

Macro analysis or Plain staff notation, write the chord in fundamental position, that is, ordered

by triads starting from the fundamental note. Macro analysis is an analytical process that can be

used in conjunction with more conventional methods of analysis. Macro (meaning large) refers to

the basis of the method: to reveal the most basic function of the music. More complex patterns

look much better thanks to this technique. It gives a more general perspective of a composition

than the use of Roman numerals. All this notations are showed in Figure 2.4.

Roman numerals are commonly used in harmonic analysis to denote the scale step on which

the chord is built. In short, Capital Roman numerals are Major triads, for example, I, IV, V. Low-

ercase Roman numerals are Minor triads, for example, ii, iii, vi. Lowercase Roman numerals with
o are Diminished triads. For example, iio, viio. Capital Roman numerals with + are Augmented

triads. For example, III+.

Figured bass, much used in the Baroque era, uses numbers added to a bass line written on a

staff, to enable keyboard players to improvise chords with the right hand while playing the bass

with their left hand. In this system of musical notation, only the bass are written and the inversion

in which the chord has to be developed.

English/American notation is sometimes used in modern musicology to denote chord root and

quality. Quality defines which type of chord is describing, but it does not describe the inversion.

This type of notations is used in popular music lead sheets, fake books, and chord charts, to easily

allow musician improvise, to jam and vamp it. Chord letters are the system used Harte [29], and

it has been adopted by the MIR community [59]. English/American notation is formed following

the next rules:

• A letter (in capital letters) denoting a root note, such as D.

• An abbreviation or symbol denoting the quality of the chord (e.g. minor, aug or o) If no

symbol or abbreviation is indicated, it is understood that the chord is a major triad.

• Numbers that indicate the intervals of the highest triads on which the chord is structured,

such as 7 or 13.

• For special alterations of particular intervals of the chord, such as 5b,5# or add13.

12 State of the Art

• If the slash symbol is between two notes "/" and means that the lowest note is different from

the root. For example, C/F indicates that a C major triad with an F added to the bass should

be played.

Figure 2.4: Different notations comparison.

Chord Progressions

In a musical composition, a chord progression or harmonic progression is a succession of

chords. Chord progressions are the foundation of harmony in Western musical tradition from the

common practise era of Classical music to the 21st century. Chord progressions are the foundation

of Western popular music styles (e.g., pop music, rock music) and traditional music (e.g., blues and

jazz). The best way to study harmonic progression is to consider progressions in groups according

to the interval produced by the roots of two adjacent chords. The following general categories will

form the basis of our study of harmonic progression.

Undoubtedly the most common of all harmonic progressions is the circle progression, shown

in Figure 2.5. More than any other, this progression has the capability of determining a tonality,

giving direction and thrust, and providing order in a section or phrase of music. It is indeed the

basis of all harmonic progression [3].

2.2 Fundamentals of Harmony: A Music Theory Perspective 13

Figure 2.5: Traditional circle of fifths diagram.

Two concepts widely used in this dissertation are harmonic change and harmonic rhythm.

On the one hand, harmonic change refers to transitions from one chord to another on musical

audio. On the other hand, harmonic rhythm is the rate at which the chords change, in a musical

composition. It can be considered from a merely time perspective or from the relation of chords

per note.

Keys
In music theory, the key of a piece is the group of tones, or scale, which forms the basis of a

musical composition from classical music, through pop or rock music to traditional music. From

a reduced perspective and in relation to the chords of the 18th century onwards, the key of a piece

has been explained as the result of a reduction of the three main chords, the tonic, the dominant

and the subdominant.

The key is composed of the tonic note and its corresponding chords also called the tonic

chord. They provide a subjective sense of arrival and rest, and also have a relationship to its

nearby tonalities, its corresponding chords, and the tonalities and chords outside the group. Notes

and chords different from the tonic create different tensions, which are resolved when the note or

the tonic chord returns.

14 State of the Art

In the Western music tradition, the tonality can be in the major or minor mode. Popular songs

are usually in a particular major or minor key, and so is classical music during the period of

common practice, around 1650-1900. Longer pieces in the classical repertoire may have sections

in contrasting keys.

Modulations

In music, modulation is the change from one tonality (tonic or tonal centre) to another. This

may or may not be accompanied by a change in the key of the tonality, modulations structure

the form of many pieces, as well as add interest. Treating a chord as a tonic for no more than

one phrase is not considered a modulation. Modulation describes the process in which a piece of

music changes from one key to another completely.

When you start writing a piece of music, one of the first things you do is choosing a key to

compose. This choice of tonality determines which scale is used, how many sharps and flats there

are, and which chords can be used. This tonality is sometimes called the "starting tonality".

Many songs and pieces remain in this starting key and do not change. However, to make a

piece more interesting composers often change to a different key at some point in the piece. This

change is a modulation.

Musical Structure

Form in music is the result of the interaction of all structural elements. It consists of by

different phrases and periods, but structure refers as a whole, the organisation of a complete com-

position, and takes into account harmonic, rhythmic and melodic elements.

A piece of music can generally be divided into two or more main sections, and the boundaries

between these sections are called formal divisions. The formal divisions are the result of strong

harmonic and melodic cadences and rhythmic factors and have been widely studied the centuries.

Formal divisions define the sections of a composition, and these sections are labelled with capital

letters: A, B, C, etc. If a musical section is repeated, the same letter is used: A, A, B, B, etc., and

if it contains similar material, it is designated by adding cousins to the previous letter: A, A’, A",

etc. Popular songs, song and rock usually have a chorus that is repeated for example A, A’, A",

etc., and several different stanzas B, C, C’, D, etc.

2.3 Audio Content-Based Processing

Music can be represented differently, from musical scores, at a symbolic level, to the registration

of its performance, in audio formats. Audio content-based processing aims to address the latter

case and extract or abstract information, named descriptions or features, from raw audio. Au-

dio Content-based processing supports many audio-driven applications, such as automatic speech

recognition, audio segmentation, music recommendation or environmental sound retrieval. Ac-

cessing information by processing the content of an audio signal has been addressed by many

disciplines from musicology to audio signal processing to find a new way of modelling raw audio

2.3 Audio Content-Based Processing 15

as a more complex phenomenon. Content is a very used term in multimedia retrieval. In this chap-

ter, content from a music perspective is the central axis. The other term analysed in this chapter is

processing from a digital signal processing perspective.

First of all, we are going to focus on the content term. Information science and linguistics of-

fer the meaning of term content. But we are going to focus on a Multimedia perspective cover on

several past research [62, 49]. The Society of Motion Picture and Television Engineers (SMPTE)

and the European Broadcasting Union (EBU) defined content as the combination of two concepts:

metadata and essence. The essence is the raw program material itself, the data that directly en-

codes images, text, video, etc. or as in our case raw audio. Essence information can be encoded

for directly represent the actual message, and it is usually presented ordered by time. On the

other hand, metadata is the descriptors of the essence and its varieties. SMPTE/EBU presented a

classification for metadata:

• Essential (meta-information that is necessary to reproduce the essence, like the incompat-

ibilities, the number of audio channels, the Unique Identifier, the video format which is

encoded raw data, etc.).

• Access (who can access to the essence, as legal access, i.e. copyright and licenses);

• Parametric (how the essence have been captured, number of capture machine, types, location

).

• Relational (how to synchronize essence encoding, e.g. time-code).

• Descriptive (descriptors of the essence that can allow users catalogue, search, retrieval and

administration of content).

Other classification presented by the National Information Standards Organisation only con-

siders three different metadata types:

• Descriptive metadata, which describes the essence.

• Structural metadata, which describes how parts of the essence have relationships, such as

video and audio.

• Administrative metadata, which describes management information, permissions, the tier of

security, date of creation, who have accessed it.

In general, meta-data is all the information that can be retrieved from a media essence. In

other words, any information that can be annotated or extracted over a music piece in a mean-

ingful way. MPEG-7 standard has a metadata slot which is defined as a content descriptor, "a

distinctive characteristic of the data which signifies something to somebody" [39]. This approach

to music analysis has a very big problem [79, 78], the semantic-gap problem, which arises from

the discrepancy about extracted metadata and how is the metadata concept perceived by one user

16 State of the Art

in a given situation. That is why it is essential to keep the data most objectively for instancing; it

depends on the circumstance. A way to solve the semantic-gap problem is to divide metadata in a

hierarchy [10], low-level, mid-level and high-level. It is easy to understand how different a content

description of a music piece is if the targeted user was an amateur listener or an expert musicolo-

gist. The education of his designer can bias even a low-level descriptor such as the Spectral flux,

and another digital audio designer would have designed it differently.

• Low-level descriptor can be computed from raw data indirect or derived way (i.e. after

signal transformations like Fourier or Wavelet transforms, after statistical processing like

averaging, after value quantisation like the assignment of a discrete note name for a given

series of pitch values, etc.). Most of the low-level descriptors don’t have the sense from a

musical perspective. However, they can be easily computed from a computer.

• Mid-level descriptors require and induction from validated data to an abstract concept. In

this category would be ideas typically musical like chords or harmonic change derived from

other descriptors, or a Hidden Markov Model or a Deep Learning model that segment a song

by timbre similarities. Machine learning, Deep learning and statistical modelling make mid-

level descriptors possible. Mid-level descriptors are also sometimes referred to as object-

centred descriptors.

• The difference from low-level and mid-level descriptors to high-level descriptors is that the

is a subjectivity concept mixture with the technical concept. For example, piano and forte

depend on the rest of the piece dynamics and how the listener perceives it. More abstract

concepts can be retrieved from essentia as aggressivity, melancholy, dissonance, beauty, etc.

High-level descriptors are named user-centred descriptors too.

Due to a wide variety of descriptors, have been presented some frameworks to build it. The

Dublin Core and MPEG- 7 are currently the most relevant standards for music content descriptors.

The other big part of audio-content processing is processing. The formal definition is to sub-

ject a thing to a process of elaboration or transformation; however, usually denotes a functional

or computational approach to solve some scientific problems automatically. "Signal processing"

is the central processing in audio for processing and modelling it, there is another processing in-

volved as language processing, visual processing, speech processing, or knowledge processing. It

should be noted that the difference between prescription and algorithmic is functional; in process-

ing, the critical thing is not how it is done but what is achieved by doing it. And all the processing

of music is a synergy between Signal Processing, Artificial Intelligence, Information Retrieval,

and Cognitive Science to be able to process and model music.

Audio Content-Based Processing has been a growing field in music technology [49]. There are

many different descriptors developed to understanding audio as Temporal descriptors, Physical fre-

quency descriptors, perceptual frequency descriptors, Cepstral descriptors, Rhythm (modulation

frequency descriptors) eigendomain descriptors or phase space descriptors. Moreover, the state

2.4 Harmonic Description of Musical Audio 17

of research is mature and some databases can be useful in perceptual research, in music informa-

tion retrieval and machine-learning approaches to content-based retrieval in large sound databases

as some types of descriptors as timbre descriptors [60]. In addition, there are software libraries

with several audio-content processing tools, such as essentia [11], madmom [9] and librosa [47],

consolidated and supported by a large community, many of them research centres.

This dissertation covers two perspectives of audio content-based processing. The first is a mu-

sicological view. The musicological angle tries to follow the Western musical concepts developed

for years. The second is computational. Computational perspective refers to content-based audio

processing strategies, and this means that automatically give information about the musical signal

thanks to descriptors. Musically motivated ones try to imitate western musical concepts.

2.4 Harmonic Description of Musical Audio

Harmony is a very abstract concept developed from human perception [83]. Descriptors have to be

meaningful in order to generate valuable information. Melody (sequence of single pitches), fun-

damental frequency, pitch classes and chords (simultaneous combinations of pitches), and chord

progressions, harmony and key (temporal combinations of chords) are descriptors very useful for

understanding harmony [49].

The search for a robust harmonic sound representation has been continuous for the last 50

years. Harmonic features are noisy from a lot of perspectives. Musical instruments produce over-

tones summed to F0; percussive instruments and different timbres and instrumentation produce

perversions in the representation of harmony.

Harmonic content-based audio descriptors are mainly vertical (i.e., chords), however, they

have a deep relationship with horizontal part (i.e., melodic and voice-leading). Furthermore,

higher-level descriptors, such as the concept of musical key or connotations and tensions, are

in a strong relationship with mid-level harmonic descriptors. The first attempts to address the

harmonic domain was from symbolic manifestations of music such as those encoded using the

MIDI standard [16]. However, there are too many differences between the symbolic domain and

audio domain. The latter requires dedicated methods. Furthermore, attempts to translate from the

audio domain to symbolic have not been prolific [82]. Moreover, MIDI research is very biased

towards piano transcription. The search for a robust set of descriptors and structures about sound,

polyphony and harmony is central to the many MIR tasks. Furthermore, research to link harmonic

descriptors to semantic information (high-level descriptors) or even other types of information

have been essential [89].

Harmonic content-based audio descriptors on which we have focused in this dissertation are

Mid-level descriptors, such as chromagram, chords, Tonnetz based descriptors and harmonic bound-

aries. Chromagrams are one of the most used methods in the MIR field. They are a simplification

of chords, and different chromagrams have been proposed in the literature. Furthermore, the Har-

monic Network or Tonnetz is a typical representation of the relationships between harmonies in

musicology, typically attributed to Euler, used by music theorists such as Riemann and Oettingen

18 State of the Art

in the 17th century [71, 70, 57]. The generalization of this led to the spiral array created by Elaine

Chew, a mathematical model to try to understand tonality.

2.4.1 Spectrogram

Figure 2.6: Example of typical spectrogram. Computed with librosa [47].

The spectrogram is the signal representation of splitting different ranges of frequencies as a his-

togram. The result is a three-dimensional graph that represents the energy of the frequency content

of the signal as it varies over time, see Figure 2.6. It is a fundamental pillar trying to represent au-

dio. Harmony is an example too, in particular, the first step of some chromagrams as is explained

in the next section.

2.4.2 Chromagram

In what follows we detail the most used chromagrams. It includes from simpler and earlier meth-

ods for chromagram computation such as CSTFT [22] or CCQT [15], that directly map the window-

based spectral analysis from the preprocessing block into 12 chroma elements, to more robust

chromagrams such as the CNNLS [42] or CHPCP [27], which include additional processing for en-

hancing the transcription or the tunning of the representation. Figure 2.8 shows the four chroma-

grams adapted for a major chord. Moreover, other types of chromagrams are mentioned in the

following section.

One of the most prominent harmonic-content audio descriptors is the chromagram, which

accumulates the energy of an audio signal as 12-element vectors, as is shown in Figure 2.7, rep-

resenting the 12 notes of the chromatic scale across all octaves. It was first proposed in 1999 by

Fujishima [25]. Many algorithms for chroma computation have followed, such as pitch class pro-

files [25], harmonic pitch class profiles (HPCP) [27], the CRP chroma [52] or the NNLS chroma

[42]. Last Deep Learning chromagrams have attempted to get a binary chromagram with only the

notes than could be activated. Their differences stem mostly from different degrees of invariance

to a particular musical attribute (e.g., timbre) or some enhanced level of performance towards a

symbolic-based representation (e.g. harmonics or transient noise).

Short Time Fourier Transform chromagram CSTFT [22] results from mapping and accu-

mulating the energy from the frequency bins of a short-time Fourier transform representation into

their corresponding pitch class.

2.4 Harmonic Description of Musical Audio 19

Figure 2.7: Chomagram. A 12-pitch-class circular array for modelling chords and harmony.

Constant-Q Transform chromagram CCQT departs from the logarithmic scaled Constant-Q

transform as the base representation for the mapping spectral bins to the 12 pitch classes of a

chromagram. Due to its logarithmically spaced spectral basis, this chromagram is better aligned

with human perception. However, the constant-Q transform [15] is heavier to compute when com-

pared with the fast Fourier transform (FFT) used in CSTFT. Computing this algorithm with greater

robustness involves the application of CQT (via FFT) octave-by-octave, using lowpass filtered

and downsampled results for sequentially lower pitches. On the CCQT, usually, the subsampled

method and the direct FFT method are combined. In the end, the process is carried out with all the

necessary frequencies.

Harmonic Pitch Class Profile chromagram CHPCP [27] is tuning-independent and discards

the presence of noisy transients by departing from a sinusoidal component analysis of the audio

signal. The CHPCP makes a first approximation of the tuning, based on the Western well-tempered

system, to have a reference frequency. Furthermore, the accumulated energy in each pitch class of

the CHPCP is computed from the fundamental frequency and harmonically aligned partial frequen-

cies. This procedure aligns with human perception as our hearing system typically fuses these

partials into a unique auditory image.

Non-Negative Least-Squares chromagram CNNLS [42] uses a Non-Negative Least-Squares

(NNLS) optimization algorithm to approximate the transcription of the notes before the chroma

computation. In the beginning, a log-frequency DFT spectrum is computed. Later, the global

equal-tempered tuning frequency of all the piece is estimated from the spectrogram. Then, the

previous log-frequency spectrogram is recalculated using linear interpolation and taking into ac-

count the global frequency. After that, the spectrum background is calculated and removed from

20 State of the Art

Figure 2.8: Different chromagrams for an A major chord.

the above spectrum, as indicated in [42]. After the NNLS decomposition, the spectrum mentioned

above is mapped into a 12 bin chroma. Therefore, this chromagram should not have any non-tonal

components like transient noise, since it is calculated in a symbolic way.

Deep Learning chromagram CDEEP [42]. In the last few years there have been several at-

tempts to do a chromagram with deep learning. Good examples are the deep chroma extractor [37]

and crema-pcp [46].

Chroma DCT-Reduced log Pitch [52]. The general idea is to discard timbre-related infor-

mation with certain Mel-frequency cepstral coefficients (MFCCs) methods. It’s proven that the

lower MFCCs have a big relationship to the aspect of timbre. Then, this method discards the part

of the signal that is closely related to timbre (MFCC). These vectors are named as CRP (Chroma

DCT-Reduced log Pitch) features.

Chroma Energy Normalized Statistics [52]. It is a chromagram based on short-time statis-

tics over energy distributions bands, that creates a high level of abstraction about chromagram.

CENS (Chroma Energy Normalized Statistics) constitute a family of scalable and robust audio

features which have first been introduced in [53]. These features strongly correlate to the short-

time harmonic content of the underlying audio signal, and they are very robust to dynamics, tim-

bre, articulation, execution of note groups, and temporal micro-deviations. Moreover, this type of

chromagram is one of the most efficient on time cost.

Beat synchronous chromagram [1]. Another alternative of chromagram that involves the

use of centroid calculations to localise peaks on the time-frequency surface of spectrally sparse

2.4 Harmonic Description of Musical Audio 21

signals, as it is explained in [1], providing improved amplitude and frequency estimates. This

refined method estimates an accurate computation of the associated chroma values.

2.4.3 Tonal Spaces

Several tonal pitch spaces have been presented in the literature since the Euler tonnetz [23]. These

tonal spaces allow us to measure distances between sets of pitches. This distance is calculated

based on how proximate the sets of pitches are perceived, according to Western musical tradition.

Pitches, chords, and regions (or keys) are other models to describe the relationship between chords

that are used as descriptors too.

Most are based on Tonnetz, the historical inspiration for all of them. It is a conceptual lattice

diagram representing tonal space first described by Leonhard Euler in 1739 [23]. As shown in

Figure 2.9, with the Tonnetz graph is suitable to represent most of the chord types, modelling over

his space relationships (intervals) between different pitches.

Figure 2.9: Traditional Tonnetz representation.

Tonnetz is a graph model that denotes, according to the classic Western harmony, the proximity

between notes. It allows visualizing most of the chords in a geometrical way. The farther away

one is in the graph, the more perceptually it is according to the classical harmony. The horizontal

lines denote perfect fifths, the down right diagonals denote major thirds and up right diagonals,

minor thirds, as shown in e 2.9.

Later, other more complex structures that modelled more characteristics of harmony were

proposed. One of them is Shephard Helix [77] model, shown in Figure 2.10. Subsequently,

models explained in the next sections are inspired by Sephard helix.

22 State of the Art

Figure 2.10: Shepard Helix representation.

Chew Spiral Array.

Figure 2.11: Spiral Array. A mathematical model for modelling harmony.

The spiral array model [19], shown in Figure 2.11, can be viewed as a generalized Tonnetz,

which map pitches into a two-dimensional lattice (array) structure, pitches are mapped into a

continuous spiral as is shown in Figure 2.11. The spiral array wraps up the two-dimensional

Tonnetz into a three-dimensional lattice, and abstract concepts can be modeled such as chords and

keys in the interior of the lattice space. This allows us to abstract high and low structures from the

spiral array very useful for music analysis.

2.4 Harmonic Description of Musical Audio 23

For example, it is possible to model the distance between two chords in a given key. Both

are represented inside the spiral array space. Moreover, to preserve musically F# 6= Gb in, the

spiral array does not assume enharmonic equivalence, i.e. it does not fold into an only torus its

representation is like three overlapping hypertorus. There are spatial relationships between pitches,

between chords, and between keys. In Figure 2.12 is shown how is modelled the relationship

between pitches of 5th perfect, 3th major and 3th minor.

Figure 2.12: Different intervals that can be measured in Elaine Chew Spiral Array.

Tonal Centroid Space.

Figure 2.13: Generalized Tonnetz Plane.

Proposed by Harte et al. [31]. It introduces Enharmonic and Octave Equivalence, and it

reduces the set of all notes to 12 pitch classes. Tonal Centroid Space can be represented as wrap

the generalized Tonnetz plane, Figure 2.13, into a hypertorus, Figure 2.14.

24 State of the Art

TC(d) =
1

∑b |C f (b)|

β−1

∑
b=0

Φ(d,b)C f (b)

Φ = [φ0,φ1, . . . ,φβ−1]

φb =



r1 sin(b 7π

6)

r1 cos(b 7π

6)

r2 sin(b 3π

2)

r2 cos(b 3π

2)

r3 sin(b 2π

3)

r3 cos(b 2π

3)


The 6D interior space of the hypertorus, Figure 2.14, can be seen as three 2D circles: of fifths,

major thirds and minor thirds. Chords can be described by their 6D centroids in this space [31].

Figure 2.14: Generalzied Tonnetz modelled as a toroid

Tonal Interval Space.

Tonal Interval Space (TIS) proposed by Bernardes et al. [4] is a 12-dimensional tonal space in

the context of the Tonnetz [23], Chew’s Spiral Array [19], and Harte’s Tonal Centroid Space [31].

The proposed Tonal Interval Space is calculated as the weighted Discrete Fourier Transform,

as is shown in Equation 2.1 of normalized 12-element chroma vectors, which are representing as

six circles covering the set of all possible pitch intervals in the chroma space, as is shown in Fig-

ure 2.15. Each one of the six circles has been interpreted from a musical perspective by Gilberto et

Al. [4]. The contribution of each DFT coefficient (the circles in the visualization in x) is weighted

2.4 Harmonic Description of Musical Audio 25

Figure 2.15: Symbolic C major chord in all DFT components of TIV. Image edited from Gilberto
Bernardes website.

according to an empirical rating of consonance. By weighting the contribution of each circle (and

hence pitch interval) independently, we can create a space in which angular (i.e., cosine) and Eu-

clidean distances among pitches, chords, and regions concur with music theory principles [4, 61].

For example, TIV allows transposing a chord, as is shown in Figure fig:circulos2.

TIV 12-D space expands Tonnetz [23] by building a large range of pitch configurations beyond

major and minor triads. Moreover, TIV expands Chew’s Spiral Array [19] because the data of

the space is more flexible in the sense that it allows the codification of any sonority that can be

represented as a chroma vector although subject to enharmonic equivalence. Last but not least,

TIV expands to Harte’s Tonal Centroid Space [31] for including all possible intervals on one

octave.

Mathematically, multi-level pitch configuration are represented by Tonal Interval Vectors (TIVs)

T(k) in the Tonal Interval Space, chroma vector c(n) is computed by a DFT as follows:

T (k) = w(k)
N−1

∑
n=0

C̄(n)e
− j2πkn

N , k ∈ Z with C̄(n) =
C(n)

∑
N−1
m=0 C(m)

(2.1)

where N = 12 is the dimension of the chroma vector; w?(k) are weights derived empirically;

1 ≤ k ≤ 6 is adopted by discarding the symmetrical components in T (k); T (k) uses C̄(n) which

is C(n) normalised by the DC component to allow the representation and comparison of different

hierarchical levels of tonal pitch [4]. From the point of view of Fourier analysis, T (k) is inter-

preted as a sequence of complex numbers, which we can visualize in Figure 1 as six circles, each

corresponding to a complex conjugate. A musical interpretation relates each DFT component to

complementary interval dyads within an octave (m2/M7 has the real part of T (1) on the x-axis and

26 State of the Art

Figure 2.16: Incrementing one semitone of Symbolic C major chord. Visualization of all DFT
components of TIV. Image edited from Gilberto Bernardes website.

the imaginary part of T (1) on the y-axis and so on). The musical interpretation assigned to each

coefficient corresponds to the musical interval that is furthest from the origin of the plane. The

integers around each circle represent 0≤ n≤ N1 for N = 12, corresponding to the positions in the

chroma vector C(n).

Tonal Interval Space allows us to calculate two main metrics. The first metric explains the

interval relationship between pitch configurations from the Western tonal music perspective theory

principles by the cosine and Euclidean distances. The second one and most innovative aspect of the

Tonal Interval Space is the possibility to compute a descriptor of tonal consonance from euclidean

distance.

2.5 Harmonic Change Detection

The detection of harmonic changes from musical audio is a recognized task within Music Informa-

tion Retrieval (MIR). It is important in the evolution of chord recognition systems as a preprocess-

ing segmentation stage of the musical audio to detect chord boundaries [31, 28, 21]. The reason for

such endeavour is that structurally -aware feature analysis has shown to improve accuracy when

compared to the adoption of using equal -size frames [2].

To date, and to the best of our knowledge, Harte et al.’s [31] Harmonic Change Detection

Function (HCDF) algorithm and its extension by [21] is recognized as state of the art. It includes

an important harmonic representation for the tonal pitch which distorts the typical 12-element

chroma representation, denoting the energy of each of the chromatic notes. In the resulting model,

tonal pitch relations are captured as distances. The smaller the distances, the more related they are

considered. The HCDF results from the temporal evolution of these distances. For a given time

frame n the HCDF is computed from the Euclidean distance between neighbouring time frames

2.5 Harmonic Change Detection 27

n−1 and n+1, where n is the frame index from a sliding analysis window across musical audio.

Low values on the HCDF denote no substantial harmonic changes between consecutive frames.

On the contrary, high peaks values (i.e. local maxima) in the HCDF denote harmonic changes.

What exactly a harmonic change is depends on the context. For example, a harmonic change can

be a note change, a chord change, or a modulation in the musical key.

Recognizing the diversity of models and the importance of the chromagram representation and

the distortion introduced by the tonal model, as shown in [21], we advance new strategies for the

computation of these blocks in the HCDF. Namely, we inspect recently proposed chromagrams

– extensively reviewed in [42] – and the Tonal Interval Space [4, 6], which has been shown to

expand Harte et al.’s [31] tonal pith distortion model with pitch class elements beyond 5th and 3rds.

The tonal interval space adjusts weights of each interval to better match perceptual rankings of the

tonal pitch at various levels – i.e., pitch, chords and keys. We inspect a large number of parameters

in all component blocks of the HCDF and their interaction thereof on a large set of genre-specific

datasets, which not only minimize overfitting problems but also inform about the generality of the

method for musical expressions.

Figure 2.17: Illustrative example of an “ideal” HCDF.

2.5.1 Harmonic Change Detection Function in Musical Audio

The early research on harmonic change detection assumed the use of a likelihood function to

evaluate the probability of the data generated by each of the annotated songs and to apply Bayes

theorem to incorporate any prior knowledge. In this context, Hainsworth et al. [28] present a

method for detecting musical change points which are mainly harmonic and more robust to tran-

sients. Roughly, the proposed method is able to detect half of the harmonic changes from musical

audio with low computational cost and algorithmic complexity.

The algorithm proposed by Hainsworth et al. [28] consists in band-wise processing method

to extract harmonic onsets from different bands. These different bands try to represent bass, low-

mid and high-mid frequencies, with defined bands on 30-300Hz, 300Hz-1kHz and 1-5kHz . This

28 State of the Art

PreprocessingAudio

Chromagram

Tonal space

Smoothing and
distance

calculation
HCDF

Figure 2.18: Processing blocks of the HCDF.

research assumes that above 5 kHz harmonic content is not interesting generally.

2.5.2 Detecting harmonic change in musical audio

The Harmonic Change Detection Function of Harte et al. [31] aims to extract chord boundaries

from musical audio, taking advantage of the fact that distances can be measured between mapped

audios on the model proposed in Harte et al’s paper. The pitch space model projects audio in-

formation as Tonal Centroid Space cited above 2.4.3. Then it is theoretically possible to measure

the distance betweeen tonal centroids, if the distance is wider enough then a harmonic chage has

occured.

Figure 2.18 shows the four processing blocks of the Harte et Al. HCDF and the data flux

between them. Harte et al. [31] HCDF preprocessing block includes the spectral analysis of 8192

sample windows (≈ 743msec) with a 50% overlap from a mono musical audio input at 11025 Hz

sample rate. Constant-Q spectral analysis is adopted with 36 bins-per-octave across the 110-3520

Hz frequency range.

A 12-element chromagram is then extracted with the method described in [30]. Chromagrams

are then mapped to a tonal space, to enhance the perceptual representation of the harmonic content

as distances. The HCDF at a given time frame n is then computed using the Euclidean distance

between the time frame n− 1 and n + 1. Smoothed by a 17-element Gaussian function with

5≤σ ≤ 20. Finally, as shown in Figure 2.17 peaks in the HCDF are considered harmonic changes.

2.5 Harmonic Change Detection 29

2.5.3 Harmonic Change Detection for Musical Chords Segmentation

Degani et al. research [21] shows that parameterizations of different audio features with new meth-

ods proposed in the last years have a significant performance impact. In particular, in this research

cosine distance, Non-Negative Least-Squares CNNLS chromagram and Chroma DCT-Reduced log

Pitch are tested among Harte et al. first pipeline [31]. This research outputs very good results.

However, thresholding is used with a constant value over the HCDF generated by a little set of

annotated songs. If Degani et al. HCDF is tested on other types of songs then the model does not

generalize well, performing worse than Harte et al.’s HCDF.

30 State of the Art

Chapter 3

Revisiting Harmonic Change Detection

Figure 3.1: HCDF diagram.

In this Chapter, we revisit each of the component blocks of the HCDF (Figure 3.1) as defined by

Harte et al. [31] in light of the recent advances in harmonic-content description and transformation,

as well as their related signal processing methods. A comprehensive list of different algorithms

per block is considered in each of the sections of this chapter.

31

32 Revisiting Harmonic Change Detection

3.1 Preprocessing

The preprocessing stage in the HCDF is responsible for creating a spectral representation from a

time-domain audio signal (i.e., audio waveform). The audio under consideration can be either a

single song in a digital audio format, such as a .WAV or .AIFF, or can be a collection of multiple

audio files. In this section, we detail the spectral analysis and its parameterization (e.g., window-

ing, overlap) as well as a filtering processing stage which aims to enhance the harmonic content

in the digital representation using the Harmonic-Percussive Source Separation (HPSS) [24]. Fig-

ure 3.2 shows the modular algorithmic structure of the preprocessing module.

Figure 3.2: Preprocessing block diagram.

From the audio waveform representation, spectral analysis is typically done by applying the

fast Fourier transform [55], and in some particular cases, notably when required by the chroma-

gram computation, Constant-Q spectral analysis can be adopted. The Constant-Q transformation

is better adapted to human perception as its frequency representation is logarithmic. Therefore, the

lower notes are accumulated in a few frequencies while the higher the frequency the less the notes

are accumulated. This means that if the same resolution is used in the low frequencies the resolu-

tion is poor and in the high frequencies it is excessive. Since the output of the transformation is

effectively amplitude/phase versus logarithmic frequency, fewer frequency intervals are required

to cover a given range effectively, and this is useful when frequencies span several octaves. In

Figure 3.3 one can see the differences from a visual perspective the differences between FFT and

Constant-Q transform.

3.1 Preprocessing 33

Figure 3.3: FFT (left) spectrogram and Constant-Q transform (right) spectrogram. Computed
from librosa [47] trumpet audio example.

The range of human hearing covers approximately ten octaves from 20 Hz to about 20 kHz.

Therefore in music processing only this range of data has to be analyzed. The transformation

exhibits a reduction in the frequency resolution of higher frequency bins, which makes sense

from an auditory perspective. As we have alredy mentioned, the Constant-Q transformation has

a higher resolution at lower frequencies, which also comes closer to human perception. For the

lowest notes of a piano (about 30 Hz), a semitone is a difference of about 1.5 Hz, while for the

highest notes of the piano, at the 5 kHz range, a semitone can be a difference of about 200 Hz.

Therefore, for musical data the exponential frequency resolution of the Constant Q transformation

has advantages among the FFT.

In addition, the different tones structure a characteristic pattern in the Constant Q transform.

Assuming the same relative power of each harmonic, if the F0 changes, the relative position is

constant. This can help to segment instruments but also to find the fundamental sequences.

In relation to the Fourier transform, the implementation of this transformation is more com-

plicated. This is because each interval requires a certain sample rate, so the window function is

adaptive and has to vary according to the interval. Also, since the scale is logarithmic there is no

zero/DC frequency, and this can be a problem in certain cases.

Transient noise [80] is one of the biggest problems [29] in HCDF algorithms [28, 31]. This

produces sudden changes in the HCDF, as Harte mentioned on his thesis [29]. A signal is said to

have a transient noise when its Fourier expansion requires an infinite number of sinusoids [80].

On the other hand, any signal expressible as a finite number of sinusoids is called as a steady-state

signal. When there is waveform discontinuity there is a transient. However, in digital audio do-

main, to define transients is rather difficult. As stated in [80], one can ask which sounds should be

"stretched" and which should be translated in time when a signal is "slowed down"? In the case

of speech, for example, short consonants would be considered transients, while vowels and sibi-

lants such as "ssss" would be considered steady-state signals. Percussive sounds and overtones are

generally considered transients. More generally, almost any attack is considered a transient [80].

34 Revisiting Harmonic Change Detection

To this end, we consider the adoption of the Harmonic Percussive Source Separation (HPSS)

algorithm using median filtering [24] to decompose an audio signal into two harmonic and per-

cussive sources, from which we uniquely adopt the former for further processing. This step aims

to exclude transient frequencies that have a negative impact on providing an optimal transcription

of the audio signal’s harmonic content. We adopt this algorithm after donwnsampling the musical

audio and prior to the spectral audio analysis.

Different parameters for sample rate s, window size f , and overlap o, are considered in the

preprocessing of the audio files. On the one hand, latter parameters have an impact on the effi-

ciency of the system by changing the amount of audio sample data to be processed. Lower s, and

higher values f and o result in more efficient HCDF computation. On the other hand, previous

studies have shown that these parameters can have an influence on the outcomes of multiple tasks.

Windowing and downsampling are techniques widely used [51] to simplify and standardize rep-

resentations. They can be regarded as a bandwise lowpass filtering, which are used to attenuate

fast fluctuations in the features representation. Downsampling is often used to effectively increase

frequency resolution at lower frequencies, although one has to keep in mind that the maximum

frequency analyzed will be half of the sample rate by Nyquist [56]. Often, these techniques are

also used to reduce the cost of computing in exchange for the loss of information.

3.2 Chromagram

Chomagrams are pervasive across most harmonic-based audio-content description. They encom-

pass multiple variants driven from a number of proposed algorithms, as we detailed in Section

2.4.2. In the context of our work on HCDF, we have selected four representative chromagrams:

Constant-Q Transform chromagram CCQT, Non-Negative Least-Squares chromagram CNNLS [42],

Harmonic Pitch Class Profile chromagram CHPCP [27] and Short Time Fourier Transform chro-

magram CSTFT [22]. We have rejected Beat synchronous chromagram [1] because we could not

find an open source implementation available. Chroma DCT-Reduced log Pitch [52] and Chroma

Energy Normalized Statistics [52] have been rejected because they can be parameterized as the

other chromagrams, due to them being implemented with a fix filter banks. The chromagrams

implemented with deep learning have not been included in the study due to empirical character

of the grid search, data generated in this dissertation is very large, and a song processed by deep

learning takes about 160 seconds of computing time [89].

In chapter 2, a high level explanation is given of what the different chromagrams 2.4.2 are and

what they are for, from a high level. In particular those used in this dissertation: CSTFT, CCQT,

CHPCP and CNNLS. Hence, in this section the working of chromagrams will be detailed from a low

level perspective.

All the chromagram used in our research have some common parts. These chromagrams are

implemented as a lineal digital signal processing pipeline. The input of this method is a digital

audio that may have been preprocessed before 3.1. The output is a chromagram of 12 pitch classes

where the different audio frequencies have been classified.

3.2 Chromagram 35

Figure 3.4: Short Fourier Transform chromagram CSTFT pipeline diagram.

The Short Time Fourier Transform chromagram CSTFT has been widely used in the last 20

years, in [25] a full explanation can be found. The lineal pipeline of this chromagram is shown

in 3.4. The first block of this chromagram operates as a spectrogram, taking an audio input and

generating a matrix of short-time spectrum frames. The second block uses immediate frequency

estimates from the spectrogram to obtain the chroma profiles. Another option, with less compu-

tational complexity, is mapping each STFT bin directly to chroma classes, after selecting spectral

peaks. In the last block, each class profile of the chromagram is normalized.

Figure 3.5: Constant-Q Transform chromagram CCQT pipeline diagram.

The Constant-Q Transform chromagram CCQT was proposed by Brown et al. [15]. The lineal

pipeline of this chromagram is shown in 3.4 and is very similar to the previous chromagram, CSTFT.

The first block computes a CQT spectrogram, in previous section 3.1 the difference between this

type of transform and other types of Fourier transforms is explained and his musical advantages.

This first block can be calculated by a full Constant-Q transform or by a hybrid one, with a lower

computational cost. The output is also a matrix of Constant-Q spectrum frames. The second block

36 Revisiting Harmonic Change Detection

is, as the previous chromagram, mapping the spectrogram into pitch class profiles. In the last

block, as in the CSTFT pipeline, class profiles of the chromagram are normalized.

Figure 3.6: Harmonic Pitch Class Profile chromagram CHPCP pipeline diagram.

The Harmonic Pitch Class Profile chromagram CHPCP was proposed by Emilia Gomez et

Al.[27], the pipeline of this chromagram is shown in Figure 3.6. On the first block the Constant-Q

spectogram is computed from a tunning frecuency. Then, the second block removes redundant

information, first discarding frequencies beyond a low pass threshold and a highpass threshold

and later thresholding the spectrogram with a global and local (frame-wise) threshold. The third

pipeline blocks to compute the peak interpolation to obtain spectral peaks with a high resolution.

Then, in the fourth block, each of those peaks are assigned to the pitches of the octaves that were

not discarded. In the fifth block, one tries to eliminate the energy redundancies produced by the

harmonic partials. And finally, all the octaves are mapped in one octave, the Pitch Class Profiles.

Figure 3.7: Non-Negative Least-Squares chromagram CNNLS pipeline diagram.

3.3 Tonal Space 37

The last chromagram is the Non-Negative Least-Squares chromagram CNNLS. It was proposed

by Mauch et al. [42] and on that research a full description of the pipeline shown in the Figure 3.7

can be found. The first block calculates tuning from NNLS, using the angle of the complex num-

ber defined by the cumulative mean of real and imaginary values. In the second block is computed

the spectrogram, using the tuning estimated value, an approach to fundamental frequency for per-

forming linear interpolation on the existing log-frequency spectrogram with all the partials. In the

third block, a Semitone-spaced log-frequency spectrum derived from the tuned log-freq spectrum

above is computed. The spectrum is inferred using a non-negative least squares algorithm. In

the last block, three different kinds of chromagram are calculated, a treble chromagram in higher

frequencies, a bass chromagram in lower frequencies, and a combination of both.

3.3 Tonal Space

Tonal Interval Vectors, T (k), [4] extend the Tonal Space by Harte et al.’s [31] to the entire set of

complementary intervals within the 12 chromatic notes of the equal tempered pitch class space

(i.e. all complementary intervals resulting in the 12-elements chromagram representation space).

The extended vector space projects the most salient pitch levels of tonal Western music – pitches,

chords and keys – as unique locations in the space. The resulting spatial location of T (k) en-

sures that perceptually-related pitch within the Western tonal music context correspond to small

Euclidean distances [4].

Departing from a chromagram representation, C, we compute a 12-dimensional T (k) as the L1

normalized discrete Fourier transform (DFT), such that:

T (k) = w?(k)
N−1

∑
n=0

C̄(m)e
− j2πkm

M , k ∈ Z with C̄(m) =
C(m)

∑
M−1
n=0 C(m)

(3.1)

where M = 12 is the dimension of the chromagram, C; k is set to 1 ≤ k ≤ 6 since the remain-

ing coefficients are symmetric; T (k) uses C̄(m) which is C(m) normalized by the DC com-

ponent T (0) = ∑
M−1
n=0 C(m) to allow the representation and comparison of different hierarchical

levels of tonal pitch [4]; and w?(k) are weights which regulate the importance of each coef-

ficient (or interpreted musical interval) in T (k). Three sets of weights are adopted. ws(k) =

{2,11,17,16,19,7} was proposed for chromagrams driven from symbolic musical manifesta-

tions [4], wa(k) = {3,8,11.5,15,14.5,7.5} was proposed for musical audio [7] and wh(k) =

{0,0,1,0.5,1,0} provides Harte et al.’s [31]. The two former set of weights result from empir-

ical consonance ratings of dyads, used to adjust the contribution of each dimension k of the space

(or interpreted musical interval), making it a perceptually relevant space in comparison to its non-

weighted version [4].

38 Revisiting Harmonic Change Detection

3.4 Smoothing

To reduce the effects of transient frames and noise, the temporal sequence of T (k) vectors are

convoluted with a Gaussian smoothing function with 0 ≤ σ ≤ 20 controlling the the standard

deviation of the distribution, as proposed in [31]. The sequence of 12-D T (k) vectors is convolved

with a Gaussian on a row-by-row fashion.

3.5 Distance calculation

The HCDF, ξ , is then defined as the overall distance across the temporal sequence of the Gaussian

smoothed T̂ (k) vectors. HCDF at frame ξn is computed as the distance between the smoothed

vectors ξn−1 and ξn+1 (Equation 3.2). Euclidean distance ξ eucl
n and cosine distance (i.e. the phase

or angular distance) ξ cos
n metrics are considered, where:

ξ
eucl
n = ζ̂n+1− ζ̂n−1, ξ

cos
n =

〈ζ̂n+1, ζ̂n+1〉
ζ̂n+1ζ̂n+1

(3.2)

The Euclidean distance between T (k) vectors denote parsimonious movements between sonori-

ties, see [84, 66] for a comprehensive discussion on this topic. The cosine distance between the

T (k) is a good indicator of how well sonorities “mix” together. For example, it quantifies the

degree of tonal proximity of T (k) mixtures.

3.6 Adaptive Thresholding

Finally, we apply peak picking to the HCDF to identify transitions between regions that are har-

monically stable, an approach inspired by Chew’s key finding algorithm in detecting modula-

tions [19].

Degani et al. [21] in revising Harte et al.’s [31] HCDF algorithm adopts a thresholding with a

fixed value. However, it only performs well for the little dataset where they are training. They are

training his model with only the 16 songs of the Beatles to perform that great result. Harte et al.

[31] on the last mentioned paper section were already proposing that thresholdings with constant

values did not work and that more complex models were needed.

Harte et al. [31] discuss the adoption of an adaptive thresholding whose parameterization

would comply with the content of the musical audio. The reality is that some failures are structural,

but others can be solved later. Training a typical fault detector or spurious detector should not

be a complicated task if the distance generated by HCDF would contain sufficient information,

although it is outside the objectives of this dissertation.

Chapter 4

Evaluation

Table 4.1: Algorithms and parameters evaluated in the grid search method

HPSS {True, False}
Sample rate s {8000, 11025, 22050, 44100}

Window size f {1024, 2048, 4096, 8192, 16384}
Overlap o {0%,50%,25%,12.5%}
Chroma C {CSTFT, CCQT, CHPCP, CNNLS}

Tonal model T (k) {ws, wa, wh, null }
Gaussian filtering σ {1, 3, 7, 9, 11, 13, 15, 17}

distance metric ξ {Euclidean ξ eucl
n , Cosine ξ cos

n }

We evaluate the HCDF ξ function in detetcting harmonic changes from audio using all com-

binations from the proposed algorithms for each component blocks, detailed in Section 3, as well

as their parameterization and interaction. Table 4.1 lists all the algorithms and parameters under

consideration. Ultimately, the evaluation ought to inform us how the different algorithms and their

parameterization best perform in two different scenarios. On the one hand, we aim to optimize

HCDF ξ to output the highest number of recognized harmonic changes, while minimizing the

number of false positives. On the other hand, we equally aim to maximize the number of har-

monic changes recognized, regardless of the increase in false positives. Ultimately, the evaluation

ought to inform us how the different algorithms and their parameterization best perform in two

different scenarios.

To minimize overfitting when finding the best set of algorithms and parameters in computing

the HCDF ξ – mostly due to the use of a small set of audio examples for optimization [32] –, we

adopt four style-specific datasets, thus expanding the previous evaluations [31, 21] that rely on a

small set of 16 songs from a single band, the Beatles. In detail, we use the following four datasets:

MTG-JAAH [73], Queen, Beatles and Zweieck [40], which include 113, 110, 20 and 15 songs,

respectively; thus, a total of 258 songs are evaluated. The datasets cover four different genres –

39

40 Evaluation

jazz, rock, pop, and folk – , a broad range of timbres as a result of diversity in the instrumentation

and a wide range of chord change rates as shown in Figure 4.1. These datasets have been adopted

to evaluate MIR tasks, as there exist plenty of expert annotations for multiple musical structure

elements, particularly including chord labels, which are used as the ground truth to contrast with

the HCDF hits (i.e. peaks).

Figure 4.1: Rate of harmonic changes per dataset. Standard deviation of the rate of harmonic
changes is reported in the error bars.

Due to the discrete nature of the parameters under study and their deterministic relationship,

a grid search method has been adopted to inspect all possible combinations across the multiple

proposed algorithms and parameterizations. Ultimately, we aim to find the set of algorithms and

parameters that best match the ground truth annotations. We adopt dynamic programming for the

efficient computation of the grid search method, since the HCDF ξ algorithms and parameteriza-

tion under consideration share multiple processing blocks and data.

The evaluation of the quality of the hcdf has been carried out following previous studies [31],

A harmonic change match is defined within ±3 frames (≈ 278 ms) between the HCDF ξ pre-

dicted hits and the ground truth annotations. We adopt three performance measures as evaluation

indicators: (1) precision P is the ratio of hits to (correctly) detected changes, (2) recall R is the

ratio of hits to ground truth annotations of harmonic change changes, and (3) f-score F is the har-

monic mean of precision and recall providing a balanced score for the task by combining the two

previous indicators, such that:

P =
tp

tp+ fp
, R =

tp
tp+ fn

, F =
2PR

P+R
(4.1)

where tp, fp, and fn are true positives, false positives and false negatives, respectively. A true

positive is a hit in the HCDF ξ which matches a harmonic change; a false positive is a hit in the

HCDF ξ which does not match a harmonic change in the musical audio, and a false negative is a

4.1 Datasets 41

harmonic change which has not been identified a hit in the HCDF ξ .

4.1 Datasets

Datasets are fundamental in any activity within the field of Machine Learning and Data Science,

as well as in MIR. However, annotating songs, and in particular, chords, is a slow and costly

process. On the other hand, without extensive datasets, it is challenging to reach generalizations

without bias. In the field of harmonic recognition, proper chord notations are essential to general-

ize models. MIR and musicology communities have been cooperating for years to create datasets

of audio recordings with annotated chord labels. These collections are fundamental for modelling

harmony. Typically, annotations are openly available, yet the annotated musical audios is typically

unaccessible due to copyright constraints.

Isophonics. The Isophonics is a collection of datasets first promoted by Christopher Harte in

the course of his post-graduate studies at Queen Mary University of London[40] and followed by

many other researchers from various research centres. The first dataset in this collection includes

eight studio albums by The Beatles. The Beatles dataset seem quite appealing because of their

diverse structure, recording techniques and chord progressions, while also being a central part

of pop/rock culture. Moreover, the albums are readily available, and they are very well-known.

Later, the corpus was extended to include music by Carole King, Queen, Michael Jackson, and

Zweieck. However, chord annotations are limited to 113 songs for the Beatles, 7 songs by Carole

king dataset, 20 songs by the Queens and 13 songs by Zweieck.

Isophonics family is available as ".lab" files. Each line of the chord annotations in the .lab

files is divided into three columns: the first one is the instant of time when the chord begins in

seconds, the second one is the instant of time when the chord ends and third one is the chord label.

This format was proposed by Harte [29]. The format and dataset have been extensively used for

modelling and evaluating chord recognition algorithms [13, 33, 58].

MTG-JAAH is a new dataset of time-aligned jazz harmony transcriptions [75].

4.2 Technical Architecture: Implementing an Efficient Grid-Search
Method

An entire new evaluation system for computing the results of this dissertation has been devel-

oped. It has been designed to support the large amount of data required to test all the possible

parametrizations.

We adopted a grid search to tune our HCDF proposal becouse for this study not only to get the

best parametrization, the final objective is to understand how the different blocks of the algorithm

relate to each other and to different genres. Therefore, it was decided to generate a large amount

of data from the above relationships to be able to analyze them later. Moreover, in this case grid

search is an optimal search, Exhaustive-search over specified parameter values for an estimator

is an optimal search if the possible values are discrete. All the values that the different HCDF

42 Evaluation

hyperparameters can take are discrete. There are none continuous. So this kind of brute-force

search is possible. In this dissertation, all possible parameters, shown in the Table 4.1, are tested.

We adopted dynamic programming to solve the grid search over HCDF best parametrization

optimization because it was possible for reducing computation time of the grid search. Therefore,

to process the large amount of data that has to be processed, the following design decision has

been made: any element of the grid search is computed at most one time. Moreover this algorithm

have optimal substructure and Dynamic programming could be applied. Dynamic programming

means simplifying a complicated problem by breaking it down into simpler sub-problems thanks

to recursivity. The classic HCDF pipeline mimics this scenario. It has a solution tree in which

all the children share the parent nodes of the solutions. For example, when the grid search is

calculated with three different Tonal Spaces, the three possible target algorithms share the same

chromagram. So, we don’t have to calculate three times the same chromagram if it has been

calculated before. The same occurs with all the blocks of the algorithm,

The evaluation system has been designed as a distributed among heterogeneous machines has

been made to be able to process high amounts of data efficiently.

Figure 4.2: Diagram of distributed architecture.

4.2 Technical Architecture: Implementing an Efficient Grid-Search Method 43

The evaluation system has a distributed topology as is shown in this Figure 4.2. A central

node, produces different parameterization tests to be processed across the distributed computation

nodes. Each computation node stored processed data locally to run the dynamic programming

grid search. In practice, the distributed system is very heterogeneous. It consists of six different

computers, three desktop Linux and three iMacs, but it could be scaled to add more computational

capacity.

Each computation node receives the parameterization of the algorithm and the song to be

tested, performs the HCDF, evaluates the ground truth annotations and finally sends the results

to the server. Each of the HCDF pipeline blocks produces partial results when executed with a

given parameter setting. All partial results of each HCDF block computed are saved for following

computations due to the nature of the dynamic programming.

The business layer of the computation nodes, where the HCDF is calculated, is developed

in Python and Vamp. The HCDFs running in the computation nodes are the core component of

the evaluation system, as they feature the algorithms described in Chapter 3. Downsampling,

windowing, HPSS, the CCQT and CSTFT chromagrams are computed with the Librosa library [47].

The CNNLS and CHPCP chromagrams are computed with Vamp Plugins [42, 27]. Unless stated,

standard parameters were adopted.

Once a result is computed from one HCDF parametrization, it is sent to the central node to be

stored. Last but not least, all the data generated by the system can be analyzed and visualized in

the visualization client.

Figure 4.3: Diagram of layers about each node.

As shown in Figure 4.3, each type of node has a simple architecture. Both the Central Node

and the Computation Nodes have an API communication layer that allows networking with other

nodes and a middleware made on Python. The Visualization Node is built partially on SQL; and

partially, in Python and SQL as a database interface.

Data processing and collection is fundamental to the evaluation system. All the values of the

grid search are saved in the binary pickle format. In each computational node, the evaluation

44 Evaluation

metrics for the HCDF are saved in a human-readable format, namely using JSON format.

Figure 4.4: Database entity/relationship model.

All the data is sent to a Postgre SQL database, where it is stored in a structured manner in a

simple database schema, as seen in the entity-relationship model (Figure 4.4).

Figure 4.5: Final database diagram.

Final HCDF dataset is available at: https://drive.google.com/drive/folders/

1a-SzgmqPf7DmSnNaXAZM8b1MuBv1Id1A?usp=sharing. It is compound by a README.md

where its structure is explained and a directory file where all the data is available. Each file of data

https://drive.google.com/drive/folders/1a-SzgmqPf7DmSnNaXAZM8b1MuBv1Id1A?usp=sharing
https://drive.google.com/drive/folders/1a-SzgmqPf7DmSnNaXAZM8b1MuBv1Id1A?usp=sharing

4.2 Technical Architecture: Implementing an Efficient Grid-Search Method 45

includes the parametrization results for each tested song. To easily parse the data, each file is

named descriptively. The name file adopted is composed by the parametrization testes. On the

file name, each parameter of the parameterization is separated by th character ".", with the order:

HPSS, tonal model, chroma, sample rate, window size, overlap, blur and distance. For example,

in Code 4.2 the file name would be hcdf.8000.1024.0.hpcp.T(w h).sigma11.euclidean.json. Inside

the JSON file, the first eight entries are parameters with possible values defined in Table 4.1 with

the name: sample rate, window size, overlap, HPSS, tonal model, chroma, σ smoothing filter, and

distance. The JSON file includes the parametrization values adopted, followed by a list of songs

with their respective HCDF evaluation metrics (i.e., f-score, recall, precision and the harmonic

changes). Total size of the results amount to 128 GB.

{

"hpss": false,

"tonal_model": "T(w_h)",

"chroma": "hpcp",

"sample_rate": 8000,

"window_size": "1024",

"overlap": 0,

"blur": "full",

"distance": 11,

"results": [

{

"song": "01_\\-_A_Hard_Day's_Night",

"harmonic_change": [

0.0,

1.1542631509874295,

...

144.57145966117554,

146.68760877131916

],

"f_score": 0.524390243902439,

"precision": 0.6825396825396826,

"recall": 0.42574257425742573

},

{

"song": "01 A Kind Of Magic",

"harmonic_change": [

0.0,

0.37655172413793103,

...

250.21862068965518,

46 Evaluation

253.13689655172413,

257.93793103448274

],

"f_score": 0.33136094674556216,

"precision": 0.2978723404255319,

"recall": 0.37333333333333335

},

...

]

}

Visualisation scripts.

Above all, diverse functions have been implemented to find the different relationships between

the hyperparameters and between these hyperparameters and specific data, such as the mode or key

of a song. Various programs have also been built to be able to visualize either the HCDF or several

HCDFs at the same time and be able to compare them.

Different scripts have been implemented, to perform the functions explained in the following

paragraph. To measure the rate of harmonic change in all the different songs analysed and create

various visualisualizations from the data of rate of harmonic change. To set thresholds to the

HCDF to overfit it as done in previous articles or to test adaptive thresholding ideas. Or to fix

various bugs that we had during the process.

Support scripts.

Scripts have been made to populate the database with data provided by the dataset and ad-

minister it later. Tools have been implemented to save backups of the final data or to monitor

how much data was missing. Scripts have also been created to monitor if any test had not been

performed correctly.

The distributed system has been maintained through scripting and monitoring. To be able to

access each of the servers. To monitor their space availability, the lab network status and the

system status. To reboot the system or just a specific node. Or to free up memory.

4.3 Results

The complete set of results for the grid search method can be accessed online at: https://

drive.google.com/drive/folders/1a-SzgmqPf7DmSnNaXAZM8b1MuBv1Id1A?usp=

sharing. In this section, we present and discuss the results for the algorithms and parameters

which exhibit higher f-score and recall, as they play a prominent role in supporting applications

within content-based digital audio processing (e.g. analysis, retrieval, and transformation), in

detriment of higher precision. Higher f-measure provides a balanced prediction of chord bound-

aries, relevant to creative applications as harmonization [38], adaptive digital audio effects [61]

or generative visuals from music [14]. On the other hand, higher recall guarantees an excellent

https://drive.google.com/drive/folders/1a-SzgmqPf7DmSnNaXAZM8b1MuBv1Id1A?usp=sharing
https://drive.google.com/drive/folders/1a-SzgmqPf7DmSnNaXAZM8b1MuBv1Id1A?usp=sharing
https://drive.google.com/drive/folders/1a-SzgmqPf7DmSnNaXAZM8b1MuBv1Id1A?usp=sharing

4.3 Results 47

Figure 4.6: Typical false positives caused by bass and percussive sounds.

resolution as a preprocessing segmentation stage for tasks such as automatic chord recognition

(ACR) [58, 88].

Table 4.2 shows the F , P and R evaluation metrics for the overall collection under consideration

and for each dataset. These metrics are shown for the best f-score and recall results arising from

the optimal combination of algorithms and parameters in the grid search method. For comparison

purposes, we include in Table 4.2 the results from the Harte et al. ’s method as presented in [31],

which we evaluated in the grid search method in terms of best the Gaussian filtering σ parameter

only, as it remained open in the original contribution.

The total number of combinations across all algorithms and parameters conditions adopted in

each instance of the grid search method is 8890560. The best f-score results adopts a sample rate

of s = 8000 Hz, a window size of f = 1024 and a window overlap of o = 50%. Musical audio

is preprocessed using HPSS. Harmonic content representation results from CNNLS chromagram

further encoded and projected on the tonal model T (k) with wa. For computing the HCDF ξ , we

adopt the Euclidean distance ξ eucl
n after Gaussian smoothing with σ = 5. The best recall results

adopts a sample rate of s = 44.100 Hz, a window size of f = 2048 and a o = 25% overlap.

Processed harmonic content representation results from the harmonic source only from the HPSS

algorithm, which is further encoded as an CSTFT chromagram and projected on the tonal model

T (k) with wa. For computing the HCDF ξ , we adopt the Euclidean distance ξ eucl
n after Gaussian

smoothing with σ = 17.

The best f-score results in the entire collection of four datasets improve by 5,57% in compari-

son with the previous Harte et al. [31] method, with noticeable 6,28% gains in terms of recall. The

individual dataset results show considerable improvements in the Queen and The Beatles datasets,

suggesting that in lower rates of harmonic change are simpler to achieve in this type of genres. If

MTG-JAAH dataset is not taken into account in the scenario of the computing the best f-score, our

method improves by 8.29% against Harte et al. method.

The adoption of the tonal model T (k) with wa has shown to improve the results across all

48 Evaluation

Table 4.2: HCDF evaluation indicators for the best f-score and recall methods across the four
datasets understudy, to which we compare with previous methods. The average is computed over
all pieces.

Best f-score Proposed Best Recall Proposed
Dataset title F P R F P R
MTG-JAAH 63,3% 62,7% 72,2% 49,9% 35,8% 98,4%

Queen 65,2% 60,1% 75,8% 43,3% 28,5% 98,8%
The Beatles 69,1% 62,8% 81,9% 42,5% 27,7% 99,5%

Zweieck 68,6% 61,7% 81,0% 43,3% 28,0% 99,1%
Average 66,4% 62,4% 77,4% 45,6% 31,1% 99,0%

Best f-score Harte Best Recall Harte
Dataset title F P R F P R
MTG-JAAH 61,7% 58,4% 74,5% 43,5% 29,6% 99,2%

Queen 57,9% 49,7% 74,71% 37,0% 23,3% 99,7%
The Beatles 60,5% 51,0% 79,9% 36,6% 22,9% 99,8%

Zweieck 61,0% 50,8% 79,3% 35,9% 22,2% 99,4%
Average 60,8% 53,9% 77,2% 39,4% 25,6% 99,5%

F f-score P precision R recall

datasets, as they prominently appear in the best-ranked f-score and recall results from the grid

search (75 and 58 out of the 100 best-ranked parameterizations, respectively). The approximate

transcription provided by the CNNLS chromagram is equally identified in the top-ranked grid f-

score search results (98 out of 100 best-ranked grid search’s parameterizations).

Median-filtering harmonic percussive source separation filter [24] improves the f-score mea-

sure (60 out of 100 best-ranked grid search’s parameterizations). In particular, by up to 2% on the

60 cited best ranked f-score grid search results with HPSS.

Window overlap of 50% overlap provide enhanced results. Sample rates of 8000 samples

per second are enough for getting good HCDF performance. This allows, by being smaller the

window, that HCDF has a computational cost in less time (more efficient).

Harte et al. [31] HCDF parametrization proposed 15 years ago scores with lower results, as

shown in Table 4.3 than the other algorithms.

Our best results corroborate Harte et al. [31] findings that the adoption of a tonal model con-

tributes to a high recall score R at the expense of precision P. Our results suggest that the new

algorithms and parameters are better at discriminating significant harmonic changes in the signal,

while significantly reducing the number of false positives in the HCDF ξ . Furthermore, as sug-

gested in [31], these low precision scores P can be explained by the fact that the ground truth

4.3 Results 49

Table 4.3: Experimental results for HCDF peaks compared with hand labelled chord changes for
16 Beatles Songs (songs arranged in chronological order of release date). Please Please Me (1),
Do You Want To Know A Secret (2), All My Loving (3), Till There Was You (4), A Hard Day’sDay’s
Night (5), If I Fell (6), Eight Days A Week (7), Every Little Thing (8), Help! (9), Yesterday (10),
Drive My Car (11), Michelle (12), Eleanor Rigby (13), Here There And Everywhere (14), Lucy In
The Sky With Diamonds (15), Being For The Benefit Of Mr Kite (16).

Best Precision Proposed Best Recall Proposed Best Harte
Song # F P R F P R F P R
1 76% 74% 77% 52% 35% 100% 65% 53% 87%
2 73% 89% 62% 70% 54% 98% 75% 72% 80%
3 79% 74% 84% 44% 28% 100% 63% 50% 86%
4 77% 78% 76% 56% 39% 100% 71% 59% 90%
5 81% 78% 83% 50% 34% 100% 54% 45% 70%
6 87% 86% 72% 56% 39% 100% 65% 79% 53%
7 75% 74% 76% 48% 32% 100% 61% 49% 82%
8 74% 80% 69% 55% 38% 94% 56% 49% 67%
9 65% 53% 84% 35% 21% 100% 41% 29% 74%
10 70% 73% 67% 62% 45% 98% 73% 64% 86%
11 72% 67% 78% 45% 29% 100% 62% 49% 86%
12 76% 71% 81% 47% 31% 98% 66% 53% 90%
13 75% 63% 90% 35% 21% 100% 47% 34% 81%
14 81% 77% 84% 55% 38% 100% 72% 65% 83%
15 78% 76% 79% 47% 31% 99% 63% 50% 88%
16 84% 86% 82% 54% 37% 100% 79% 68% 95%
Average 75% 74% 78% 51% 34% 99% 64.9% 53% 84%

F f-score P precision R recall

50 Evaluation

Figure 4.7: Subjectivity in annotations. Beginning of The Beatles’ song Please Please Me. Score
and HCDF diagram over spectrogram. From 2 to 11 every boundary is a false positive. The
numbers are in the same temporal position on the score as on the spectrogram.

annotations only label chord changes. However, HCDF ξ is also sensitive to changes in harmonic

content caused by strong melody or bass line movements that include non-chord tones. Thus,

a high number of false positives is to be expected for this experiment and does not necessarily

denote a perceptual phenomenon.

As shown in [54] and [36], besides the high complexity of polyphonic music and the subjec-

tivity of its annotations, the adopted ground truth is not exactly prone to the task at hand from a

perceptual viewpoint, yet not only for comparative, and legacy purposes are still adopted in our

work, but also due to the importance of HCDF in supporting ACD systems. Most of the false

positives in the HCDF ξ can be seen in Figure 4.7, one could argue that the harmonic change is

correct when seen from a non-functional perspective. Indeed, a slice by slice analysis of the piece

would yield the same results as the HCDF ξ : although functionally there is a sustained E chord,

the notes that are being played at each point describe a succession of different chords, as one can

see in Figure 4.7. When the bass line moves a lot, it can generate false positives, as shown in

Figure 4.6. Sometimes similar errors can occur when quite large variations of percussive sounds

are combined with the harmony. This is solved mainly by the HPSS filter even in chromagrams

that should be robust to bass with a large number of harmonics.

If it is analyzed a small and biased dataset 4.3 as which was analyzed by Harte et al. [31]

due to not existence of datasets 15 years ago, results are very impressive. Tonal interval space

combined with CNNLS outperforms Harte et al. results in precision oriented algorithm and in recall

oriented algorithm.

4.4 Visualizing Harmonic Change Detection Function 51

4.4 Visualizing Harmonic Change Detection Function

In this section, we will discuss the HCDF departing from its graphical representation aiming to

better grasp the implication of the multiple algorithms and parameterizations proposed. To this

end, multiple visualizations for the 60 first seconds of song Please Please Me by The Beatles

using different HCDF conditions are plotted.

4.4.1 Visualizing f-score results

Figure 4.8: HCDF diagram. First 60 seconds of Please Please Me. Best f-score result of grid
search HCDF

Figure 4.8 shows the HCDF for the best f-score result from the grid search 4.3. The parameteri-

zation whose output from the grid search have been selected and applied to Please Please Me. As

it can see, in the above-mentioned HCDF diagram, the peaks represent harmonic changes. If the

peaks are higher (of greater magnitude), it means that the harmonic change is higher from a tonal

perspective. As it can be easily seen in the tonnetz diagram 2.9 thirds and fifths are closer to other

intervals between chords, moreover, Tonal Interval Space proposed by Gilberto et Al. [4] expands

the intervals recognized, as is explained in Chapter 2. Moreover, F-score measure evaluated with

ground-truth annotations is 75,3% with a balanced precision/recall; precision is 73,4% and recall

is 77.2%.

52 Evaluation

Figure 4.9: HCDF diagram. First 60 seconds of Please Please Me. Best f-score result of grid
search HCDF without HPSS method in preprocessing block

Figure 4.9 shows an HCDF with a parameterization from the best f-score result without HPSS.

This allows us to visually compare the behaviour of the HCDF when adopting the HPSS. The

HCDF parameterizations, adopts a sample rate of s = 8000 Hz, a window size of f = 1024 and

a window overlap of o = 50%. Harmonic content representation results from CNNLS chromagram

further encoded and projected on the tonal model T (k) with wa. For computing the HCDF ξ , we

adopt the Euclidean distance ξ eucl
n after Gaussian smoothing with σ = 5.

When HPSS is adopted, we can observe that the magnitude of the peaks is reduced, most

probably as the result of the lack of percussive transients. Despite the results improvement of

2% when adopting HPSS, in this particular song f-score is 76,4%, precision 71,4% and recall is

82.2%. Although the results are better the difference between precision and recall is higher.

Figure 4.10: HCDF diagram. First 60 seconds of Please Please Me . Best f-score result of grid
search HCDF without tonal model.

Figure 4.10 shows the best result for f-score without tonal space. Smoothing and distances

are computed directly on the chromagram. This HCDF parameterizations adopts a sample rate of

s = 8000 Hz, a window size of f = 1024 and a windows of o = 50% overlap. Musical audio is

4.4 Visualizing Harmonic Change Detection Function 53

preprocessed using HPSS. Harmonic content representation results from CNNLS. For computing

the HCDF ξ , we adopt the Euclidean distance ξ eucl
n after Gaussian smoothing with σ = 5.

Conversely to Figures 4.9 and 4.8, the peaks in Figure 4.10 are very homogeneous in terms

of magnitude. F-score is 72,1%, precision 67,1% and recall is 77.2%. The f-score is 10%, lower

than previous parameterizations (or visualizations), and the difference between precision/recall is

three times wider than Figure 4.8. Chromagrams with a low computational cost like CCQT or CSTFT

perform well under this set of parameters.

Figure 4.11: HCDF diagram. First 60 seconds of Please Please Me. Best f-score result of grid
search HCDF with W (h) as a tonal model.

Figure 4.11 adopts the parameterization originally proposed in Harte et al. In particular, it

adopts a sample rate of s = 44100 Hz, a window size of f = 2048 and a window overlap of

o = 25%. Musical audio is preprocessed without HPSS. Harmonic content representation results

from CSTFT chromagram further encoded and projected on the tonal model T (k) with wh. For

computing the HCDF ξ , we adopt the Euclidean distance ξ eucl
n after Gaussian smoothing with

σ = 17.

The resulting HCDF has in Figure 4.11 has less peak magnitude variance than tonal spaces

based on Tonal Interval Space w(a), as shown in the Figure 4.9 and 4.8. We believe that these

results stem from the added intervallic relations in the tonal space T (k) with ws or wa, which

promote enhanced difference in triadic harmony above the sevenths chords. In this case f-score

equals 63,7%, precision 55,6% and recall 74.68%.

54 Evaluation

4.4.2 Visualizing recall results

Figure 4.12: HCDF diagram. First 60 seconds of Please Please Me. HCDF with parameterization
adopted from best recall result of grid search.

The HCDF shown in Figure 4.12 adopts the parameterization which provides the best recall re-

sults 4.3 in the grid search method. We can easily observe the increase in the number of false

positives when compared with the best f-score results shown in Figure 4.8. To achieve these re-

sults, as discussed in Section 4.3, the ratio between windows size s and frame windows f have to

be very high. F-score results equal to 51,8%, precision decreases significantly in comparison with

f-score oriented methods with a value of 34,9%, and recall is 1,0%. The visualization shows than

every time, when there is a (gray) chord change, a detected HCDF (blue) hit exists.

Figure 4.13: HCDF diagram. First 60 seconds of Please Please Me. Best recall result of grid
search HCDF without HPSS preprocessing block.

Figure 4.13 shows an HCDF adopting the best parameterization result for recall. From the

above-mentioned parameterization, the HPSS has been removed from the preprocessing block.

This allows to visually compare the impact of the HPSS in the HCDF. Further parameterizatio

include sample rate of s = 44.100 Hz, a window size of f = 2048 and a window overlap of o =

4.4 Visualizing Harmonic Change Detection Function 55

25%. Processed harmonic content representation is further encoded as an CSTFT chromagram and

projected on the tonal model T (k) with wa. For computing the HCDF ξ , we adopt the Euclidean

distance ξ eucl
n after Gaussian smoothing with σ = 17.

Figure 4.13 shows similar behavior in false positive as the f-score visualiztion without HPSS

shown in Figure 4.9. F-score equals to 50,6% (1% lower than the HCDF shown in Figure 4.12. A

similar decreased scores in precision is observed with a score of 33,9%. However, recall is 1,0%.

For most of the recall-oriented applications, the absolute recall value is important to consider. But,

the computational tradeoff cost of leaving 1% of precision can be useful, especially in real-time

applications where lower computational cost can be a need.

Figure 4.14: HCDF diagram. First 60 seconds of Please Please Me. Best recall ranked HCDF
parametrization without Tonal Space.

Figure 4.14 shows the best ranked recall score for a HCDF without tonal space. There are sev-

eral parameterizations with no tonal model than performs with a > 99%. Most of the parameters

used to compute this visualization change in comparison to the Figure 4.12 because it is searched

a perfect recall. The HCDF parameterization without tonal model that provides best recall re-

sults adopt a sample rate of s = 1050 Hz, a window size of f = 8192 and a window overlap of

o = 12.5%. Musical audio is preprocessed without HPSS. Harmonic content representation results

from CHPCP chromagram further encoded. For computing the HCDF ξ , we adopt the Euclidean

distance ξ eucl
n after Gaussian smoothing the raw chromagrams with σ = 1.

Visually, the HCDF is very are erratic. We believe that it may be due to the small value of

σ = 1. Moreover, there is not a correlation between HCDF magnitude and the type of chord

that have changed. However, rate of false positives is very similar to other recall visualizations

as Figure 4.12 and Figure 4.13. F-score equals to 46,4%, precision equals to 30,35% and recall

equals to 98.7%.

56 Evaluation

Figure 4.15: HCDF diagram. First 60 seconds of Please Please Me. Best recall result of grid
search HCDF with W (h) as a tonal model.

Figure 4.15 shows the best ranked HCDF with recall oriented optimization and T (k) with wh,

i.e. the weights proposed by Harte et al. [31]. The HCDF parameterization, adopts a sample rate

of s = 44100 Hz, a window size of f = 1024 and a window overlap of o = 100%. Musical audio

is preprocessed without HPSS. Harmonic content representation results from CHPCP chromagram.

For computing the HCDF ξ , we adopt the Euclidean distance ξ eucl
n after Gaussian smoothing with

σ = 9.

HCDF behaves similarly to Figures 4.12 and 4.13. Moreover, it has more smooth curves than

Figure 4.14. F-score performs similar to other HCDF parameterizations with a 50,48% value.

Precision equals to 33,9% and recall equals to 98.73%.

Figure 4.16: HCDF diagram. First 60 seconds of Please Please Me. Best recall ranked on grid
search HCDF with Cosine ξ cos

n } as a centroid distance.

In the top ranking recall results of the grid search, we can find several parameterizations adopt-

ing the cosine distance ξ cos
n } 1. The top ranking HCDF result adopting cosine distance ξ cos

n }

1In the f-score comparison no visualizations of the algorithm with cosine ξ cos
n } distance are included because they

perform not at the top of the grid search rank for f-score.

4.4 Visualizing Harmonic Change Detection Function 57

is shown in Figure 4.16. The HCDF adopts a sample rate of s = 22050 Hz, a window size of

f = 16384 and a window overlap of o = 12.5%. Musical audio is preprocessed using HPSS. Har-

monic content representation results from CHPCP chromagram further encoded and projected on

the tonal model T (w) with wa. For computing the HCDF ξ , we adopt the Euclidean distance ξ eucl
n

after Gaussian smoothing with σ = 1.

This representation is very illustrative, chords that are “perceptually” related have a small

HCDF magnitude and less related chords follow the opposite trend (i.e., larger magnitudes). More-

over, HCDF increments and decreases are very well defined. F-score and precision equal to 47,8%

and 31,6%, respectively, and the equals to 97.4%.

58 Evaluation

Chapter 5

Applications of HCDF

HCDF have multiple applications that range from more technical tasks within the scope of MIR

to creative-oriented applications. In this chapter, we detail three of such applications: Automatic

Chord Recognition, Audio Visualizations and Musical Audio Harmonization.

5.1 Automatic Chord Recognition

Automatic Chord Recognition (ACR) is a primary tasks within MIR which typically adopts har-

monic change detection algorithms as a preprocessing stage. To the best of our knowledge, Fu-

jishima [25] published the first system for ACR in 1999. Since then, multiple approaches have

been proposed ranging from first knowledge-based systems to data-driven methods using deep

learning architectures [58].

ACR was initially solved in a knowledge-based approach, by trying to approximate audio

fragments to a template [25]. Nowadays, knowledge-based approaches such as the Tonal Inter-

val Space [4] are still being tried for modeling harmony. The data-driven approaches has been

predominant in recent computer science literature [12, 90]. This dissertation explores a data-

driven approach for understanding the different HCDF parameterizations. In the previous five

years, many proposals in MIR and SMC have been proposed from a data-driven approach. From

more sophisticated chroma features to learnt Gaussian chord models. In ACR attacked from Deep

Learning, pipelines become blurred as systems are more monolithic, as is shown in [46].

Probabilistic models such as Hidden Markov Models [18, 76, 85] or dynamic Bayesian net-

works [65, 41] have been the primary algorithms to integrate other musical concepts with chord

detection, such as key, genre, bass or melody. However, these systems have many false positives

because the chord labels do not align well with the real chord boundaries ?? and this problem

is the one that HCDF focuses on. The musical concept most close to chord is key. In pop and

rock music genres, some chords are very much probable than others, once we know the key of the

analysed audio. These probabilities can be data-driven even deep learning models can be trained

59

60 Applications of HCDF

with this information [33, 13]. Another target is to get an ACR system close to functional harmony

analysis, which has a higher information density [72], although this representation does not have

demonstrated benefits in ACR.

HCDF is usually adopted early in the ACR algorithmic pipeline. It aims to segment the signal

into structurally-aware units (or chord boundaries). Recent state-of-the-art methods for ACR use

deep-learning architectures with HCDF [88]. Related ACR literature to our work can be found in

the work [34], which adopt the Tonnetz as a base representation, in a similar fashion as the tonal

space here proposed.

5.2 Creative applications

In this section, two creative applications of HCDF will be presented: Audio Visualizations and

Musical Audio Harmonization. In order to give a robust idea of the multiple applications that

HCDF can have.

5.2.1 Audio Visualizations

Visualizations of music have been pervasive across the widely popular music players. most hu-

mans recognize visualizations of Windows media player or SoundCloud, as is shown in Figure 5.1.

However, to create these visualizations that change with music, usually, rhythm content has been

used. With the analysis of parameterization and performance over different harmonic attributes

as those detailed in this dissertation, it could be possible to expand these music visualisations

platforms. For example, HCDF peak magnitudes, denoting harmonically proximity across time,

can provide harmonically-aware segmentation and perceptually affinity across time that can be

mapped to visual settings.

5.2 Creative applications 61

Figure 5.1: Some music industry visualization systems.

5.2.2 Musical Audio Harmonization: D’accord

Another creative application that can make use of HCDF is the automatic harmonization of music.

D’accord is a representative example of a generative music system for creating harmonically com-

patible accompaniments [5]. It harmonizes musical audio by accompaniments with user-specified

number of voices, instrumentation and complexity. On the backend of the system it relies the

tonal space T (k) for harmonic-aware segmentation, key detection and harmonization. D’accord

was originally developed for Ableton Live, MAX, and Pure Data. Figure 5.2 shown the interface

of D’accord in Pure Data.

62 Applications of HCDF

Figure 5.2: D’accord desktop interface. Diagram extracted from Gilberto personal site.

An ongoing revision of the tool is under development as a web-based application. The pro-

posed method, and its javascript implementation, is supporting the harmonic change detection

from musical audio in the browser.

Chapter 6

Conclusions

In this dissertation, we revisited harmonic change detection in light of recent advances in harmonic

description and transformation. Stemming from Harte et al.’s [31] HCDF, we proposed novel

algorithms for each of their processing blocks. We exhaustively inspected the parameters that best

performs across the multiple algorithm combinations using a grid search method. We evaluated the

proposed algorithms and its parameterization on four style-specific datasets (The Beatles, Queen,

Zweieck and MTG-JAAH).

Different preprocessing strategies have been applied to vary the sample rate s, windows size

f , and overlap o, as well the adoption of harmonic-only signal decomposition from the median-

filtering HPSS algorithm. Four different chromagrams CSTFT, CCQT, CNNLS and CHPCP and the

recently proposed tonal space T (k) with weights wa, ws and wh have been tested. Finally, Eu-

clidean ξ eucl
n and cosine ξ cos

n distance metrics and 1 ≤ σ ≤ 17 values in Gaussian filtering have

been evaluated in the HCDF performance.

Our results showed that the newly proposed algorithms and parameters improved previous

HCDF computation in detecting harmonic changes. The adoption of the Tonal Space T (k) with

wa and CNNLS improved f-score and recall by 5.57% and 6.28%, respectively. An assessment of

the HCDF ξ across a significantly larger number of musical examples from multiple styles not

only improves the generality of the method for unknown musical audio sources but also suggests

the link between harmonic change rates and parameterization of the HCDF.

6.1 Original Contributions and Model Implementations

With the objective of disseminating our contribution to improving HCDF, we made available the

resulting HCDF for processing the best f-score and recall results. Furthermore, the models have

63

64 Conclusions

been developed as functions for real-time audio processing in Pure Data [64] and for offline pro-

cessing in Python 1, Javascript 2. A Javascript implementation of TIVlib 3 has been made available.

Furthermore, we also distribute a well-structured dataset containing all the resulting data from the

grid search method. It has been uploaded to Google Drive4 in a legible format, JSON.

6.2 Further work

In future work, we aim to tackle the adoption of parameters per genre (or for different rates of har-

monic changes). Moreover, we believe that an adaptive threshold for detecting the peaks (i.e. har-

monic changes) can improve the peak picking phase in detecting chord boundaries in the HCDF.

Ultimately, this should improve precision by eliminating false positives.

In Future research, we would like to improve the use of the Tonal Interval Space. For example,

to carry out Automatic Change Recognition methods on the basis of previous similar research [34].

We will develop a computationally-efficient harmonic rhythm detector. The harmonic rhythm

or rate of harmonic change is very crucial. A computer vision approach could be used, songs’

chromagrams would be as a 2d image with grey colours (energy have only one dimension). At

first sight it is possible to observe a relationship between the harmonic rhythm and the chromagram

in a song, as is shown in Figure 6.1.

1At: https://github.com/PRamoneda/HCDF.
2At: https://github.com/PRamoneda/HCDF.js.
3At: https://github.com/PRamoneda/TIVlib.js.
4At: https://drive.google.com/drive/folders/1a-SzgmqPf7DmSnNaXAZM8b1MuBv1Id1A?usp=

sharing.

https://github.com/PRamoneda/HCDF
https://github.com/PRamoneda/HCDF.js
https://github.com/PRamoneda/TIVlib.js
https://drive.google.com/drive/folders/1a-SzgmqPf7DmSnNaXAZM8b1MuBv1Id1A?usp=sharing
https://drive.google.com/drive/folders/1a-SzgmqPf7DmSnNaXAZM8b1MuBv1Id1A?usp=sharing

6.2 Further work 65

Figure 6.1: Evolution of the chromagrams depending on the rate of harmonic change.

It would be beneficial to apply neural networks to audio Transient/Steady-State separation for

processing the musical audio before applying HCDF. It would also be interesting to research the

possibility of developing a detector of spurious peaks in HCDF.

Some early experiments on the adoption of thresholding techniques in the peak picking stage

have been pursued. One of them is to use a double harmonic change detection function. First one

was optimized to generate many changes, and then the second one was over the sum of the chroma-

grams of the boundaries found by the first one HCDF. This second HCDF optimized to get the best

possible results. We would use different algorithms in each of the blocks of each of the two algo-

rithms. We understood that the overlap of the two solutions would get a better solution. However,

the results of the experimental tests were not good. Last but not least, an optimal adaptive function

could be developed through deep learning, machine learning or reinforcement learning combined

with digital signal processing. This adaptive function would improve significantly HCDF and we

will keep our research in this direction.

66 Conclusions

Appendix A

Anexo

A.1 Python library

A.1.1 README

Harmonic Change Detection Function (HCDF) library

This library is used to compute HCDF. [Here]() is described the algorithm in detail. As many of the solutions overlap partilly, all the algorithm data computed in the different blocks is saved in out folder in order to not compute same blocks parameterization two times.

Installation

Install Vamp-plugins:

- (NNLSchroma) http://www.isophonics.net/nnls-chroma

- (HPCPchroma) http://mtg.upf.edu/technologies/hpcp

Install dependencies:

```BASH

pip3 install requeriments.txt

```

Usage

The library can be imported as a module with `import HCDF`. All the functions than begins by get are blocks from HCDF

function. The rest are auxiliar functions.

HCDF.py act as script allowing the user to print to the console Harmonic Change Detection Function (HCDF)

focus on maximizing recall or f-score. It is assumed that the first command line argument is

the name file of the audio file located in audio_files and the second one is, if is focus on

recall or f-score.

Example of use

67

68 Anexo

With target on maximize f-score:

```BASH

python3 f-score file/name

```

With target on maximize recall:

```BASH

python3 recall file/name

```

References

https://librosa.github.io

https://vamp-plugins.org

https://github.com/aframires/TIVlib

A.1.2 CODE

"""HCDF python implementation

Author: Pedro Ramoneda Franco

Year: 2020

This script allows the user to print to the console Harmonic Change Detection Function (HCDF)

focus performance on recall or f-score. It is assumed that the first command line argument is

the name file of the audio file located in audio_files and the second one is if is focus on

recall or f-score.

This tool accepts comma separated value files (.csv) as well as excel

(.xls, .xlsx) files.

This script requires that `setup.py` requeriments be installed within the Python

environment you are running this script in. More over it is a need instal vamp plugins

NNLS and HPCP

This file can also be imported as a module. All the functions than begins by get are blocks from HCDF

function. The rest are auxiliar.

A.1 Python library 69

"""

import os

from os import path

import sys

from TIVlib import TIV

import librosa

import numpy

numpy.set_printoptions(threshold=sys.maxsize)

from librosa import display

from librosa.feature import chroma_cqt, tonnetz, chroma_cens, chroma_stft

from librosa.filters import get_window

from scipy.ndimage.filters import gaussian_filter

import matplotlib.pyplot as plt

from astropy.convolution import convolve, Gaussian1DKernel

from scipy.spatial.distance import cosine

from iotxt import load_real_onset, load_binary, get_name_harmonic_change, save_binary, get_name_chromagram, \

get_name_tonal_model, get_name_gaussian_blur, get_name_audio

import vamp

def get_distance(centroids, dist):

"""

Returns the quantity of centroids per second

Parameters

centroids : list of floats

The file location of the spreadsheet

sr : bool

A flag used to print the columns to the console (default is False)

Returns

float

70 Anexo

centroids per second

"""

ans = [0]

if dist == 'euclidean':

for j in range(1, centroids.shape[1] - 1):

sum = 0

for i in range(0, centroids.shape[0]):

sum += ((centroids[i][j + 1] - centroids[i][j - 1]) ** 2)

sum = numpy.math.sqrt(sum)

ans.append(sum)

if dist == 'cosine':

for j in range(1, centroids.shape[1] - 1):

distance_computed = cosine(centroids[:, j - 1], centroids[:, j + 1])

ans.append(distance_computed)

ans.append(0)

return numpy.array(ans)

def centroids_per_second(y, sr, centroids):

"""

Returns the quantity of centroids per second

Parameters

y : list of floats

The file location of the spreadsheet

sr : bool

A flag used to print the columns to the console (default is False)

Returns

float

centroids per second

"""

return sr * centroids.shape[1] / y.shape[0]

A.1 Python library 71

def get_peaks_hcdf(hcdf_function, c, threshold, rate_centroids_second, centroids):

changes = [0]

centroid_changes = [[centroids[j][0] for j in range(0, c.shape[0])]]

last = 0

for i in range(2, hcdf_function.shape[0] - 1):

if hcdf_function[i - 1] < hcdf_function[i] and hcdf_function[i + 1] < hcdf_function[i]:

centroid_changes.append([numpy.median(centroids[j][last+1:i - 1]) for j in range(0, c.shape[0])])

changes.append(i / rate_centroids_second)

last = i

return numpy.array(changes), centroid_changes

def everything_is_zero(vector):

"""Returns true if all the values of the vector are 0 if not return false

Parameters

vector : list

vector of reals

Returns

bool

true or false depending if everything is 0 or not

"""

for element in vector:

if element != 0:

return False

return True

def complex_to_vector(vector):

"""transforms an array of i complex numbers in an array of 2*i elements where

odd indexes are the real part and even indexes are the imaginary part.

Parameters

vector : list

list of complex numbers

72 Anexo

Returns

list

list of real numbers with odd indexes as the real part and even indexes as the imaginary part

"""

ans = []

for i in range(0, vector.shape[1]):

row1 = []

row2 = []

for j in range(0, vector.shape[0]):

row1.append(vector[j][i].real)

row2.append(vector[j][i].imag)

ans.append(row1)

ans.append(row2)

return numpy.array(ans)

def get_parameters_chroma(txt):

"""

returns parameters of json "chroma-samplerate-framesize-overlap"

Parameters

txt : str

chroma-samplerate-framesize-overlap

Returns

dictionary with keys: {chroma, samplerate, framesize, overlap}

"""

rows = txt.split("-")

return {"chroma": rows[0], "sr": int(rows[1]), "fr": int(rows[2]), "off": int(rows[2]) // int(rows[3])}

def tonal_interval_space(chroma, symbolic=False):

"""

returns tonal interval space from a vector of chromagrams

Parameters

A.1 Python library 73

chroma : list

list of chromagrams

symbolic: bool

True for symbolic musical audio tonal interval space and False for musical audio aproach

Returns

list of tonal interval space vectors

"""

centroid_vector = []

for i in range(0, chroma.shape[1]):

each_chroma = [chroma[j][i] for j in range(0, chroma.shape[0])]

print(each_chroma)

if everything_is_zero(each_chroma):

centroid = [0. + 0.j, 0. + 0.j, 0. + 0.j, 0. + 0.j, 0. + 0.j, 0. + 0.j]

else:

tonal = TIV.from_pcp(each_chroma, symbolic)

centroid = tonal.get_vector()

centroid_vector.append(centroid)

return complex_to_vector(numpy.array(centroid_vector))

def check_parameters(chroma, blur, tonal_model, log_compresion, dist):

chroma = get_parameters_chroma(chroma)["chroma"]

chroma_type = {'nnls', 'hpcp', 'cqt', 'crp', 'stft', 'cens'}

assert chroma in chroma_type, "Type of chroma is not correct ['nnls', 'hpcp', 'cqt', 'cens', 'stft']"

blur_type = {'none', '17-points', 'full'}

assert blur in blur_type, "Type of blur is not correct ['none', '17points', 'full']"

tonal_model_type = {'tonnetz', 'TIV2', 'TIV2_symb', 'without_tc'}

assert tonal_model in tonal_model_type, "Type of tonal model is not correct ['tonnetz', 'TIV2', 'TIV2_symb']"

log_compresion_type = {'after', 'before', 'none'}

assert log_compresion in log_compresion_type, "Type of log_compresion is not correct ['after', 'before', 'none']"

distance_type = {'euclidean', 'cosine'}

assert dist in distance_type, "Type of distance is not correct ['euclidian', 'cosine']"

def get_nnls(y, sr, fr, off):

"""

74 Anexo

returns nnls chromagram

Parameters

y : number > 0 [scalar]

audio

sr: number > 0 [scalar]

chroma-samplerate-framesize-overlap

fr: number [scalar]

frame size of windos

off: number [scalar]

overlap

Returns

list of chromagrams

"""

plugin = 'nnls-chroma:nnls-chroma'

chroma = list(vamp.process_audio(y, sr, plugin, output="chroma", block_size=fr, step_size=off))

doce_bins_tuned_chroma = []

for c in chroma:

doce_bins_tuned_chroma.append(c['values'].tolist())

return numpy.array(doce_bins_tuned_chroma).transpose()

def get_chromagram(y, sr, chroma):

"""

returns chromagram

Parameters

y : number > 0 [scalar]

audio

sr: number > 0 [scalar]

target sampling rate

A.1 Python library 75

chroma: str

chroma-samplerate-framesize-overlap

Returns

list of chromagrams

"""

params = get_parameters_chroma(chroma)

chroma = params["chroma"]

doce_bins_tuned_chroma = None

if chroma == 'nnls':

doce_bins_tuned_chroma = get_nnls(y, params["sr"], params["fr"], params["off"])

elif chroma == 'cqt':

win = get_window('blackmanharris', params["fr"])

doce_bins_tuned_chroma = chroma_cqt(y=y, sr=params["sr"],

C=None,

hop_length=params["off"],

norm=None,

threshold=0.0,

window=win,

fmin=110,

n_chroma=12,

n_octaves=4 if params["chroma"] == "cqt" and params["sr"] == 5525 else 5,

bins_per_octave=36)

elif chroma == 'cens':

win = get_window('blackmanharris', params["fr"])

doce_bins_tuned_chroma = chroma_cens(y=y, sr=params["sr"],

C=None,

hop_length=params["off"],

norm=None,

window=win,

fmin=110,

n_chroma=12,

n_octaves=5,

bins_per_octave=36)

elif chroma == 'stft':

win = get_window('blackmanharris', params["fr"])

doce_bins_tuned_chroma = chroma_stft(y=y, sr=params["sr"], hop_length=params["off"], norm=None, window=win,

n_chroma=12)

76 Anexo

return doce_bins_tuned_chroma

def chromagram(hpss, name_file, y, sr, chroma):

"""

wrapper of get_chromagram for save all results for future same calculations

Parameters

hpss : bool

true or false depends on hpss block

name_file: str

name of the file that is being computed

y : number > 0 [scalar]

audio

sr: number > 0 [scalar]

target sampling rate

chroma: str

chroma-samplerate-framesize-overlap

Returns

list of chromagrams

"""

name_chromagram = get_name_chromagram(name_file, hpss, chroma)

if path.exists(name_chromagram):

dic = load_binary(name_chromagram)

else:

if mutex_global.mutex is not None:

mutex_global.mutex.acquire()

doce_bins_tuned_chroma = get_chromagram(y, sr, chroma)

if mutex_global.mutex is not None:

mutex_global.mutex.release()

dic = {'doce_bins_tuned_chroma': doce_bins_tuned_chroma}

dic_save = {'doce_bins_tuned_chroma': doce_bins_tuned_chroma.tolist()}

A.1 Python library 77

save_binary(dic, name_chromagram)

save_json(dic_save, name_chromagram + '.json')

return dic['doce_bins_tuned_chroma']

def get_tonal_centroid_transform(y, sr, tonal_model, doce_bins_tuned_chroma):

"""

returns centroids from tonal model

Parameters

hpss : bool

true or false depends on hpss block

name_file: str

name of the file that is being computed

y : number > 0 [scalar]

audio

sr: number > 0 [scalar]

target sampling rate

chroma: str

chroma-samplerate-framesize-overlap

tonal_model: str optional

Tonal model block type. "TIV2" for Tonal Interval space focus on audio. "TIV2" for audio. "TIV2_Symb" for symbolic data.

"tonnetz" for harte centroids aproach. Default TIV2\

doce_bins_tuned_chroma: list

list of chroma vectors

Returns

list of tonal centroids vectors

"""

centroid_vector = None

if tonal_model == 'tonnetz':

centroid_vector = tonnetz(y=y, sr=sr, chroma=doce_bins_tuned_chroma)

78 Anexo

elif tonal_model == 'TIV2':

centroid_vector = tonal_interval_space(doce_bins_tuned_chroma)

elif tonal_model == 'TIV2_symb':

centroid_vector = tonal_interval_space(doce_bins_tuned_chroma, symbolic=True)

return centroid_vector

def tonal_centroid_transform(hpss, chroma, name_file, y, sr, tonal_model, doce_bins_tuned_chroma):

"""

wrapper of tonal centroid transform for save all results for future same calculations

Parameters

hpss : bool

true or false depends on hpss block

name_file: str

name of the file that is being computed

y : number > 0 [scalar]

audio

sr: number > 0 [scalar]

target sampling rate

chroma: str

chroma-samplerate-framesize-overlap

tonal_model: str optional

Tonal model block type. "TIV2" for Tonal Interval space focus on audio. "TIV2" for audio. "TIV2_Symb" for symbolic data.

"tonnetz" for harte centroids aproach. Default TIV2\

doce_bins_tuned_chroma: list

list of chroma vectors

Returns

list of tonal centroids vectors

"""

name_tonal_model = get_name_tonal_model(name_file, hpss, chroma, tonal_model)

A.1 Python library 79

if tonal_model == 'without_tc':

dic = {'centroid_vector': doce_bins_tuned_chroma}

else:

if path.exists(name_tonal_model):

dic = load_binary(name_tonal_model)

else:

centroid_vector = get_tonal_centroid_transform(y, sr, tonal_model, doce_bins_tuned_chroma)

dic = {'centroid_vector': centroid_vector}

save_binary(dic, name_tonal_model)

return dic['centroid_vector']

def get_gaussian_blur(centroid_vector, blur, sigma):

"""

Apply gaussian smoothing to tonal model centroids

Parameters

centoid_vector: list

tonal centroids of the tonal model

sigma: number (scalar > 0) optional

sigma of gaussian smoothing value. Default 11

Returns

list

centroids blurred by gassuian smoothing

"""

if blur == 'full':

centroid_vector = gaussian_filter(centroid_vector, sigma=sigma)

elif blur == '17-points':

gauss_kernel = Gaussian1DKernel(17)

i = 0

for centroid in centroid_vector:

centroid = convolve(centroid, gauss_kernel)

centroid_vector[i] = centroid

return numpy.array(centroid_vector)

80 Anexo

def gaussian_blur(hpss, chroma, tonal_model, name_file, centroid_vector, log_compresion, blur, sigma):

"""

Wrapper of get_gaussian_blur for save all results for future same calculations. If parameterization

have been computed before get_gaussian_blur is not computed.

Parameters

name_file: str

name of the file that is being computed

hpss: bool optional

true or false depends is harmonic percussive source separation (hpss) block wants to be computed. Default False.

sr: number > 0 [scalar]

target sampling rate

chroma: str optional

"chroma-samplerate-framesize-overlap"

chroma can be "CQT","NNLS", "STFT", "CENS" or "HPCP"

samplerate as a number scalar

frame size as a number scalar

overlap number that a windows is divided

tonal_model: str optional

Tonal model block type. "TIV2" for Tonal Interval space focus on audio. "TIV2" for audio. "TIV2_Symb" for symbolic data.

"tonnetz" for harte centroids aproach. Default TIV2

centoid_vector: list

tonal centroids of the tonal model

sigma: number (scalar > 0) optional

sigma of gaussian smoothing value. Default 11

Returns

list

sample of audio

"""

gaussian_blur = get_name_gaussian_blur(name_file, hpss, chroma, tonal_model, blur, sigma, log_compresion)

A.1 Python library 81

if path.exists(gaussian_blur):

dic = load_binary(gaussian_blur)

else:

centroid_vector = get_gaussian_blur(centroid_vector, blur, sigma)

dic = {'centroid_vector': centroid_vector}

dic_save = {'centroid_vector': centroid_vector.tolist()}

save_binary(dic, gaussian_blur)

save_json(dic_save, gaussian_blur + '.json')

return dic['centroid_vector']

def get_audio(filename, hpss, sr):

"""

Get audio as list

Parameters

filename: str

name of the file that is being computed witout format extension

hpss: bool optional

true or false depends is harmonic percussive source separation (hpss) block wants to be computed. Default False.

sr: number > 0 [scalar]

target sampling rate

Returns

list

sample of audio

"""

y, sr = librosa.load(filename, sr=sr, mono=True)

if hpss:

y = librosa.effects.harmonic(y)

return y, sr

def audio(filename, name_file, hpss, sr):

"""

Wrapper of get audio for save all results for future same calculations. If parameterization

82 Anexo

have been computed before get audio is not computed.

Parameters

filename: str

name of the file that is being computed witout format extension

name_file: str

name of the file that is being computed

hpss: bool optional

true or false depends is harmonic percussive source separation (hpss) block wants to be computed. Default False.

sr: number > 0 [scalar]

target sampling rate

Returns

list

sample of audio

"""

name_audio = get_name_audio(name_file, hpss, sr)

if path.exists(name_audio):

dic = load_binary(name_audio)

else:

y, sr = get_audio(filename, hpss, sr)

dic = {'y': y, 'sr': sr}

dic_save = {'y': y.tolist(), 'sr': sr}

save_binary(dic, name_audio)

save_json(dic_save, name_audio + '.json')

return dic['y'], dic['sr']

def get_harmonic_change(filename: str, name_file: str, hpss: bool = False, tonal_model: str = 'TIV2',

chroma: str = 'cqt',

blur: str = 'full', sigma: int = 11, log_compresion: str = 'none', dist: str = 'euclidean'):

"""

Computes Harmonic Change Detection Function

Parameters

A.1 Python library 83

filename: str

name of the file that is being computed witout format extension

name_file: str

name of the file that is being computed

hpss : bool optional

true or false depends is harmonic percussive source separation (hpss) block wants to be computed. Default False.

tonal_model: str optional

Tonal model block type. "TIV2" for Tonal Interval space focus on audio. "TIV2" for audio. "TIV2_Symb" for symbolic data.

"tonnetz" for harte centroids aproach. Default TIV2

chroma: str optional

"chroma-samplerate-framesize-overlap"

chroma can be "CQT","NNLS", "STFT", "CENS" or "HPCP"

samplerate as a number scalar

frame size as a number scalar

overlap number that a windows is divided

sigma: number (scalar > 0) optional

sigma of gaussian smoothing value. Default 11

distance: str optional

type of distance measure used. Types can be "euclidean" for euclidean distance and "cosine" for cosine distance. Default "euclidean".

Returns

list

harmonic changes (the peaks) on the song detected

list

HCDF function values

number

windows size

"""

audio

y, sr = audio(filename, name_file, hpss, get_parameters_chroma(chroma)["sr"])

84 Anexo

chroma

doce_bins_tuned_chroma = chromagram(hpss, name_file, y, sr, chroma)

tonal_model

centroid_vector = tonal_centroid_transform(hpss, chroma, name_file, y, sr, tonal_model, doce_bins_tuned_chroma)

blur

centroid_vector_blurred = gaussian_blur(hpss, chroma, tonal_model, name_file, centroid_vector, log_compresion, blur,

sigma)

harmonic distance and calculate peaks

harmonic_function = get_distance(centroid_vector_blurred, dist)

windows_size = centroids_per_second(y, sr, centroid_vector_blurred)

changes, centroid_changes = get_peaks_hcdf(harmonic_function, centroid_vector_blurred, 0, windows_size,

centroid_vector)

return changes, harmonic_function, windows_size, numpy.array(centroid_changes)

def harmonic_change(filename: str, name_file: str, hpss: bool = False, tonal_model: str = 'TIV2', chroma: str = 'cqt',

blur: str = 'full', sigma: int = 11, log_compresion: str = 'none', distance: str = 'euclidean'):

"""

Wrapper of harmonic change detection function for save all results for future same calculations. If parameterization

have been computed before HCDF is not computed.

Parameters

filename: str

name of the file that is being computed witout format extension

name_file: str

name of the file that is being computed

hpss : bool optional

true or false depends is harmonic percussive source separation (hpss) block wants to be computed. Default False.

tonal_model: str optional

Tonal model block type. "TIV2" for Tonal Interval space focus on audio. "TIV2" for audio. "TIV2_Symb" for symbolic data.

"tonnetz" for harte centroids aproach. Default TIV2

A.1 Python library 85

chroma: str optional

"chroma-samplerate-framesize-overlap"

chroma can be "CQT","NNLS", "STFT", "CENS" or "HPCP"

samplerate as a number scalar

frame size as a number scalar

overlap number that a windows is divided

sigma: number (scalar > 0) optional

sigma of gaussian smoothing value. Default 11

distance: str optional

type of distance measure used. Types can be "euclidean" for euclidean distance and "cosine" for cosine distance. Default "euclidean".

Returns

list

harmonic changes (the peaks) on the song detected

list

HCDF function values

number

windows size

"""

centroid_changes = []

check_parameters(chroma, blur, tonal_model, log_compresion, distance)

name_harmonic_change = get_name_harmonic_change(name_file, hpss, tonal_model, chroma, blur, sigma, log_compresion,

distance)

if path.exists(name_harmonic_change):

dic = load_binary(name_harmonic_change)

else:

changes, harmonic_function, windows_size, centroid_changes = get_harmonic_change(filename, name_file, hpss,

tonal_model, chroma,

blur, sigma, log_compresion,

distance)

dic = {'changes': changes, 'harmonic_function': harmonic_function, 'windows_size': windows_size}

save_binary(dic, name_harmonic_change)

return dic['changes'], dic['harmonic_function'], dic['windows_size']

86 Anexo

def main():

""" This program computes HCDF function focus performance on recall or precision

Arguments

first one :

recall or f-score

second one :

The name file of the audio file located in audio_files

PRINTS

a list of harmonic changes (the peaks) on the song detected

a list with the HCDF function

windows size

Typical use

Harmonical use

"""

absolute_path = "./audio_files/"

file = "07_-_Please_Please_Me.wav"

file = argv[2]

if argv[1] == "f-score":

print(harmonic_change(absolute_path + file,

file,

chroma='nnls-8000-1024-2',

hpss=True,

tonal_model='TIV2',

blur='full',

sigma=5,

euclidean='euclidean'

))

elif argv[1] == "recall":

print(harmonic_change(absolute_path + file,

file,

chroma='stft-44100-2048-4',

hpss=True,

A.2 Javascript library 87

tonal_model='TIV2',

blur='full',

sigma=17,

euclidean='euclidean'))

if __name__ == '__main__':

main()

A.2 Javascript library

A.2.1 README

Harmonic Change Detection Function (HCDF) Javascript library HCDF.js

This library is used to compute HCDF. [Here]() is described the algorithm in detail. As many of the solutions overlap partilly, all the algorithm data computed in the different blocks is saved in out folder in order to not compute same blocks parameterization two times. Harmonic Change Detection Function implementation based on essentia.js.

Installation

For using this library have to been added the following CDNs:

```

<script src="https://unpkg.com/essentia.js@0.0.9/dist/essentia-wasm.web.js"></script>

<script src="https://unpkg.com/essentia.js@0.0.9/dist/essentia.js-core.js"></script>

<script src="https://unpkg.com/essentia.js@0.0.9/dist/essentia.js-plot.js"></script>

```

Usage

The library can be imported as a module with `import HCDF from './hcdf.js'` and `import loadEssentia from './hcdf.js'`. First, `loadEssentia()` have to be called and later `loadEssentia(id_audio)` can be used. `id_audio` is `<audio> </audio>` html id element.

A.2.2 CODE

let essentia

/* "https://freesound.org/data/previews/328/328857_230356-lq.mp3"; */

let audioData;

// fallback for cross-browser Web Audio API BaseAudioContext

const AudioContext = window.AudioContext || window.webkitAudioContext;

let audioCtx = new AudioContext();

let plotChroma;

88 Anexo

let plotContainerId = "plotDiv";

let isComputed = false;

/*

* returns an audio buffer downsampled from sample rate old_sr to sample rate new_sr

*

* Parameters

* ----------

* buffer : number > 0 [scalar]

* audio

*

* old_sr: number > 0 [scalar]

*

*

* new_sr: number > 0 [scalar]

*

*

* hopsize: number [scalar]

* overlap

*

* Returns

* -------

* audio downsampled

*/

function downsample(buffer, old_sr, new_sr) {

if (new_sr == old_sr) {

return buffer;

}

if (new_sr > old_sr) {

throw "downsampling rate show be smaller than original sample rate";

}

var sampleRateRatio = old_sr / new_sr;

var newLength = Math.round(buffer.length / sampleRateRatio);

var result = new Float32Array(newLength);

var offsetResult = 0;

var offsetBuffer = 0;

while (offsetResult < result.length) {

var nextOffsetBuffer = Math.round((offsetResult + 1) * sampleRateRatio);

A.2 Javascript library 89

var accum = 0, count = 0;

for (var i = offsetBuffer; i < nextOffsetBuffer && i < buffer.length; i++) {

accum += buffer[i];

count++;

}

result[offsetResult] = accum / count;

offsetResult++;

offsetBuffer = nextOffsetBuffer;

}

return result;

}

/*

* returns nnls chromagram

*

* Parameters

* ----------

* frames : number > 0 [scalar]

* audio

*

* sampleRate: number > 0 [scalar]

* chroma-samplerate-framesize-overlap

*

* framesize: number [scalar]

* frame size of windos

*

* hopsize: number [scalar]

* overlap

*

* Returns

* -------

* list of chromagrams

*/

function chromaNNLS(frames, frameSize, hopSize, sampleRate){

let logSpectFrames = new essentia.module.VectorVectorFloat();

for (var i=0; i<frames.size(); i++) {

// default hanning window (you can change it according to your need)

let windowing = essentia.Windowing(frames.get(i), false, hopSize, 'hann');

let spect = essentia.Spectrum(windowing.frame, frameSize); // frameSize

90 Anexo

let logSpectrum = essentia.LogSpectrum(spect.spectrum,

3, // bins per semitone

frameSize,

0, // rollon

sampleRate);// sample rate

logSpectFrames.push_back(logSpectrum.logFreqSpectrum);

// console.log(essentia.vectorToArray(logSpectrum.logFreqSpectrum));

meanTuning = logSpectrum.meanTuning;

localTuning = logSpectrum.meanTuning;

}

let nnlsChroma = essentia.NNLSChroma(logSpectFrames,

meanTuning,

localTuning,

"none",

frameSize,

sampleRate,

0.7,

1,

"global",

false).chromagram;

delete windowing;

delete spect;

delete logSpectrum;

console.log(nnlsChroma);

var chroma_list = [];

for (var i = 0; i < nnlsChroma.size(); i++){

console.log(essentia.vectorToArray(nnlsChroma.get(i)));

chroma_list.push(essentia.vectorToArray(nnlsChroma.get(i)));

}

return chroma_list;

}

function everything_is_zero(vector){

let is_zero = true;

for (var i = vector.length - 1; i >= 0 && is_zero; i--) {

A.2 Javascript library 91

if (vector[i] !== 0){

is_zero = false;

}

}

return is_zero;

}

/**

* Discrete Fourier Transfrom

*/

function DFT(input, zero = 1e-10) {

// Discrete Fourier Transform

const N = input.length;

const signals = [];

// Each discrete frecuenciy

for (let frequency = 0; frequency < N; frequency += 1) {

//complex(frequencySignal)

let frequencySignal_re = 0;

let frequencySignal_im = 0;

// Each discrete time

for (let timer = 0; timer < N; timer += 1) {

const amplitude = input[timer];

//rotation angle.

const angle = -1 * (2 * Math.PI) * frequency * (timer / N);

// Remember that e^ix = cos(x) + i * sin(x);

let point_re = Math.cos(angle) * amplitude;

let point_im = Math.sin(angle) * amplitude;

// Add this data point's contribution.

frequencySignal_re += point_re;

frequencySignal_im += point_im;

}

// If is close to zero.... zero

if (Math.abs(frequencySignal_re) < zero) {

frequencySignal_re = 0;

}

92 Anexo

if (Math.abs(frequencySignal_im) < zero) {

frequencySignal_im = 0;

}

// Average contribution at this frequency.

// complex(frecuencySignal) / N

frequencySignal_re = (frequencySignal_re * N) / (N*N);

frequencySignal_im = (frequencySignal_im * N) / (N*N);

// Add current frequency signal to the list of compound signals.

signals.push(frequencySignal_re);

signals.push(frequencySignal_im);

}

return signals;

}

function division(vector, energy){

for (var i = vector.length - 1; i >= 0; i--) {

vector[i] = vector[i]/energy;

}

return vector;

}

function multiply(vectorA, vectorB){

var ans = new Array(12);

for (var i = vectorA.length - 1; i >= 0; i--) {

ans[i] = vectorA[i] * vectorB[i]

}

return ans;

}

function TIV(pcp, weights){

// Tonal Interval Vectors

let fft = DFT(pcp);

let energy = fft[0];

A.2 Javascript library 93

let vector = fft.slice(2, 14);

if (weights === "symbolic"){

let weights_symbolic = [2, 2, 11, 11, 17, 17, 16, 16, 19, 19, 7, 7]

vector = multiply(division(vector, energy), weights_symbolic);

}

else if (weights === "audio"){

let weights_audio = [3, 3, 8, 8, 11.5, 11.5, 15, 15, 14.5, 14.5, 7.5,7.5];

vector = multiply(division(vector, energy), weights_audio);

}

else if (weights === "harte"){

let weithts_harte = [0, 0, 0, 0, 1, 1, 0.5, 0.5, 1, 1, 0, 0];

vector = multiply(division(vector, energy), weithts_harte);

}

return vector;

}

/*

* returns tonal interval space from a vector of chromagrams

*

* Parameters

* ----------

* chroma : list

* list of chromagrams

*

* weights: str

* "audio", "symbolic" or "harte"

*

* Returns

* -------

* list of tonal interval space vectors

*/

function tonal_interval_space(chroma, weights="audio"){

// Tonal Interval Space

let centroid_vector = [];

for (var i = 0; i < chroma.length; i++){

let each_chroma = chroma[i];

let centroid = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

if (!everything_is_zero(each_chroma)){

centroid = TIV(each_chroma, weights)

94 Anexo

}

centroid_vector.push(centroid);

}

return centroid_vector;

}

function avg (v) {

return v.reduce((a,b) => a+b, 0)/v.length;

}

/*

* Apply gaussian smoothing to tonal model centroids

* Parameters

* ----------

* vector: list

* tonal centroids of the tonal model

* sigma: number (scalar > 0) optional

* sigma of gaussian smoothing value.

* Returns

* -------

* list

* centroids blurred by gassuian smoothing

*/

function gaussian_smoothing_vector(vector, sigma) {

var t_avg = avg(vector)*sigma;

var ret = Array(vector.length);

for (var i = 0; i < vector.length; i++) {

(function () {

var prev = i>0 ? ret[i-1] : vector[i];

var next = i<vector.length ? vector[i] : vector[i-1];

ret[i] = avg([t_avg, avg([prev, vector[i], next])]);

})();

}

return ret;

}

A.2 Javascript library 95

function gaussian_smoothing(tis, sigma){

var ans = [];

for (var i = tis.length - 1; i >= 0; i--) {

ans.push(gaussian_smoothing_vector(tis[i], sigma));

}

return ans;

}

/*

* Returns the quantity of centroids per second

* Parameters

* ----------

* centroids : list of floats

* The file location of the spreadsheet

* Returns

* -------

* float

* centroids per second

*/

function distance(centroids){

var ans = [0];

for (var i = 1; i < centroids.length - 1; i++) {

var sum = 0;

for (var j = 1; j < centroids[i].length - 1; j++) {

sum += Math.pow((centroids[i][j + 1] - centroids[i][j - 1]), 2)

}

sum = Math.sqrt(sum)

ans.push(sum);

}

return ans;

}

/*

* Returns the quantity of centroids per second

*

* Parameters

* ----------

96 Anexo

* y : list of floats

* The file location of the spreadsheet

* sr : bool

* A flag used to print the columns to the console (default is False)

*

* Returns

* -------

* float

* centroids per second

*/

function centroids_per_second(y, sr, centroids){

return sr * centroids.length / y.length;

}

function peaks(hcdf_function, rate_centroids_second){

let changes = [0];

for (var i = 0; i < hcdf_function.length; i++) {

if (hcdf_function[i - 1] < hcdf_function[i] && hcdf_function[i + 1] < hcdf_function[i]){

changes.push(i / rate_centroids_second)

}

}

return changes;

}

/*

* Computes Harmonic Change Detection Function

* Parameters

* ----------

* id_audio: str

* id of HTML element <audio>

* Returns

* -------

* list

* harmonic changes (the peaks) on the song detected

*/

export async function HCDF(id_audio) {

A.2 Javascript library 97

let audioURL = document.getElementById(id_audio).currentSrc;

console.log(audioURL);

// load audio file from an url

let audioData = await essentia.getAudioChannelDataFromURL(audioURL, audioCtx, 0);

if (isComputed) { plotChroma.destroy(); };

const frameSize = 2048;

const hopSize = 512;

const sampleRate = 8000;

console.log("audio antes downsampling", audioData);

audioData = downsample(audioData, 44100, sampleRate);

console.log("audio despues downsampling", audioData);

let frames = essentia.FrameGenerator(audioData,

frameSize,

hopSize)

let chroma = chromaNNLS(frames, frameSize, hopSize, sampleRate);

console.log("chroma", chroma);

let chroma = [[0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0]]

let tonal_centroids = tonal_interval_space(chroma, "symbolic");

console.log("tonal centroids", tonal_centroids);

let smoothed_centroids = gaussian_smoothing(tonal_centroids, 5);

console.log("gaussian smoothing", tonal_centroids);

let harmonic_function = distance(smoothed_centroids);

console.log("distance", distance);

let cps = centroids_per_second(audioData, sampleRate, smoothed_centroids);

let harmonic_changes = peaks(harmonic_function, cps);

console.log("harmonic_changes", harmonic_changes);

return await harmonic_changes;

98 Anexo

}

/*

* Function for loading essentia wasm module

*

*/

export async function loadEssentia(){

// Now let's load the essentia wasm back-end, if so create UI elements for computing features

EssentiaModule().then(async function(WasmModule) {

essentia = new Essentia(WasmModule);

});

};

export default {HCDF, loadEssentia}

References

[1] Mark A Bartsch and Gregory H Wakefield. Audio thumbnailing of popular music using
chroma-based representations. IEEE Transactions on multimedia, 7(1):96–104, 2005.

[2] Juan Pablo Bello and Jeremy Pickens. A robust mid-level representation for harmonic con-
tent in music signals. In ISMIR, volume 5, pages 304–311. Citeseer, 2005.

[3] Bruce Benward. Music in Theory and Practice Volume 1, volume 1. McGraw-Hill Higher
Education, 2014.

[4] Gilberto Bernardes, Diogo Cocharro, Marcelo Caetano, Carlos Guedes, and Matthew EP
Davies. A multi-level tonal interval space for modelling pitch relatedness and musical con-
sonance. Journal of New Music Research, 45(4):281–294, 2016.

[5] Gilberto Bernardes, Diogo Cocharro, Carlos Guedes, and Matthew EP Davies. Harmony
generation driven by a perceptually motivated tonal interval space. Computers in Entertain-
ment (CIE), 14(2):1–21, 2016.

[6] Gilberto Bernardes, Matthew EP Davies, and Carlos Guedes. Automatic musical key estima-
tion with adaptive mode bias. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 316–320. IEEE, 2017.

[7] Gilberto Bernardes, Matthew EP Davies, and Carlos Guedes. A hierarchical harmonic mix-
ing method. In International Symposium on Computer Music Multidisciplinary Research,
pages 151–170. Springer, 2017.

[8] Nicola Bernardini and Giovanni De Poli. The sound and music computing field: present and
future. Journal of New Music Research, 36(3):143–148, 2007.

[9] Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Florian Krebs, and Gerhard Widmer. Mad-
mom: A new python audio and music signal processing library. In Proceedings of the 24th
ACM international conference on Multimedia, pages 1174–1178, 2016.

[10] Dmitry Bogdanov, Joan Serra, Nicolas Wack, and Perfecto Herrera. From low-level to high-
level: Comparative study of music similarity measures. In 2009 11th IEEE International
Symposium on Multimedia, pages 453–458. IEEE, 2009.

[11] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez Gutiérrez, Sankalp Gulati, Herrera Boyer,
Oscar Mayor, Gerard Roma Trepat, Justin Salamon, José Ricardo Zapata González, Xavier
Serra, et al. Essentia: An audio analysis library for music information retrieval. In Britto A,
Gouyon F, Dixon S, editors. 14th Conference of the International Society for Music Informa-
tion Retrieval (ISMIR); 2013 Nov 4-8; Curitiba, Brazil.[place unknown]: ISMIR; 2013. p.
493-8. International Society for Music Information Retrieval (ISMIR), 2013.

99

100 REFERENCES

[12] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven documents. IEEE
transactions on visualization and computer graphics, 17(12):2301–2309, 2011.

[13] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Audio chord recog-
nition with recurrent neural networks. In ISMIR, pages 335–340. Citeseer, 2013.

[14] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[15] Judith C Brown and Miller S Puckette. An efficient algorithm for the calculation of a constant
q transform. The Journal of the Acoustical Society of America, 92(5):2698–2701, 1992.

[16] Emilios Cambouropoulos. From midi to traditional musical notation. In Proceedings of the
AAAI Workshop on Artificial Intelligence and Music: Towards Formal Models for Composi-
tion, Performance and Analysis, volume 30, 2000.

[17] Soubhik Chakraborty, Guerino Mazzola, Swarima Tewari, and Moujhuri Patra. Computa-
tional musicology in Hindustani music. Springer, 2014.

[18] Ruofeng Chen, Weibin Shen, Ajay Srinivasamurthy, and Parag Chordia. Chord recognition
using duration-explicit hidden markov models. In ISMIR, pages 445–450. Citeseer, 2012.

[19] Elaine Chew. The spiral array: An algorithm for determining key boundaries. In Interna-
tional Conference on Music and Artificial Intelligence, pages 18–31. Springer, 2002.

[20] Eric Clarke and Nicholas Cook. Empirical musicology: Aims, methods, prospects. Oxford
University Press, 2004.

[21] Alessio Degani, Marco Dalai, Riccardo Leonardi, and Pierangelo Migliorati. Harmonic
change detection for musical chords segmentation. In 2015 IEEE International Conference
on Multimedia and Expo (ICME), pages 1–6. IEEE, 2015.

[22] Dan Ellis. Chroma Feature Analysis and Synthesis. Available at
https://labrosa.ee.columbia.edu/matlab/chroma-ansyn/, accessed April 18, 2020.

[23] Leonhard Euler. Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilu-
cide expositae. Saint Petersburg Academy, 1739.

[24] Derry Fitzgerald. Harmonic/percussive separation using median filtering. In Proc. of DAFX,
volume 10, 2010.

[25] Takuya Fujishima. Real-time chord recognition of musical sound: A system using common
lisp music. Proc. ICMC, Oct. 1999, pages 464–467, 1999.

[26] Barbara R Gaizauskas. The harmony of the spheres. Journal of the Royal Astronomical
Society of Canada, 68:146, 1974.

[27] Emilia Gómez. Tonal description of music audio signals. Department of Information and
Communication Technologies, 2006.

[28] Stephen W Hainsworth, Malcolm D Macleod, et al. Onset detection in musical audio signals.
In ICMC, 2003.

[29] Christopher Harte. Towards automatic extraction of harmony information from music sig-
nals. PhD thesis, 2010.

https://labrosa.ee.columbia.edu/matlab/chroma-ansyn/

REFERENCES 101

[30] Christopher Harte and Mark Sandler. Automatic chord identifcation using a quantised chro-
magram. In Audio Engineering Society Convention 118. Audio Engineering Society, 2005.

[31] Christopher Harte, Mark Sandler, and Martin Gasser. Detecting harmonic change in musical
audio. In Proceedings of the 1st ACM workshop on Audio and music computing multimedia,
pages 21–26, 2006.

[32] Douglas M Hawkins. The problem of overfitting. Journal of chemical information and
computer sciences, 44(1):1–12, 2004.

[33] Eric J Humphrey and Juan P Bello. Rethinking automatic chord recognition with convolu-
tional neural networks. In 2012 11th International Conference on Machine Learning and
Applications, volume 2, pages 357–362. IEEE, 2012.

[34] Eric J Humphrey, Taemin Cho, and Juan P Bello. Learning a robust tonnetz-space trans-
form for automatic chord recognition. In 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 453–456. IEEE, 2012.

[35] Elyor Kodirov, Sejin Han, Guee-Sang Lee, and YoungChul Kim. Music with harmony:
Chord separation and recognition in printed music score images. In Proceedings of the
8th International Conference on Ubiquitous Information Management and Communication,
ICUIMC ’14, New York, NY, USA, 2014. Association for Computing Machinery.

[36] Hendrik Vincent Koops, W Bas de Haas, John Ashley Burgoyne, Jeroen Bransen, and Anja
Volk. Harmonic subjectivity in popular music, 2017.

[37] Filip Korzeniowski and Gerhard Widmer. Feature learning for chord recognition: The deep
chroma extractor. arXiv preprint arXiv:1612.05065, 2016.

[38] Mathieu Lagrange, Graham Percival, and George Tzanetakis. Adaptive harmonization and
pitch correction of polyphonic audio using spectral clustering. In Proceedings of DAFx,
pages 1–4, 2007.

[39] Bangalore S Manjunath, Philippe Salembier, and Thomas Sikora. Introduction to MPEG-7:
multimedia content description interface. John Wiley & Sons, 2002.

[40] Matthias Mauch, Chris Cannam, Matthew Davies, Simon Dixon, Christopher Harte, Sefki
Kolozali, Dan Tidhar, and Mark Sandler. Omras2 metadata project 2009. In Proc. of 10th
International Conference on Music Information Retrieval, page 1, 2009.

[41] Matthias Mauch and Simon Dixon. Simultaneous estimation of chords and musical context
from audio. IEEE Transactions on Audio, Speech, and Language Processing, 18(6):1280–
1289, 2009.

[42] Matthias Mauch and Simon Dixon. Approximate note transcription for the improved iden-
tification of difficult chords. In Proceedings of the 11th International Society for Music
Information Retrieval Conference (ISMIR 2010), 2010.

[43] HJJ MAXWELL. An artificial intelligence approach to computer-implemented analysis of
harmony in tonal music. 1986.

[44] Guerino Mazzola. The topos of music: geometric logic of concepts, theory, and performance.
Birkhäuser, 2012.

102 REFERENCES

[45] Josh H McDermott and Andrew J Oxenham. Music perception, pitch, and the auditory
system. Current opinion in neurobiology, 18(4):452–463, 2008.

[46] Brian McFee and Juan Pablo Bello. Structured training for large-vocabulary chord recogni-
tion. In ISMIR, pages 188–194, 2017.

[47] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg,
and Oriol Nieto. librosa: Audio and music signal analysis in python. 2015.

[48] David Meredith. Computational music analysis, volume 62. Springer, 2016.

[49] Dalibor Mitrović, Matthias Zeppelzauer, and Christian Breiteneder. Features for content-
based audio retrieval. In Advances in computers, volume 78, pages 71–150. Elsevier, 2010.

[50] Philip Morrison. The new grove dictionary of music and musicians, 1981.

[51] Meinard Müller. Fundamentals of music processing: Audio, analysis, algorithms, applica-
tions, chapter Section 3.1.2.3 and Section 7.2.1. Springer, 2015.

[52] Meinard Müller and Sebastian Ewert. Chroma Toolbox: MATLAB implementations for
extracting variants of chroma-based audio features. In Proceedings of the 12th International
Conference on Music Information Retrieval (ISMIR), Miami, USA, 2011, to appear.

[53] Meinard Müller, Frank Kurth, and Michael Clausen. Audio matching via chroma-based
statistical features. In ISMIR, volume 2005, page 6th, 2005.

[54] Yizhao Ni, Matt McVicar, Raul Santos-Rodriguez, and Tijl De Bie. Understanding effects of
subjectivity in measuring chord estimation accuracy. IEEE Transactions on Audio, Speech,
and Language Processing, 21(12):2607–2615, 2013.

[55] Henri J Nussbaumer. The fast fourier transform. In Fast Fourier Transform and Convolution
Algorithms, pages 80–111. Springer, 1981.

[56] H. Nyquist. Certain topics in telegraph transmission theory. Proceedings of the IEEE, 90:280
– 305, 03 2002.

[57] Arthur Joachim von Oettingen. Das duale harmoniesystem [the dual harmony system], 1913.

[58] Johan Pauwels, Ken O’Hanlon, Emilia Gómez, Mark Sandler, et al. 20 years of automatic
chord recognition from audio. Ismir, 2019.

[59] Johan Pauwels and Geoffroy Peeters. Evaluating automatically estimated chord sequences.
In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages
749–753. IEEE, 2013.

[60] Geoffroy Peeters, Bruno L Giordano, Patrick Susini, Nicolas Misdariis, and Stephen
McAdams. The timbre toolbox: Extracting audio descriptors from musical signals. The
Journal of the Acoustical Society of America, 130(5):2902–2916, 2011.

[61] João Paulo Caetano Pereira, Gilberto Bernardes, and Rui Penha. Musikverb: A harmonically
adaptive audio reverberation. In Proceedings of the 21st International Conference on Digital
Audio Effects, Aveiro, Portugal, 2018.

[62] Pietro Polotti. Sound to Sense, Sense to Sound: A state of the art in Sound and Music
Computing. Logos Verlag Berlin GmbH, 2008.

REFERENCES 103

[63] Ebenezer Prout. Analytical Key to the Exercises in Harmony: Its Theory and Practice.
Augener & Company, 1903.

[64] Miller Puckette et al. Pure data: another integrated computer music environment. Proceed-
ings of the second intercollege computer music concerts, pages 37–41, 1996.

[65] Stanisław A Raczyński, Emmanuel Vincent, and Shigeki Sagayama. Dynamic bayesian
networks for symbolic polyphonic pitch modeling. IEEE Transactions on Audio, Speech,
and Language Processing, 21(9):1830–1840, 2013.

[66] Bernardes G. Davies M.E.P. Serra X. (2020) Ramires, A. Tiv.lib: An open-sounce library
for the tonal description of musical audio. international conference on digital audio effects.
vienna, austria. 2020.

[67] Hugo Riemann. Skizze einer neuen Methode der Harmonielehre. Leipzig, 1880.

[68] Hugo Riemann. Handbuch der Harmonielehre. Leipzigy, 1887.

[69] Hugo Riemann. Vereinfachte Harmonielehre. London/New York, 1893.

[70] Hugo Riemann. Harmony simplified, or the theory of the tonal functions of chords. Augener
Ltd., 1896.

[71] Hugo Riemann and John Comfort Fillmore. The nature of harmony... Presser, 1882.

[72] Ricardo Scholz, Emmanuel Vincent, and Frédéric Bimbot. Robust modeling of musical
chord sequences using probabilistic n-grams. In 2009 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 53–56. IEEE, 2009.

[73] Xavier Serra. Audio-aligned jazz harmony dataset for automatic chord transcription and
corpus-based research. In In: Gómez E, Hu X, Humphrey E, Benetos E. Proceedings of the
19th ISMIR Conference; 2018 Sep 23-27; Paris, France.[Canada]: ISMIR; 2018. p. 483-90.
International Society for Music Information Retrieval (ISMIR), 2018.

[74] Xavier Serra, Roberto Bresin, and Antonio Camurri. Sound and music computing: Chal-
lenges and strategies. Journal of New Music Research, 36(3):185–190, 2007.

[75] Xavier Serra, Marc Leman, and Gerhard Widmer. A roadmap for sound and music comput-
ing. 2007.

[76] Alexander Sheh and Daniel PW Ellis. Chord segmentation and recognition using em-trained
hidden markov models. 2003.

[77] Roger N Shepard. Geometrical approximations to the structure of musical pitch. Psycholog-
ical review, 89(4):305, 1982.

[78] Clifford W Shults, David Oakes, Karl Kieburtz, M Flint Beal, Richard Haas, Sandy Plumb,
Jorge L Juncos, John Nutt, Ira Shoulson, Julie Carter, et al. Effects of coenzyme q10 in early
parkinson disease: evidence of slowing of the functional decline. Archives of neurology,
59(10):1541–1550, 2002.

[79] Arnold WM Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, and Ramesh
Jain. Content-based image retrieval at the end of the early years. IEEE Transactions on
pattern analysis and machine intelligence, 22(12):1349–1380, 2000.

104 REFERENCES

[80] Julius O. Smith. Introduction to Digital Filters with Audio Applications. W3K Publishing,
http://www.w3k.org/books/, 2007.

[81] Paul Smolensky. Information processing in dynamical systems: Foundations of harmony
theory. Technical report, Colorado Univ at Boulder Dept of Computer Science, 1986.

[82] Robert J Turetsky and Daniel PW Ellis. Ground-truth transcriptions of real music from
force-aligned midi syntheses. 2003.

[83] Dmitri Tymoczko. A geometry of music: Harmony and counterpoint in the extended common
practice. Oxford University Press, 2010.

[84] Dmitri Tymoczko and Jason Yust. Fourier phase and pitch-class sum. In International Con-
ference on Mathematics and Computation in Music, pages 46–58. Springer, 2019.

[85] Yushi Ueda, Yuki Uchiyama, Takuya Nishimoto, Nobutaka Ono, and Shigeki Sagayama.
Hmm-based approach for automatic chord detection using refined acoustic features. In 2010
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 5518–
5521. IEEE, 2010.

[86] Gerhard Widmer, Davide Rocchesso, Vesa Välimäki, Cumhur Erkut, Fabien Gouyon, Daniel
Pressnitzer, Henri Penttinen, Pietro Polotti, and Gualtiero Volpe. Sound and music comput-
ing: Research trends and some key issues. Journal of New Music Research, 36(3):169–184,
2007.

[87] Terry Winograd. Linguistics and the computer analysis of tonal harmony. journal of Music
Theory, 12(1):2–49, 1968.

[88] Yiming Wu and Wei Li. Automatic audio chord recognition with midi-trained deep feature
and blstm-crf sequence decoding model. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 27(2):355–366, 2018.

[89] Furkan Yesiler, Joan Serrà, and Emilia Gómez. Accurate and scalable version identification
using musically-motivated embeddings. In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pages 21–25. IEEE, 2020.

[90] Junping Zhang, Fei-Yue Wang, Kunfeng Wang, Wei-Hua Lin, Xin Xu, and Cheng Chen.
Data-driven intelligent transportation systems: A survey. IEEE Transactions on Intelligent
Transportation Systems, 12(4):1624–1639, 2011.

http://www.w3k.org/books/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Approach
	1.4 Structure of the dissertation

	2 State of the Art
	2.1 State of the Field
	2.1.1 Music Information Retrieval

	2.2 Fundamentals of Harmony: A Music Theory Perspective
	2.3 Audio Content-Based Processing
	2.4 Harmonic Description of Musical Audio
	2.4.1 Spectrogram
	2.4.2 Chromagram
	2.4.3 Tonal Spaces

	2.5 Harmonic Change Detection
	2.5.1 Harmonic Change Detection Function in Musical Audio
	2.5.2 Detecting harmonic change in musical audio
	2.5.3 Harmonic Change Detection for Musical Chords Segmentation

	3 Revisiting Harmonic Change Detection
	3.1 Preprocessing
	3.2 Chromagram
	3.3 Tonal Space
	3.4 Smoothing
	3.5 Distance calculation
	3.6 Adaptive Thresholding

	4 Evaluation
	4.1 Datasets
	4.2 Technical Architecture: Implementing an Efficient Grid-Search Method
	4.3 Results
	4.4 Visualizing Harmonic Change Detection Function
	4.4.1 Visualizing f-score results
	4.4.2 Visualizing recall results

	5 Applications of HCDF
	5.1 Automatic Chord Recognition
	5.2 Creative applications
	5.2.1 Audio Visualizations
	5.2.2 Musical Audio Harmonization: D'accord

	6 Conclusions
	6.1 Original Contributions and Model Implementations
	6.2 Further work

	A Anexo
	A.1 Python library
	A.1.1 README
	A.1.2 CODE

	A.2 Javascript library
	A.2.1 README
	A.2.2 CODE

	References

